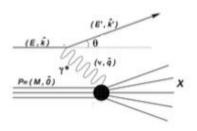
Joint meeting PID and Calorimetry

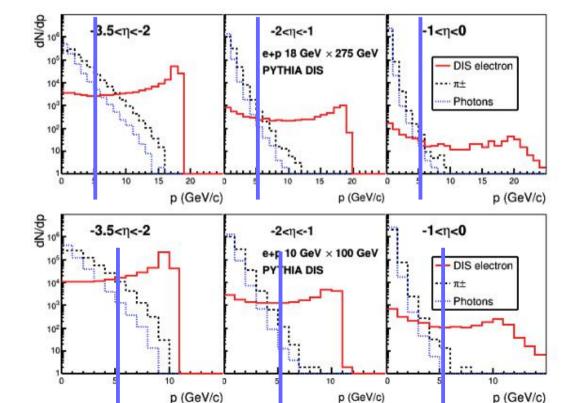
Calorimetry working group perspective

- Electron identification is one of the main topics of the Calorimetry working group
- Identification is depends on activity of the three groups: calorimetry, PID, tracking
- Ideally 4π coverage by calorimetry
- Space for barrel limited, compact detector solutions
- Challenging region is electron endcap (backward region), expected degradation of the tracking momentum resolution, need very high resolution calorimetry. Adding material impact the resolution

Detector Matrix for the calorimeters

η	Nomencla ture	EmCal						HCal			
		Energy resoluti on %	Spatial resolution mm	Granul arity cm^2	Min photon energy MeV	PID e/π πsuppre ssion	Technology examples*	Energy resolution %	Spatial resoluti on mm	Granula rity cm^2	Technolog y solution
-3.5 : -2	backward	2/√E ⊕ 1	3/√E ⊕ 1	2x2	50	100	PbWO ₄	50/√E ⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc
-2:-1	backward	7/√E ⊕ 1.5	3(6)/√E ⊕ 1	2.5x2.5 (4x4)	100	100	DSB:Ce glass; Shashlik; Lead glass	50/√E⊕10	50/√E ⊕ 30	10x10	Fe/Sc
-1:1	barrel	(10-12) /√E ⊕ 2	3/√E ⊕ 1	2.5x2.5	100	100	W/ScFi	100/√E⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc
1:3.5	forward	(10-12) /√E ⊕ 2	3/√E ⊕ 1	2.5x2.5 (4x4)	100	100	W/ScFi Shashlyk, glass	50/√E⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc

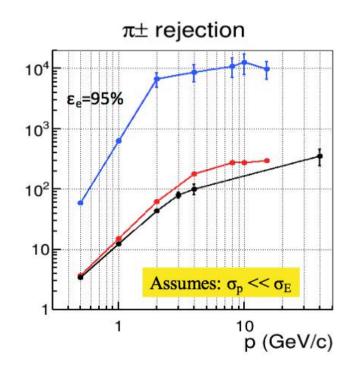

^{*}Technology selection depends on the space available Several other technologies are under consideration

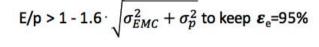

e/π: pion suppression depends on the energy, and the energy and momentum resolutions

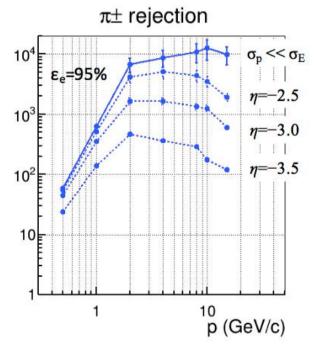
Material in front will affect the resolution

- More details see Alex Bazilevsky talk https://indico.bnl.gov/event/8231/contributions/37820/
- DIS electrons, DIS background: charge pions, photons from decays.
- Starting from high momentum expect clean sample of electrons
- Lower momentum <5 GeV/c eID is crucial

Inclusive DIS: background

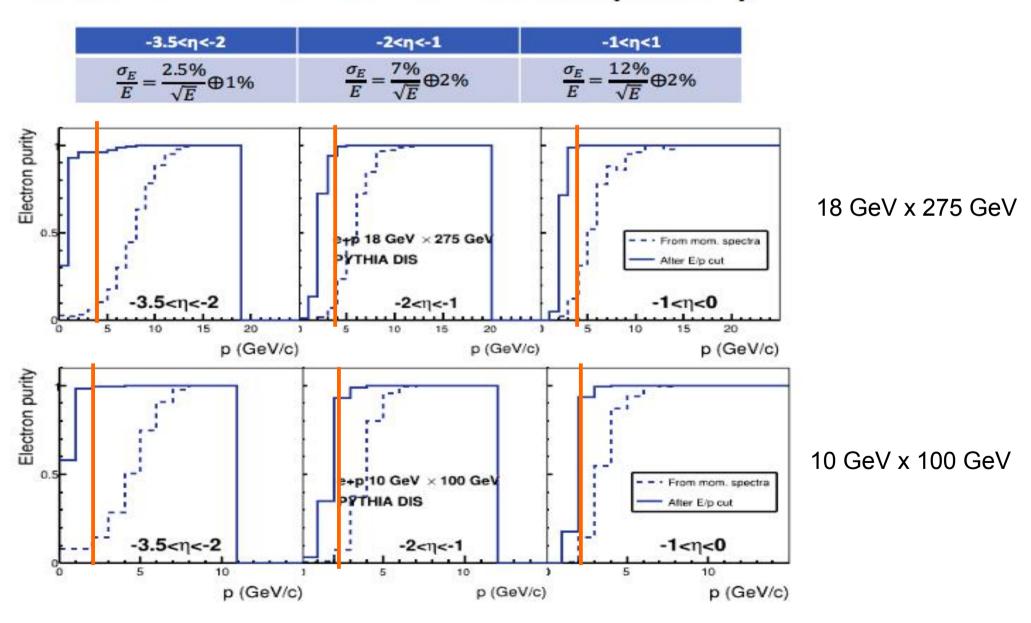


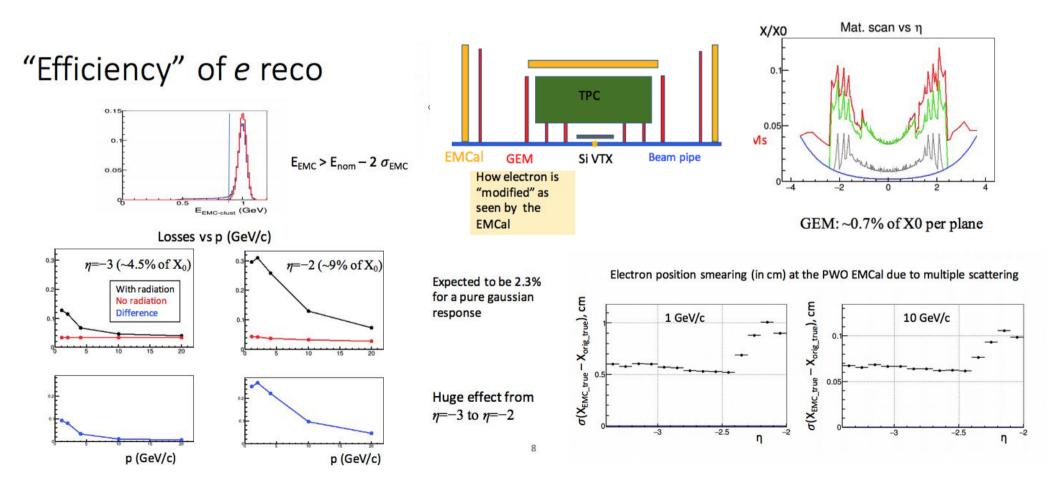

18x275 GeV


10x100 GeV

- Stand alone simulations
- No material in the way of EmCal in "ideal world"
- Perfect EmCal with no gaps, cracks
- Gaussian respond to electron
- Π± rejection with E/p cut applied for various calorimetry solutions
- Π± rejection dependence on momentum resolution in PWO case

	PbWO ₄ Crystal	W/SciFi	PbSc		
Depth, X ₀	20	~20	18		
$\frac{\sigma_E}{E}$	$\frac{2.5\%}{\sqrt{E}}$ \oplus 1%	$\frac{13\%}{\sqrt{E}}$ \oplus 3%	$\frac{8\%}{\sqrt{E}}$ \oplus 2%		
Depth, λ_{l}	0.87	~0.83	0.85		
e/h	>2	V	<1.3		




E/p > 1 - 1.6 · σ_{EMC} to keep ε_{e} =95%

- Simulation done for "Ideal world"
- Clean eID at <4GeV/c for 18x275
- Clean eID at <2GeV/c for 10x100
- More detailed studies results

DIS scattered electron purity

- Effect of the material in front of calorimeters, studies in progress
- https://indico.bnl.gov/event/8854/ More details
- Results for PWO calorimeter under specific configuration
- No PID detectors included, no dead material from services and gaps
- Effect dominant at low momenta

Discussion topics:

- Technology solution for various momentum regions, especially <(2-3)GeV/c
- Threshold, lowest momentum
- Dead material introduce by PID detectors services
- Material budget close to IP and in front of the calorimeter towers
- Complementarity of various solutions
- Path forward