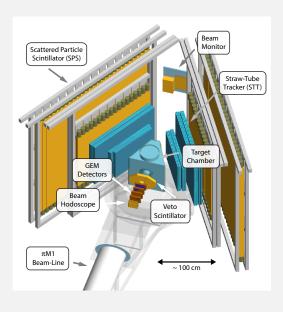
MUSE and the Proton Radius Puzzle

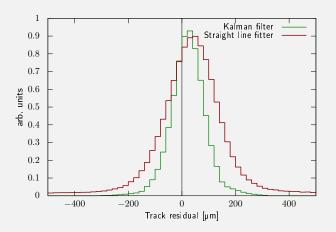
Ethan Cline

ethan.cline@stonybrook.edu

Center for Frontiers in Nuclear Science Department of Physics and Astronomy Stony Brook University Research Group Bernauer


Stony Brook Group Meeting

June 22, 2020



MUSE Setup

- Fixed LH₂ target experiment
- Secondary beam line
- Measure incoming beam event by event
- Beam contains e's, μ 's, and π 's
- Can select positive or negative charge polarities
- Active Veto to reject decay events
- Use RF signal for PID via TOF
- Veto π 's in the trigger

Incoming Tracks in MUSE

- Kalman Filter for incoming Track
 - Implemented our own and using one from GenFit
 - Has noise filtering (Can be improved by including BH seed into Kalman Filter)
 - Resolution of $100 \mu m$
 - Straight line fitter developed by undergraduate student John Santucci.

Scattered Tracks in MUSE

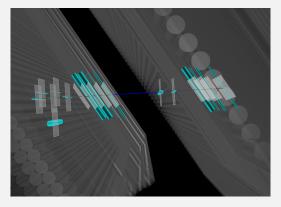
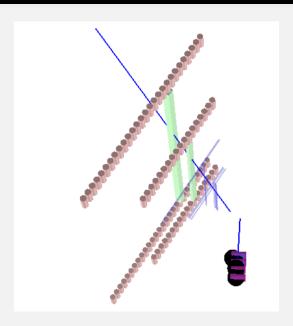
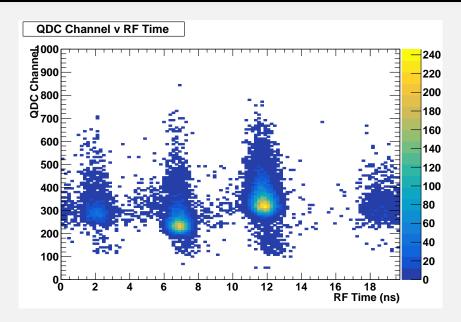
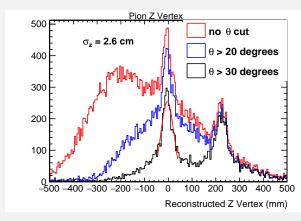




Figure: Left: Screenshot of a track in the STT, fitted with GenFit's deterministic annealing filter. Some hits (e.g., lower left) were rejected by the fitter.

Tracking in MUSE

Separating Particle Species - Looking for π 's



Vertex Reconstruction

- ullet Start with π scattering from carbon target
- +161 MeV/*c*
- Pion decay cone \sim 14 $^{\circ}$, experiment designed to cover 20-100 $^{\circ}$
- No survey information included
- Reconstructing left side of STT

Preliminary Carbon Scattering

- We know pion decays dominate $\theta < 20^{\circ}$
- Cut on MUSE acceptance $20^{\circ} < \theta < 100^{\circ}$
- Clearly see carbon target and exit posts
- \bullet Width of reconstructed carbon is ~ 2.6 cm
- Survey not yet implemented

Thank you!

Questions?