Hadron Polarimetry: Kinematics, Background & Simulation

Oleg Eyser, BNL August 18, 2020

- 1) Ultra-thin Carbon ribbon targets will not survive EIC conditions
- 2) Bunch repetition rate can be problematic if background is not under control

Elastic Recoil Kinematics

$$P_4^2 = \begin{pmatrix} E_B + m_T \\ \vec{p}_B \end{pmatrix}^2 = \begin{pmatrix} E_S + E_R \\ \vec{p}_S + \vec{p}_R \end{pmatrix}^2$$

- Discussion with BNL-CFN about different targets for fast polarization measurement
- Calculations by P. Thieberger show extreme heating at EIC

Elastic Recoil Kinematics

- Potential for internal cross checks with different materials
- BUT: small angle scattering is an issue

RHIC Measurements

RHIC bunch crossing number

bunch

bunch

HJET Signal & Background

- Six RHIC fills from 2017 •
 - Typical RHIC fill is 8 hours long
- Single beam only
 - Abort gaps (yellow, blue)
- Elastic recoil will only reach the downstream detectors
- Ratio downstream/upstream
 - Same *z*-scale (0.1 50) •
 - Background is evenly distributed • over whole kinematic range

upstream

HJET Polarimeter Setup

NIM A 536 (2005) 248-254

Additional information from G. Atoian

PRD 79 (2009) 094014

FIG. 3. The H-jet target holding magnetic field calculated by the OPERA program with the experimental setting: inner coil 349 A (N = 56); outer coil 275 A (N = 40). The recoil proton detectors sit at \sim 78 cm from the H-jet target center.

Fig. 5. The measured atomic beam profile at the collision point. The FWHM, corrected for the finite size of the compression tube aperture, is 5.5mm).

GEANT4 Setup

- 8 detectors
 - $400 \ \mu m$ Silicon, $8 \ \mu m$ dead layer
 - No strip segmentation (no pile-up seen in data)
- Detector chamber and flanges
- Atomic hydrogen jet target
 - $\rho \approx 0.4 \cdot 10^{-11} \text{ g/cm}^3$
- Parameterized magnetic holding field
- Beam bunch length (3.5 ns)
- Vertex distribution (5 mm, 10 cm)
- PYTHIA input
 - Single beam

PYTHIA Input

- p+p at $\sqrt{s} = 21.6$ GeV with boost
 - Equivalent to 250 GeV beam on fixed target
- PYTHIA 6.4.28, Tune 320
 - QCD $2 \rightarrow 2$
 - Elastic
 - Diffractive
- Fast background
 - pions, (photons) up to a few GeV
 - Kinematic correlation lost

upstream downstream

Simulation Results

- 100M + 10M filtered PYTHIA events
 - Tracks within 30^o of detector center
 - About 2M + 250k hits
 - Rarely more than one track per event
- Simulation reproduces the basic features
 - Kinematic correlation
 - Signal and background
- Skewed vertex distribution due to detector acceptance

Simulation Results

20

- Punch-through particles
 - Fast, little energy deposit
- Very few recoil protons in upstream detector
 - Compare target width with detector length
- Contribution from widely distributed molecular hydrogen
 - Wide range of punchthrough particles
 - Skewed vertex distribution due to detector acceptance

10⁴

10³

10²

10

10³

10²

Simulation Results

- Very little background from photons
- Dominant pion background at low energy and short times
- Punch-through protons from far upstream scattering (mostly molecular hydrogen)

Conclusions & Summary

- Carbon target lifetime is an issue
 - Beam on target produces too much heat
 - Alternative target materials are being discussed
 - Composite materials potentially problematic for short bunch spacing
 - Material will affect detector location

- Simulation studies for HJET background
 - Background is dominantly from pions
 - Probably not spin-dependent
 - Wide distribution of molecular hydrogen allows protons with higher energy into detector acceptance
 - Different spin dependence for beam/target
 - Problematic for normalization of beam polarization
 - Collimator will reduce proton background
 - Second Silicon layer can remove punchthrough particles

Toy Simulation

- Recoil angle calculated from kinetic energy
- Assume slow exponential cross section as function of energy
- Deposited energy from punch through particles calculated with empirical model (NIST)
- Size of atomic beam target and molecular component
- Effect of opposite beam (upstream contribution from molecular target)

bunch length $\sigma_{\rm B}$ = 1.0 ns target width $\sigma_{\rm T}$ = 0.3 cm molecular width $\sigma_{\rm M}$ = 9.0 cm molecular fraction r = 1%

Main uncertainties:

- Bunch length
- Target thickness (z)
- Molecular background (z) Other uncertainties:
- Energy resolution
- Strip pitch

