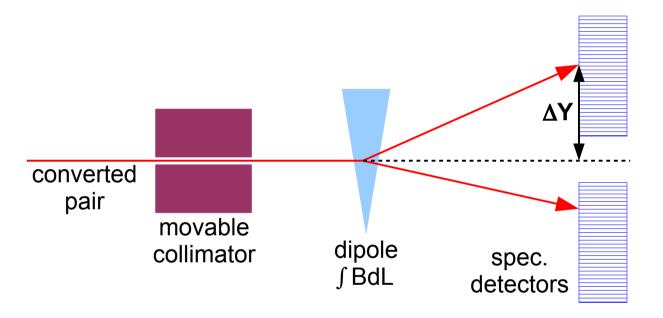
LUMI System Energy Calibration

W. Schmidke YR Ancillary WG mtg. 18.08.20

Calibration procedures

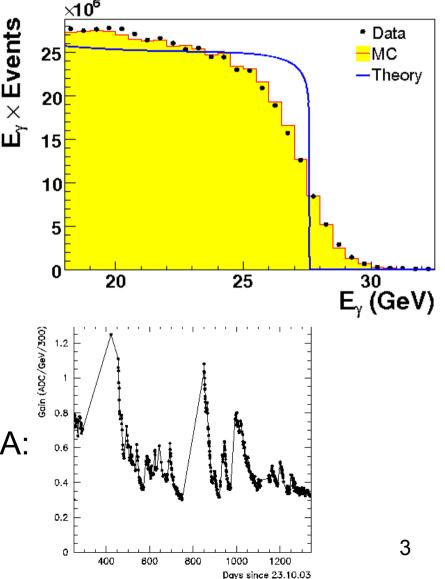
- LUMI pair spectrometer calibration
 - movable collimator
 - benefits from E calibration for LU MI measurement
- e tagger calibration
 - LUMI pair spectrometer $\gamma \rightarrow$ tagger *e*
- 0° γ calorimeter calibration
 - tagger $e \rightarrow$ calorimeter γ


Required hardware

 movable collimator challenge: sync. rad. heating

Follows implementation by ZEUS @ HERA

LUMI pair spectrometer calibration


 Movable collimator: out of γ beam during physics running inserted in γ beam for special calib. runs (@ ZEUS: few min. end of HERA fills)

- Collimator defines e[±] position, direction before dipole
- Spec. detector measures e[±] position after dipole
 ⇒ true magnetic spectrometer
- With dipole $\int BdL \Rightarrow e^{\pm}$ energy
- Calibrate spec. calorimeter channels

LUMI pair spectrometer calibration

- Spectrometer LUMI measurement does not need energy measurement per se
 - spec. acceptance (i.e. sensitive brems. cross section) defined by spec. geometry
- Simulation is need for precise acceptance determination
 - energy measurements
 data↔simulation verify MC
 - e.g. ZEUS spec. brems. endpoint
 w/ higher dipole B: ~1% agreement
- Also need some E calibration for sensible triggering, event selections
 e.g. ZEUS spec. sync. rad. damage gain worst channel last 3 years HERA:

e tagger, 0° γ calorimeter calibration

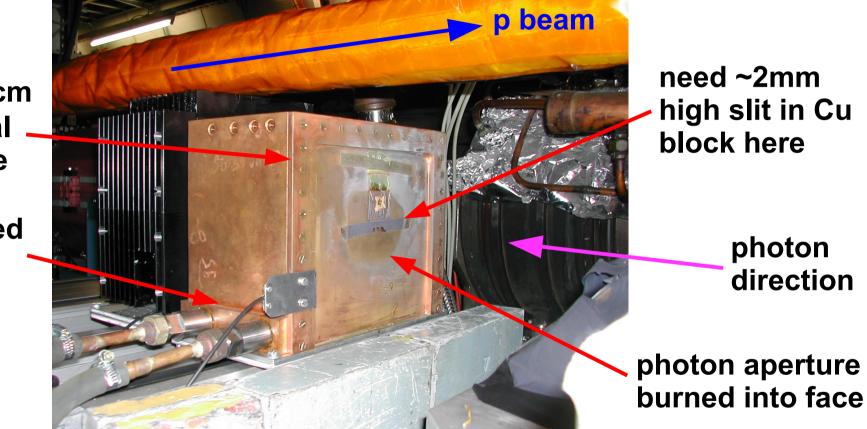
 Need special low luminosity runs: ensure <<1 brems. γ per bunch ×ing, tagged *e* and γ from same event

- e tagger calibration
 - coincidence γ in spectrometer & e in tagger
 - know E from calibrated spectrometer

- tagger
$$\dot{E}_{e} = E_{beam} - E_{\gamma}$$

 \Rightarrow calibrate *e* tagger

- $0^{\circ} \gamma$ calorimeter calibration
 - e in tagger & γ in 0° calorimeter
 - know E from calibrated tagger


- calorimeter
$$E_{\gamma} = E_{beam} - E_{e}$$

 \Rightarrow calibrate 0° γ calorimeter

Required hardware

- Need a movable collimator
- Don't have picture of ZEUS collimator, but identical structure:
 - 0.7 X_0 Cu+C absorber in front of 0° γ calorimeter:

~30w × 20h cm on horizontal _ moving table

water cooled Cu jacket

 Similar design w/ water cooling (sync. rad.) may be adequate only in beam few minutes, not as severe as γ exit window/converter
 Should include in planning soon