

HELICITY PDFs AT THE FUTURE EIC

Ignacio Borsa Universidad de Buenos Aires

> IR4YR- Group June 23th 2020

In collab. E. Aschenauer, G. Lucero, A. Nunes, R. Sassot

 O_2

Lever-arm

$$\frac{1}{2} = \frac{1}{2} \left[\Delta q + \Delta \bar{q} \right] + \Delta g + \mathscr{L}$$
$$\Delta f(\mu) \equiv \int_{0}^{1} f(\mu, x) \, dx$$
$$\bigstar$$

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} \left(\begin{array}{c} \Delta q(x,\mu^{2}) \\ \Delta g(x,\mu^{2}) \end{array} \right) = \int_{x}^{1} \frac{\mathrm{d}z}{z} \left(\begin{array}{c} \Delta \mathcal{P}_{qq} & \Delta \mathcal{P}_{qg} \\ \Delta \mathcal{P}_{gq} & \Delta \mathcal{P}_{gg} \end{array} \right) \left(\begin{array}{c} \Delta \mathcal{P}_{qg} \\ \Delta \mathcal{P}_{gq} \end{array} \right)$$

SPIN PHYSICS @ EIC In collaboration with E.Aschenauer, G. Lucero, A. Nunes, R. Sassot Pseudodata for Polarized DIS & SIDIS DIS and SIDIS (π^{\pm}, K^{\pm}) double spin asymmetries for: 5 GeV × 100 GeV $\sqrt{s} = 45$ GeV 20 GeV x250GeV $\sqrt{s} = 140$ GeV

DIS (He-3) double spin asymmetries for: 20 GeV × 166GeV $\sqrt{s} = 115$ GeV

Asymmetries & uncertainty estimations generated with PEPSI 10 fb⁻¹, GRSV $Q^2 > | GeV^2$ 0.0 | <y<0.95 $W^{2} > |0 \text{ GeV}^{2}$ -4<*η*<4

Asymmetries and Uncertainties corrected with the full NLO calculation (DSSV14; NNPDF3.0; DSS14/17)

DIS CORRELATION AND SENSITIVITY COEFFICIENTS Monte Carlo sampling of DSSV14 Réplicas $(A - \langle A \rangle) \langle B - \langle B \rangle \rangle$

$$\rho_w[A, B] = \frac{\sigma_{A}^{th} \sigma_{B}^{th}}{\sigma_A^{th} \sigma_B^{th}}$$

In collaboration with E.Aschenauer, G. Lucero, A. Nunes, R. Sassot

De Florian, Lucero, Sassot, Stratmann, Vogelsang Phys. Rev. D 100 (2019) 11, 114027

Higher sensitivity for the less constrained low-x region

ASSESSING THE IMPACT OF EIC PSEUDO DATA

I) New Global Fit supplementing DSSVI4 dataset with DIS pseudo data @ 45 GeV, with Monte Carlo Sampling

MC ensemble of 950 replicas generated from DSSVI4 dataset+ EIC pseudodata

Helicity Distributions obtained from each replica within the DSSV14-like framework

Modified parametrization with increased flexibility in the low-x region

$$x\Delta f_{i}(x,\mu_{0}) = \sum_{j=1}^{3} N_{ij} x^{\alpha_{ij}} (1-x)^{\beta_{ij}} + \sum_{j'=1}^{3} N_{ij'} x^{\alpha_{ij'}} (1-x)$$

Same flexibility for low and

ASSESSING THE IMPACT OF EIC PSEUDO DATA

1) New Global Fit supplementing DSSV14 dataset with DIS pseudo data @ 45 GeV, with Monte Carlo Sampling

MC ensemble of 950 replicas generated from DSSVI4 dataset+ EIC pseudodata

Helicity Distributions obtained from each replica within the DSSV14-like framework

Modified parametrization with increased flexibility in the low-x region

$$x\Delta f_i(x,\mu_0) = \sum_{j=1}^3 N_{ij} x^{\alpha_{ij}} (1-x)^{\beta_{ij}} + \sum_{j'=1}^3 N_{ij'} x^{\alpha_{ij'}} (1-x)$$

Same flexibility for low and
2)Reweighting of the DSSVI4+EIC@45 with DI
data at $\sqrt{s} = 140$ GeV

ASSESSING THE IMPACT OF EIC PSEUDO DATA

1) New Global Fit supplementing DSSV14 dataset with DIS pseudo data @ 45 GeV, with Monte Carlo Sampling

MC ensemble of 950 replicas generated from DSSVI4 dataset+ EIC pseudodata

Helicity Distributions obtained from each replica within the DSSV14-like framework

Modified parametrization with increased flexibility in the low-x region

$$x\Delta f_i(x,\mu_0) = \sum_{j=1}^3 N_{ij} x^{\alpha_{ij}} (1-x)^{\beta_{ij}} + \sum_{j'=1}^3 N_{ij'} x^{\alpha_{ij'}} (1-x)$$

Same flexibility for low and
2)Reweighting of the DSSVI4+EIC@45 with DI
data at $\sqrt{s} = 140$ GeV

In collaboration with E.Aschenauer, G. Lucero, A. Nunes, R. Sassot

$\frac{\text{IMPACT OF DIS DATA}}{\frac{1}{9}\Delta\Sigma} = \frac{d}{d\ln Q^2} \begin{pmatrix} \Delta\Sigma^1\\ \Delta g^1 \end{pmatrix} = \frac{\alpha_s}{2\pi} \begin{pmatrix} \Delta P_{qq}^1 & 2n_f P_{qg}^1\\ \Delta P_{gq}^1 & P_{qg}^1 \end{pmatrix} \begin{pmatrix} \Delta\Sigma^1\\ \Delta g^1 \end{pmatrix}$

Mainly probes the quark contributions (gluon contribution is suppressed in α_s)

Gluon and Flavor contribution come (ideally) from the evolution equations

No separation between Δq and $\Delta ar q$

In collaboration with E.Aschenauer, G. Lucero, A.

IMPACT OF DIS DATA I) Generation of the DSSV14+EIC@45 set 2) Reweighting of the DSSV14+EIC@45 with DIS pseudo data at $\sqrt{s} = 140$ GeV

In collaboration with E.Aschenauer, G. Lucero, A. Nunes, R. Sassot

Impressive reduction of the uncertainty for the unexplored region x<0.01 (factor ~2 reduction for x~0.1)

DIS@45 constrains Δg down to x~5x10-4

DIS@ 140 reduce the uncertainty band in a factor ~3

IMPACT OF DIS DATA I) Generation of the DSSVI4+EIC@45 set 2) Reweighting of the DSSVI4+EIC@45 with DIS pseudo data at $\sqrt{s} = 140$ GeV

In collaboration with E.Aschenauer, G. Lucero, A. Nunes, R. Sassot

DIS@45 constrains Δg down to x~5x10⁻⁴

The addition of DIS@140 does not have a significant impact

 10^{0}

IMPACT OF DIS DATA Disentangling the quarks and gluons spin budget

IMPACT OF DIS DATA Disentangling the quarks and gluons spin budget

How important is the contributions from low-momentum partons?

OAM contribution from parton with x down to 10-3

(NOT) PROBING THE SEA QUARKS WITH NC DIS

Milder constraint on the sea quarks distributions due to the lack of flavor separation Symmetry assumptions on the strange distribution $(\Delta s + \Delta \bar{s}) = 2\Delta s$ make it sensible to inclusive measurements Include Flavour sensitive observables: CC DIS/SIDIS

IMPACT OF SIDIS DATA Stronger constraints on $\Delta \bar{u}$ (charge factor) and $\Delta \bar{s}$ (symmetry assumptions in DSSV framework) compared to $\Delta \bar{d}$

- Stronger constraints on $\Delta \bar{u}$ (charge factor) and $\Delta \bar{s}$ (symmetry assumptions in DSSV framework) compared to Δd
- SIDIS @140 GeV pushes the growth ni the uncertainty at least a decade in x for $\Delta \bar{u}$ and Δd due

- Stronger constraints on $\Delta \bar{u}$ (charge factor) and $\Delta \bar{s}$ (symmetry assumptions in DSSV framework) compared to Δd
- SIDIS @140 GeV pushes the growth ni the uncertainty at least a decade in x for $\Delta \bar{u}$ and Δd due to the wider kinematical coverage

Milder impact on Δg . Complementary to Inclusive DIS measurements

- Stronger constraints on $\Delta \bar{u}$ (charge factor) and $\Delta \bar{s}$ (symmetry assumptions in DSSV framework) compared to Δd
- SIDIS @140 GeV pushes the growth ni the uncertainty at least a decade in x for $\Delta \bar{u}$ and Δd due to the wider kinematical coverage

Stronger constraints on $\Delta \bar{u}$ (charge factor) and $\Delta \bar{s}$ (symmetry assumptions in DSSV framework) compared to Δd

SIDIS @140 GeV pushes the growth ni the uncertainty at least a decade in x for $\Delta \bar{u}$ and Δd due to the wider kinematical coverage

IMPACT OF DIS WITH HE DATA Disentangling the quarks and gluons contribution to the spin budget 1.0DSSV 14DSSV14 dataset

Significant improvement in $\Delta \Sigma^1$ expected!

Improved flavour separation also expected

Reduction in the uncertainty to the percent level for $|0^{-3} < x < |0^{-1}|$

SUMMARY

- spin.
- and the quark contribution to the proton spin

• EIC DIS data at 45 GeV expected to provide important constraints on $\Delta\Sigma$ and specially on the less constrained Δg down to x~10⁻³.

• EIC DIS data at 140 GeV expected to further reduce the uncertainty in a factor 3, while pushing the uncertainty growth one decade in x.

• Semi-inclusive DIS offers a remarkable tool to probe the sea quark of the parton, and determine their separate contributions to the protons

• **DIS with He3 targets** expected to further improve flavor separation

THANK YOU

SIDIS C Orrei ation and sensitivity

Access to low x is instrumental to determine the contribution of each quark flavor to the proton spin

In collaboration with E.Aschenauer, G. Lucero, A. Nunes, R. Sassot

High x probes mainly the proton's valence composition, as well as the hadron structure Stronger correlation for lower x values as Gluon emissions become relevant Again, higher sensitivities for the unproved low-x region

SIDIS CORRELATION AND SENSITIVITY COEFFICIENTS

 $\rho[\Delta s(x,Q^2), A_1^{K^{\pm}}(x,Q^2)]$

 $S[\Delta s(x,Q^2), A_1^{K^{\pm}}(x,Q^2)]$

 10^{-3}

 10^{-4}

Access to low x is instrumental to determine the contribution of each quark flavor to the proton spin

In collaboration with E.Aschenauer, G. Lucero, A. Nunes, R. Sassot

High x probes mainly the proton's valence composition, as well as the hadron structure Stronger correlation for lower x values as Gluon emissions become relevant Again, higher sensitivities for the unproved low-x region

 10^{-2}

 \mathcal{T}

 $\rho[\Delta s(x,Q^2), A_1^{K^{\pm}}(x,Q^2)]$

 $S[\Delta s(x,Q^2), A_1^{K^{\pm}}(x,Q^2)]$

 10^{-1}

