High Energy Light Ion Polarimetry

Nigel Buttimore

Trinity College Dublin

Ireland

August 18, 2020

High Energy Light Ion Polarimetry

2020-08-18 EIC YR WG Meeting

OUTLINE

- Understanding the spin structure of nuclei needs polarized up and down quarks
- Polarized down quarks are embedded in the polarized light ions ${}^{1}\text{H}$, ${}^{2}\text{H}$ and ${}^{3}\text{He}$
- Anomalous magnetic moment parameters for protons, deuterons, and helions
- Absolute and relative polarimetry from nuclei and light ion beams and targets

MAGNETIC MOMENTS

Introduce a parameter κ of an incident ion of mass m, charge Ze, spin J, and magnetic moment μ (in nuclear magneton units of $e/2m_p$) in terms of its G factor (with m_p as proton mass): W W MacKay, AIP Conference Proceedings 980, 191 (2008)

$$\frac{\kappa}{2m_p} = \frac{GJ}{m}$$
, that is, $\kappa = \frac{\mu}{Z} - \frac{2Jm_p}{m}$

For a proton where $m = m_p$, the anomalous magnetic moment will be $\kappa_p = \mu_p - 1$. An explanation of the more general expression for κ in the case of a spin half hadron is provided in Diffraction 2008: NB, AIP Conf Proc 1105, 189 (2009)

$$\kappa' = \kappa - 4Jm_p \frac{m}{s},$$
 that is, $\kappa' = \frac{\mu}{Z} - 2Jm_p \left(\frac{1}{m} + \frac{2m}{s}\right).$

A study of the single helicity flip amplitude for spin- $\frac{1}{2}$ spin- $\frac{1}{2}$ elastic scattering due to one photon exchange indicates that κ' should replace κ because of the accuracy of new asymmetry measurements: NB, E Gotsman, E Leader, Phys Rev D 18, 694 (1978) In the correction term, it is sufficiently accurate to approximate the flux factor $\sqrt{[s^2 - 2(m^2 + \tilde{m}^2)s + (m^2 - \tilde{m}^2)^2]}$ by s for the collision of particles of mass $m \& \tilde{m}$: AA Poblaguev et al, Phys Rev Lett 123, 162001 (2019), Phys Rev D 100, 116017 (2019) For proton (p) and helion (h) scattering the values of κ_p and κ_h , from above, are:

$$\kappa'_p + \frac{2m_p^2}{s} = \mu_p - 1 = 1.793, \qquad \kappa'_h + \frac{2m_p m_h}{s} = \frac{\mu_h}{2} - \frac{m_p}{m_h} = -1.398$$

For deuterons of mass m_d scattering off a spin 0 nucleus, the single helicity flip electromagnetic amplitude for spin-1 spin-0 elastic collisions due to one photon exchange indicates that NB and TL Trueman, World Scientific (SPIN 2004) 706

$$\kappa'_d = \kappa_d - \frac{4m_p m_d}{s}$$
 where $\kappa_d = \mu_d - \frac{2m_p}{m_d} = -0.143$

In the case of deuterons scattering on a spin half hadron, the single helicity flip one photon exchange amplitude for spin-1 spin-1/2 elastic collisions also confirms the above expression for κ'_d NB, SPIN 2002, AIP Conf Proc 675, 841 (2003)

POLARIMETERS AT EIC

 Any nuclear target, of charge Z say, can act as a relative polarized light ion beam polarimeter.
G Igo and I Tanihata, SPIN 2002, AIP Conf Proc 675, 836 (2003)

$$[\sigma_{\rm tot}(s)]^{1/2} A_{\rm N}^{\rm m} \propto Z^{1/2}$$

Given the above error, using a nuclear target of higher charge Z has benefits. The mass M of the recoiling nucleus, however, should be such that its kinetic energy $-t_c/2M$ remains above the 20 keV sensitivity threshold of a detector.

- If a beam of the above target nuclei is also available then absolute polarimetry is possible via separate measurement of scattering on polarized light ion jets. Comparison with the time-reversed collision of a polarized light ion beam on the nuclear target provides absolute ion polarization up to E = 275 Z/A (GeV/n).
- For a ¹²₆C beam and target, absolute polarimetry would be possible up to 137 GeV/n, while for ⁴⁰₁₈Ar, energies per nucleon of 123 GeV/n could be reached. Inelastic nuclear states of ¹²C and of ⁴⁰Ar require study to ensure accuracy here.

- For a ¹H beam and target, absolute polarimetry is available up to 275 GeV. Inelastic scattering should be more manageable using (unpolarized) hydrogen. For a ²H beam and target, absolute polarimetry is measurable up to 137 GeV/n.
- In the case of a polarized ³He beam scattering on an unpolarized ³He jet, absolute polarimetry is possible by comparison with the time-reversed process of an unpolarized ³He beam colliding with a polarized ³He jet of known polarization.

A polarized atomic He-3 jet target would self-calibrate a polarized He-3 beam by measuring a precise analyzing power $A_{\rm N}$ at each energy and momentum transfer. The same would be true for an (un)polarized deuteron beam and ${}^{2}{\rm H}(\uparrow)$ jet target

• Alternatives to the use of carbon as a relative polarimeter (with its possible thermal difficulties) could be a jet of atomic Hydrogen, Neon, or Argon, for which the rate per atom would change by a factor $(Z/6)^{1/2}$, about 29% better for ²⁰Ne and around 73% for ⁴⁰Ar. Recoil energies are acceptable for detection.

Figure 1: Complementary recoil angle versus recoil kinetic energy $T_R = E_4$ for, from top, (below legend), (1) h–C \rightarrow [p+d]–C at 70 GeV/n, (2) h–C \rightarrow [p+d]–C at 100 GeV/n, (3) d–C \rightarrow [p+n]–C at 100 GeV/n, (4) d–C and h–C elastic (\approx same) at 100 GeV/n.

INELASTIC KINEMATICS

Excited states of the incident mass m, $(+\Delta m)$, are more important than those of the target mass M, $(+\Delta M)$, for laboratory energies per nucleon, E, such that

 $E > \Delta m / \Delta M$

For pC scattering with $\Delta m = 135$ MeV ($+\pi^0$) and $\Delta M = 7.3$ MeV, E > 19 GeV For hC scattering with $\Delta m = 5.5$ MeV (p+d) and $\Delta M = 7.3$ MeV, E > 0.8 GeV

For high energy per nucleon, E, of the incident particle on a target of mass M, the recoil angle $\phi_{\rm el} \approx v/2c$ for elastic scattering, measured from $90^{\,\rm o}$, is in radians

$$\phi_{\rm el} \approx \sqrt{\frac{T}{2M}}, \qquad \Delta \phi \approx \frac{\Delta m}{E\sqrt{2MT}}$$

Inelastic collisions occur beyond the angle $\phi_{\rm el} + \Delta \phi$, a function of the recoil kinetic energy T = -t / 2M above, where the analyzing power $A_{\rm N}$ may become diluted.

High Energy Light Ion Polarimetry

CONCLUSIONS

Studying the spin structure of hadrons with polarized leptons and polarized ions greatly increases the understanding of QCD interactions involving quarks & gluons

- The anomalous magnetic moment parameters of protons, deuterons, and helions need small energy dependent corrections when considering light ion polarimetry
 - -> A nucleus available as beam and target is useful for absolute polarimetry.
 - -> The nuclei could be protons, deuterons, helions, carbon, neon, argon, . . .
 - -> Nuclei should be light enough to facilitate detection above the noise level.
- The 3 He–C analyzing power is $\approx -70\%$ of the $A_{\rm N}$ for p–C in the CNI region .
 - -> $A_{\rm N}$ for vector polarized d–C is $\approx 10\%$ of $A_{\rm N}$ for CNI 3 He–C scattering

There is great potential for QCD studies employing polarized quarks and leptons.

BACKUP

References

- G. Igo and I. Tanihata, "Absolute calibration of the RHIC CNI polarimeters using 125-GeV/A C ions," AIP Conf. Proc. 675 (2003) no.1, 836-840 doi:10.1063/1.1607251
- [2] NB, "Spin asymmetry for proton deuteron collisions at forward angles," AIP Conf. Proc. 675, no.1, 841-845 (2003) doi:10.1063/1.1607252
- [3] NB and T. L. Trueman, "Deuteron polarization determination at high energies," 16th International Spin Physics Symposium (SPIN 2004), 706-709
- [4] NB, "Forward helion scattering and neutron polarization," AIP Conf. Proc. 1105, no.1, 189-192 (2009) doi:10.1063/1.3122170