
EIC Central Detector
integration software suite

(aka EIC Toy Model)

BNL NPPS Group Meeting July 10 2020

Alexander Kiselev

In place of the introduction

2

•  By the end of this talk you may have natural questions like:
‣  There are packages A,B,C,… which can do (almost) what you needed;

why re-inventing this wheel all over again?

‣  Even then, why choose such a weird ROOT-centric implementation?

This one is hard, depends somewhat on the personal preferences

This one is easy (the tool was not meant to be a geometry manager :-)

End of April: the starting point

3

Commitment #1: work on the EIC greenfield solenoid specs document

A week of time
and several

hundred lines of
ROOT / C++

The starting point, cont’d

4

-4.50
-3.50
-3.00

-1.00

0.00

1.20

1.50

3.00
3.50
4.00

p e-400.0 -300.0 -200.0 -100.0 0.0 +100.0 +200.0 +300.0 +400.0

HCal HM-RICH M-Coil + M-Coil - Si-Tracker

The primary goal: provide a set of cartoons like this

•  Just be able to illustrate several key features of the detector layout:
‣  A definitive location of the flux return elements (hadronic calorimeters)
‣  A supposed location of the gaseous RICH (projective field required)
‣  An optimal location of the nominal IP (split space between two endcaps)
‣  The range where a constant magnetic field is desirable

An attempt to connect some of the other dots

5

Escalate & fun4all;
migration process

|η|<4.5 & reality

Tracker, PID &
Calorimetry
detectors in

GEANT

1-st & 2-d IR

EIC detector &
greenfield

solenoid design

Physics
simulations &
engineering

design

Ideal detectors &
services / support

Space available for
the detectors & IR
vacuum chamber

•  One can easily identify a number of places with a lack of sync at this early stage
•  Some of them can seemingly be addressed in a more or less consistent way

Commitment #2: EIC Yellow Report Central Detector integration WG

Hack something together on top of the existing cartoon tool?

EIC Toy Model: overview

6

•  A tool to model & generate EIC Central Detector “templates” in a way:
‣  the new geometries (models) can be generated “quickly” …
‣  … by everybody, and represented instantly in a WYSIWYG fashion
‣  the sub-detector “container objects” are guaranteed to not overlap either

with each other or with the IR vacuum chamber elements
‣  technically they can be imported in GEANT frameworks in a consistent

way and used as wrappers to the “real” sub-detectors
‣  they can be exported in a CAD format to be used in the engineering

design of the detector support structures and / or laying out services

 •  Repository: https://github.com/eic/EicToyModel
‣  a README.md file J
‣  example ROOT scripts
‣  a standalone GEANT example
‣  detailed API description

The workflow

7

•  https://github.com/eic/EicToyModel/scripts/example.C
•  Minimal overhead to create a 2D scheme like this (ROOT scripting)
•  Model can be saved, distributed and re-imported as a .root file
•  GEANT application: import .root file and create volumes on the fly
‣  Alternatively: export and import GDML file(s) (can be implemented)

Create a model Save it as a .root file Import in GEANT

What is under the hood

8

•  A small ROOT-based C++ library, with several interfaces:
‣  GEANT4: dynamic conversion of a 2D cartoon into G4 “container volumes”
‣  OpenCascade: export to STEP format

‣  VGM: IR vacuum chamber TGeo -> G4 conversion for a “boolean cut”
‣  VGM: direct import of EicRoot-like models into GEANT (experimental)

‣  BeastMagneticField: ASCII field map import (forward compatible format)

•  Custom simplified IR vacuum chamber implementation
‣  (In theory) it is parametric, so can be used to create e.g. a 50mrad layout

•  Limited set of interactive commands (IP shift, η range change, …)

Library has to be installed locally
Supposed to run on Linux (seemingly works under Mac OS as well)

Integration volume granularity: tracker

9

•  Detector grouping is certainly possible
‣  Is it flexible enough?
‣  As shown here: too detailed at this early stage?
‣  https://github.com/eic/EicToyModel/blob/master/scripts/tracking.C

Integration volume granularity: tracker

10

•  Detector grouping is certainly possible
‣  Is it flexible enough?
‣  Allocate larger volumes for PID / Tracking / Calorimetry, to start with?
‣  https://github.com/eic/EicToyModel/blob/master/scripts/tracking.C

Limitations in the geometry description

11

•  Four pre-defined detector “stacks”: vertex, barrel, and two endcaps …
•  … in a projective configuration (defined by the η ranges)
•  Detector volumes in the endcap stacks are placed as strictly aligned

objects with flat front and rear sides, one after the other
‣  ... although stack boundaries can be shaped up creatively, if needed

•  Detector tags (like “EmCal”) and respective colors are hardcoded …
‣  … though custom ones can be generated dynamically, if really needed

•  Exported objects are azimuthally symmetric Polycones, although …
‣  … with an asymmetric cutaway representing the IR vacuum chamber

•  Polyhedra export implemented, but can not be mixed with Polycones

•  CAD export: presently without the vacuum chamber cutaway

CAD interface (3D model in Autodesk viewer)

12

•  GEANT picture will look identical
‣  Services and support structure engineering design can start off the same

configuration as used in GEANT for physics simulations

Support, services, detector frames: TODO list

13

•  Support structure:
‣  Generic part (outside of the integration volumes): engineering effort
‣  Matching detector-specific part (inside the integration volumes ?)

•  Services: should be configurable, accumulating from / to “inner” detectors
•  Detector frames: should naturally come together with the active volumes

CAD & GEANT models of the EIC detector IR region + dead material

IP

Dead material

Pump stand
@ Z ~ -4.5m

Pump stand
@ Z ~ +4.5m

GEANT interface (Qt event display)

14

•  Volumes are currently generated on the fly (is GDML step really needed?)
•  Once imported, the layout will look the same in all G4 applications

Compare: BeAST EicRoot implementation

15

3T solenoid cryostat iron yoke coils

hadrons
electrons

hadronic calorimeters RICH detectors silicon trackers GEM trackers TPC e/m calorimeters trackers

•  Comment#1: some of the volumes here (PID) are also air balloons
•  Comment#2: one can seemingly reuse TGeo objects in the new scheme

Optional EicRoot geometry import

16

•  Yet experimental, but seems to
work, as expected

•  Possible other candidates: MM
barrel, silicon vertex, calorimetry

•  Material information merging from
different files may be an issue

2D cartoon

G4 event display

ROOT event display
GEM disks

EIC frameworks: fun4all event display

17 This object is a “template G4Box” placed into one of the container volumes

•  RACF: ROOT 6.16.00, GEANT 10.2.2
‣  Shown here: integration in one of the fun4all example codes

EIC frameworks: escalate event display

18

This object is a “native” JLEIC EmCal placed into the respective container volume

•  Latest escalate Docker container: ROOT 6.20.04, GEANT 10.6.1
‣  Shown here: direct integration into g4e JLEIC source code

Coding overhead in GEANT

19

•  Immediate migration is not mandatory for everybody
‣  Integration bubbles can be imported into a framework one by one

•  Bubble size (and location) can be polled (trivial; implemented partly)
‣  Parametric detectors can be implemented in a proper way

•  If the community prefers to use GDML files instead, so be it (consistency?)

This part should be
taken care of by the

framework

Excerpt from a modified working calorimetry code:

Coding overhead in GEANT: escalate case

20

•  All in all: the overhead is seemingly very small
•  Step by step details are communicated to the framework developers

Magnetic field map interface

21

•  Currently only BeAST field map import implemented; ePHENIX coming soon
•  Interface is forward compatible with the greenfield solenoid maps (?)

IR vacuum chamber description

22

•  Coded in TGeo, exportable as GDML
•  Exported to G4 representation (through VGM), used for a boolean cut
•  Kind of parametric (and as such suitable for the 2-d IR description)
•  Only the essential part (the outer shell in particular) is implemented

+/- 4.5 m

< 1.5 m Top view

CAD drawing and ROOT TGeo implementation

B*dl integral and material scan evaluation

23

+/- 60 mrad +/- 60 mrad +/- 60 mrad

+/
- 6

0
m

ra
d

•  Material budget: direct use of the vacuum chamber TGeo implementation
•  Estimate of the maximum lever arm available for the silicon tracker:
‣  Account for the vacuum chamber shape: consider a 3D point where a particle

with a given {θ,φ} would exit the vacuum chamber (starting point) …
‣  … and account for the configurable markers, indicating at which max distance

from the IP the last silicon tracker station can be installed (end point)
•  BT*dl integral estimate: same idea + BeastMagneticField interface
•  Primary vertex smearing implemented (this part is trivial of course)

Documentation

24

Perhaps almost too detailed already

Next steps

25

•  Finish the TODO list items (services, EicRoot detector model import, etc.)

•  Next week: a discussion at the EIC Users Group meeting
•  Afterwards: a second round of presentations for the YR Detector WGs
•  At some point: a tutorial?

•  Critical: a clean implementation in the EIC frameworks

