# Kinematic reconstruction for SIDIS processes

Anselm Vossen

Duke

YR Meeting 6/7/2020

# What is the issue

- At low y resolution of kinematic variables  $x_{Bj}$ ,  $Q^2$  suffers due to relatively large uncertainty on y
- $\rightarrow$  potentially also a problem for  $\phi$ measurements in Breit frame, due to q dependent boost (haven't looked at this yet, but  $Q^2$  resolution is in general less problematic then  $x_{Bj}$ , so there is hope)
- The low y region is the overlap region with the Jlab kinematic regime
- At low y, we also loose sensitivity to pretzelosity  $g_{1L}$  and worm-gear  $g_{1T}$



# What can be done?

- Reconstruct kinematic variables from final state
- Multiple methods available
  - Jaquet-Blondel
  - Double-Angle
  - Mixed Method
- See plots in

eRHIC Design Study An Electron-Ion Collider at BNL

for studies with BEAST detector (in backup slides)

- *i)* Leptonic variables
- *ii)* Hadronic variables [81]
- *iii)* Jacquet-Blondel variables [82]
- iv) Mixed variables [81]
- v) Double angle method [83]
- vi)  $\theta y method$  [84]
- vii)  $\Sigma$  method 85
- viii)  $e\Sigma$  method [85]

Bluemlein, arXiv:1208.6087

$$\begin{split} q &\equiv q_{l} = k_{2} - k_{1}, \quad y_{l} = p_{1}.(k_{1} - k_{2})/p_{1}.k_{1} \\ q &\equiv q_{h} = p_{2} - p_{1}, \quad y_{l} = p_{1}.(p_{2} - p_{1})/p_{1}.k_{1} \\ Q_{JB}^{2} &= (\vec{p}_{2,\perp})^{2}/(1 - y_{JB}), \quad y_{JB} = \Sigma/(2E(k_{1})) \\ \Sigma &= \sum_{h}(E_{h} - p_{h,z}) \\ q &= q_{l}, y_{m} = y_{JB} \\ Q_{DA}^{2} &= \frac{4E(k_{2})^{2}\cos^{2}(\theta(k_{2})/2)}{\sin^{2}(\theta(k_{2})/2) + \sin(\theta(k_{2})/2)\cos(\theta(k_{2})/2)}\tan(\theta(p_{2})/2)}, \\ y_{DA} &= 1 - \frac{\sin(\theta(k_{2})/2)}{\sin(\theta(k_{2})/2) + \cos(\theta(k_{2})/2)}\tan(\theta(p_{2})/2)}, \\ Q_{\theta y}^{2} &= 4E(k_{2})^{2}(1 - y_{JB})\frac{1 + \cos(\theta(k_{2}))}{1 - \cos(\theta(k_{2}))}, \quad y_{\theta y} = y_{JB} \\ Q_{\Sigma}^{2} &= \frac{(\vec{k}_{2,\perp})^{2}}{1 - y_{\Sigma}}, \quad y_{\Sigma} &= \frac{\Sigma}{\Sigma + E(k_{2})[1 - \cos(\theta(k_{2}))]} \\ Q_{e\Sigma}^{2} &= Q_{l}^{2}, \quad y_{e\Sigma} = \frac{Q_{l}^{2}}{8x_{\Sigma}} \end{split}$$

3

5

#### Results with EIC smear (100k events)

Fraction of events staying in bin (10x100)



104  $Q^2$ 0.9 Double angle 0.8 10<sup>3</sup> 0.7 0.6 0.05 10<sup>2</sup> ).5 10 0.3 0.01 0.2 0.1  $10^{-3}$ 10<sup>-2</sup> 10-4 10<sup>-1</sup> 1 Х Fraction of events staying in bin (10x100)  $Q^2$ 10 0.9 0.8 Mixed method 10<sup>3</sup> = 0.05 10<sup>2</sup> 10 0.3 ).2

10<sup>-2</sup>

10<sup>-1</sup>

**X**<sup>1</sup>

 $10^{-3}$ 

10-4

Fraction of events staying in bin (10x100)

#### Using Delphes+EFlow: consistent results





#### Expanding coverage to $|\eta| < 4$





Х



#### Comparison

Fraction of events staying in bin (10x100) Fraction of events staying in bin (10x100)  $Q^2$ 10<sup>4</sup>  $Q^{2}$ 10 Double angle 0.9 0.9 Double angle 0.8 0.8 10<sup>3</sup> 10 0.7 $|\eta| < 4.0$ 0.7  $|\eta| < 3.5$ 0.60.6 = 0.05 10<sup>2</sup> 102 Some improvement At low x high  $Q^2$ 10 0.0 10 = 0.2 0.1 1늘 10<sup>-3</sup> 10<sup>-4</sup> 10<sup>-2</sup> 10<sup>-1</sup>  $10^{-3}$ 10<sup>-4</sup> 10<sup>-2</sup> 10<sup>-1</sup> 1 ~ X Х Fraction of events staying in bin (10x100)  $Q^2$ Fraction of events staying in bin (10x100)  $Q^2$ 10<sup>4</sup> 10 0.9  $|\eta| < 4.0$ 0.9 0.8 Mixed method 0.8 10<sup>3</sup> 10<sup>3</sup> Mixed method 0.7 0.7 v = 0.05 0.6 0.6  $|\eta| < 3.5$ 10<sup>2</sup> 10<sup>2</sup> 10 10 = 0.2 0.2 0.1 1눝 10<sup>-3</sup> 10<sup>-4</sup> 10<sup>-2</sup> 10<sup>-1</sup> 10<sup>-3</sup> 10<sup>-2</sup> 10<sup>-4</sup> 10<sup>-1</sup> **X**<sup>1</sup>

No HCAL,  $|\eta| < 3.5$ 

Fraction of events staying in bin (10x100)





Fraction of events staying in bin (10x100)

10<sup>-2</sup>

= 0.05

10<sup>-1</sup>

= 0.01

Double angle

10<sup>-3</sup>

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

10'

10<sup>3</sup>

10<sup>2</sup>

10

 $10^{-4}$ 

 $Q^2$ 



Х

0.8

0.7

0.6

0.3

0.2

0.1

### Perfect detector with min $p_T$ cut: little change



Fraction of events staying in bin (10x100)







# Perfect detector with $|\eta| < 3.5$ , min $p_T$ cut: sig. impact on resolution at low $\gamma$



Fraction of events staying in bin (10x100)





### Summary

- Important to extend coverage to  $|\eta| < 4$
- HCAL seems to be important for JB method, for mixed and DA not so much

#### Electror



These and following plots from Simulations are for 15x250 and  $38\%/\sqrt{E}$  HCAL ('handbook' detector has  $\frac{45\%}{\sqrt{E}} + 6\%$ )

#### eRHIC Design Study An Electron-Ion Collider at BNL

#### Double Angle Method – BEAST detector



#### JB Method –BEAST detecto

