Investigating Important Considerations for Neutrino Oscillation Experiments

Rebekah Pestes

Virginia Tech

Table of Contents

- 1 Introduction
 - Particle Physics
 - Neutrinos
 - Neutrino Oscillation Experiments
 - Important Considerations
- Benefits of a Near Detector for JUNO (D. Forero, R. Hawkins, P. Huber)
- 3 Summary

- Introduction
- Particle Physics
- Neutrinos
- Neutrino Oscillation Experiments
- Important Considerations
- Benefits of a Near Detector for JUNC (D. Forero, R. Hawkins, P. Huber)
- 3 Summary

Particle Physics

Investigates building blocks of nature and interactions

Particle Physics

Investigates building blocks of nature and interactions

The Standard Model

Particle Physics

Investigates building blocks of nature and interactions

The Standard Model

Neutrinos

• Proposed by Wolfgang Pauli - 1930

Interacts Weakly

Neutrinos

Proposed by Wolfgang Pauli - 1930

- Interacts Weakly
- 3 known types
 - Flavors: electron ($\nu_{\rm e}$), muon (ν_{μ}), tau ($\nu_{ au}$)
 - Different masses $(m_1 \neq m_2 \neq m_3)$

(from Particle Zoo)

Neutrino Oscillation Theory

Mismatch of ν_i and $\nu_\alpha \Rightarrow$ Neutrinos can change flavor!

Neutrino Oscillation Theory

Mismatch of ν_i and $\nu_\alpha \Rightarrow$ Neutrinos can change flavor!

For 2 flavors in vacuum,

$$P_{\alpha o eta}(L) = \sin^2(2\theta) \sin^2\left(rac{\left(m_2^2 - m_1^2\right)L}{4E}
ight)$$

Neutrino Oscillation Theory

Mismatch of ν_i and $\nu_{\alpha} \Rightarrow$ Neutrinos can change flavor!

For 2 flavors in vacuum,

$$P_{\alpha \to \beta}(L) = \sin^2(2\theta) \sin^2\left(\frac{(m_2^2 - m_1^2)L}{4E}\right)$$

Neutrino Oscillation Parameters (for 3 neutrino flavors):

- 3 mixing angles: θ_{12} , θ_{13} , θ_{23}
- 2 mass-squared differences: Δm_{21}^2 , Δm_{31}^2
- 1 *CP*-violating phase: δ_{CP}

Neutrino Oscillation Experiments

- Sources: sun, atmosphere, reactor, accelerator, supernova, etc.
- Need large detector
- Neutrino oscillation confirmed by solar and atmospheric experiments (2015 Nobel Prize)

Neutrino Oscillation Experiments

- Sources: sun, atmosphere, reactor, accelerator, supernova, etc.
- Need large detector
- Neutrino oscillation confirmed by solar and atmospheric experiments (2015 Nobel Prize)

 Precision measurements of parameters by reactor/accelerator experiments

$$\theta_{12} \approx 34^{\circ}$$
 $\Delta m_{21}^2 \approx 7.4 \times 10^{-5} \, \text{eV}^2$ $\theta_{13} \approx 8.6^{\circ}$ $|\Delta m_{31}^2| \approx 2.5 \times 10^{-3} \, \text{eV}^2$ $\theta_{23} \approx 45^{\circ}$

• Largely Unknown: δ_{CP} sign of Δm_{31}^2 octant of θ_{23}

Important Considerations

Anomalies have arisen...

D. Dwyer, et al (arXiv:1407.1281)

MiniBoone Collaboration (arXiv:1805.12028)

Important Considerations

Anomalies have arisen...

D. Dwyer, et al (arXiv:1407.1281) Things to consider:

MiniBoone Collaboration (arXiv:1805.12028)

- Flux produced by source
- · Other flavors of neutrinos
- Interaction cross-section
- Validity of assumptions

- 1 Introduction

- Benefits of a Near Detector for JUNO
 (D. Forero, R. Hawkins, P. Huber)
- 3 Summary

JUNO: Jiangmen Underground Neutrino Observatory

Primary Goal: measure sign of Δm_{31}^2

JUNO Collaboration (arXiv:1507.05613)

Need $3\%/\sqrt{E}$ energy resolution

L. Zhang, et al (arXiv:0807.3203)

JUNO: Jiangmen Underground Neutrino Observatory

Primary Goal: measure sign of Δm_{31}^2

JUNO Collaboration (arXiv:1507.05613)

- 53 km from reactors at Yangjiang and Taishan
 - Reactors produce $\bar{\nu}_{e}$ via beta decay
- 20 kton Liquid Scintillator Detector
 - Measure $\bar{\nu}_{\rm e}$ disappearance
 - Designed to have $3\%/\sqrt{E}$ energy resolution

Simulation

In GLoBES,

- Far detector with JUNO's specs
- Near detector added
 - 5 ton liquid scintillator
 - 0.5 km from reactor
 - variable energy resolution

Simulation

In GLoBES,

- Far detector with JUNO's specs
- Near detector added
 - 5 ton liquid scintillator
 - 0.5 km from reactor
 - variable energy resolution
- Assumed NH for simulated data
- Data divided into 100 energy bins
- Source spectrum uncertainty:
 - Added 1 parameter per bin to model (same for both detectors)

Simulation

In GLoBES,

- Far detector with JUNO's specs
- Near detector added
 - 5 ton liquid scintillator
 - 0.5 km from reactor
 - variable energy resolution
- · Assumed NH for simulated data
- Data divided into 100 energy bins
- Source spectrum uncertainty:
 - Added 1 parameter per bin to model (same for both detectors)
- χ^2 calculated both for NH and IH in the model $(\Delta \chi^2 \equiv \chi^2_{IH} \chi^2_{NH})$

$$\chi_{H}^{2} = \sum_{i,D} \frac{\left(\phi_{\text{true}i}^{D} - \phi_{\text{fit}\ i}^{D,H}\right)^{2}}{\phi_{\text{true}i}^{D}} + \sum_{i} \left(\frac{\mathbf{s}_{j}}{\sigma_{j}}\right)^{2}$$

Minimized over oscillation and systematic parameters
 Rebekah Pestes

Simulation Result

- 1 Introduction

- Benefits of a Near Detector for JUNO (D. Forero, R. Hawkins, P. Huber)
- 3 Summary

Summary

- Neutrino oscillation can provide hints for new physics
- Many anomalies ⇒ need to not rely on theoretical calculations
- Due to spectral uncertainties, JUNO needs a near detector
 - JUNO-TAO proposed

Thank you!

Questions?

Thanks to those who made this award possible.

This research was funded by the DOE.