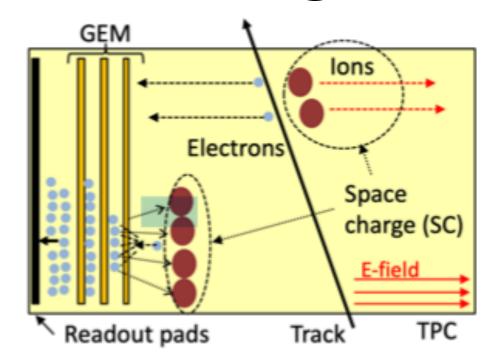
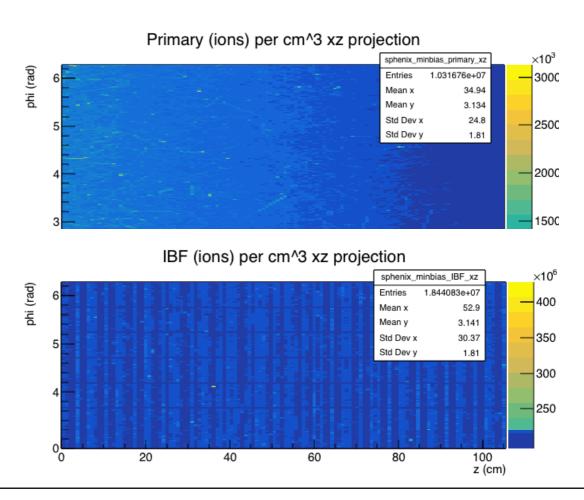

TPC Distortion Calibration Notes

Ross Corliss
SBU Group Meeting

Overview

- Physics observables depend on precise momentum vector reconstruction
- In order to reconstruct a track, electrons arriving at the gem planes must be extrapolated back to their origins
- Ions in the TPC produce net spacecharge that distorts electron drift lines.

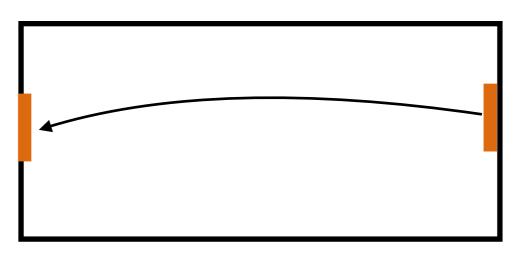


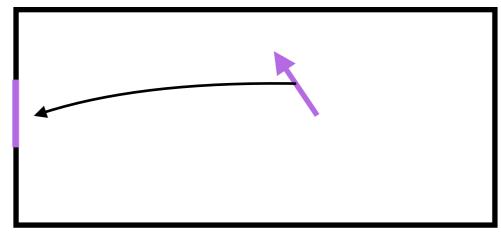

Structure of Spacecharge

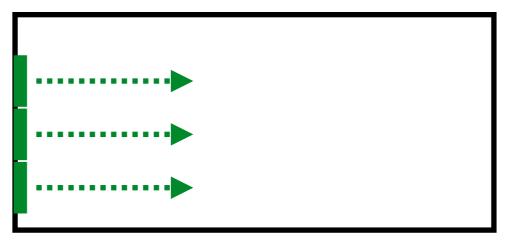
$$\rho(r,z) = A \frac{1 - bz + c}{r^d}$$

- Heuristic:
 - A=Gas and Collider parameters
 - b=1/drift length
 - c=IBF ions per primary
 - d=radial dependence of track density
- Ions drift ~1.3cm/ms (78ms to cross TPC), 5000x slower than electrons
- Pancakes and volume:
 Primary ions are created from charged particles traversing TPC.
 Ion Backflow (IBF) pancakes are created from electrons avalanching at readout.
- Average and fluctuations:
 Average SC governed by luminosity and fixed TPC parameters. Expect few-mm R distortions on average
 Local fluctuations from event-by-event statistics.

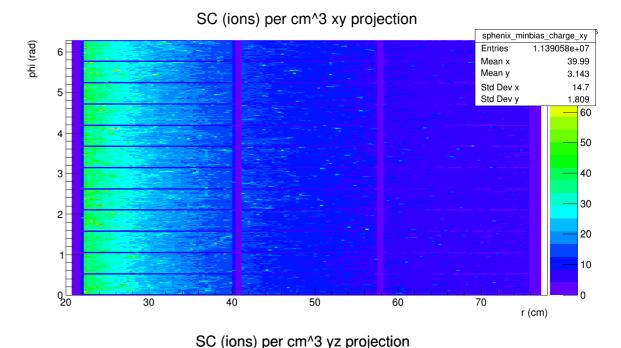
Distortion Types

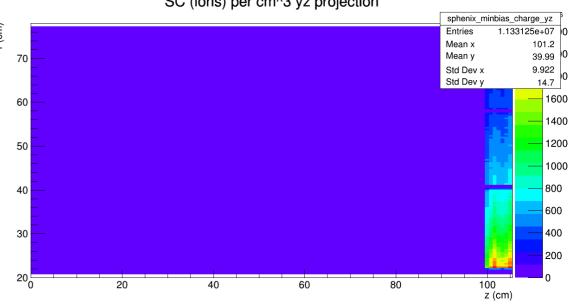



- Static: Arise from alignment w.r.t realistic magnetic and electric fields
- "Long term": external fields change with temperature, pressure, gain, etc.
- "Short term": time-averaged fields from spacecharge change with beam properties
- "Fluctuations": from specific charge layout of individual events differing from the average


Distortion Handles

- Central Membrane Stripes: illuminated with laser (kHz), produces clusters at known position, integrates over entire distortion column
- Tracks: (*eff. ~Hz) produces clusters at uncertain position extrapolated from inner tracking, integrates over partial distortion column
- Digital current: infers spacecharge current directly from electrons at readout (kHz), computes distortions from charge
- Simulation: model expected average spacecharge shape, compute distortions for a given luminosity

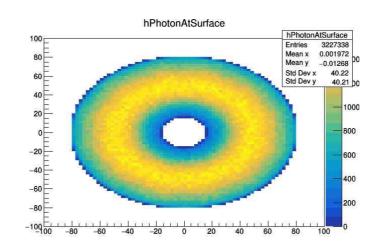


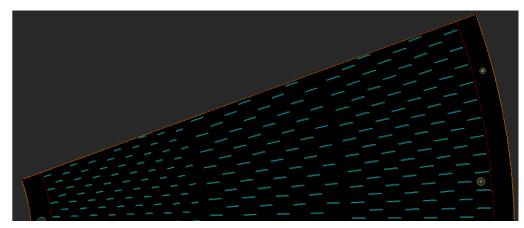

Tasks at Hand

Task	Pertinent Skills	Work by	2020		
	all: root, c++		Q2	Q3	
Inputs	sPHENIX sim	Chris	HIJING events		
	E&M	Ross/ Ananya/Jordan	generate distortions from SC		
	sPHENIX sim	Henry	distortions in simulations		
Monitoring with currents		Ross/Evgeny/Ananya	current / SC maps from HIJING (including IBF issues)		
	E&M, algorithms	Ross/ Ananya/Jordan	distortions from currents		
Monitoring with laser	sPHENIX sim	Sara	Implement laser events in sims		
	sPHENIX sim	Sara	Reconstruct laser events		
		Ross	distortions from laser events	laser events	
Monitoring with tracks	sPHENIX tracking	Hugo	Distortions from reconstructed tracks		
All methods	various			Cross-validate the methods	
Correcting for distortions	sPHENIX soft	Ross/Chris	Define correction format		
	sPHENIX sim	Joe	Implement corrections in reco		
	various	Hugo, Tony	Monitor quality of tracking with/without correction		
Studies of Physics Impact	various			pT and Υ Resolution etc.	

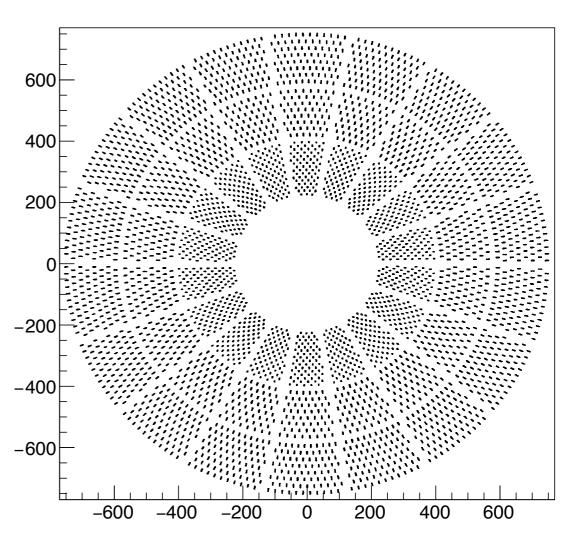
Spacecharge Model

- Ananya Paul (SBU) is implementing proper Poisson statistics in the SC model
- "Zoo" of different rates and variable IBF factors in different regions will allow us to simulate realistic detector scenarios
- High-res (159x360x62) data volume too high: 150MB per full TPC 'frame', 750k (beam xings) frames needed to simulate one full ion drift time





Central Membrane Stripes


- Sara Kurdi working now to implement real CM stripes in sPHENIX software
- Simulate energy deposits in Fun4All
- laser flash trigger signal
- CM 'tracking' to reconstruct laser events

 Nikhil Kumar (SBU) modeling the diffuse laser:

Pattern

Summary and Milestones

- By Summer's end:
 - Implement realistic distortion models in MC data
 - SC (Ananya, Evgeny), Model (Jordan, Ross), Implementation (Henry)
 - Implement track-, laser-, and current- based reconstruction of distortion maps
 - Tracks (Hugo, ____), Lasers (Sara, Ross),
 Current (Jordan, Ross)
 - Study, optimize and report on performance
 - Will begin as implementation tasks complete
- Fleshing out intermediate milestones