
Spack for EIC
2020-07-08

What is Spack
● github.com/spack: “A flexible package manager supporting multiple versions,

configurations, platforms, and compilers.”
● spack.io: “Spack is a package manager for supercomputers, Linux, and

macOS. It makes installing scientific software easy.”
● Benefits for EIC:

○ Support for environments of scientific software, natively compiled on HPC architectures
○ Entirely controlled by user (think conda create myenv , conda activate myenv)

● Disadvantages:
○ Yet another package manager when “everyone can just run cmake .. && make ”
○ Primarily automates build from source; not a binary distribution system without add’l effort
○ Compiling is not a guarantee for valid results; no validation steps currently included

https://github.com/spack/spack
https://spack.io/

https://ecpannualmeeting.com/assets/overview/posters/spack-ecp-poster-2020.pdf

https://ecpannualmeeting.com/assets/overview/posters/spack-ecp-poster-2020.pdf
https://ecpannualmeeting.com/assets/overview/posters/spack-ecp-poster-2020.pdf

Why Spack?
● While containers are the easiest and fastest way to start with a curated

environment, some users express strong desire to run software natively.
● This is particularly relevant for large scale simulations on HPC systems

(containers provide a solution through singularity, at reduced performance).
● Ideally we would like a single solution that works for general central

installations (using CVMFS) as well as individual user systems.

What else exists?
● Scientific and HPC:

○ EasyBuild: non-NP/HEP community (latest are geant4.10.5, root6.14.06)
○ Conda: binary, python-centric (though also support for C++)
○ GuixHPC, NIX: binary, uncommon build recipe languages

● Non-HPC: portage, pkgsrc, homebrew

FOSDEM’18, https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

EIC Spack: Status Update
● Spack upstream repository at github.com/spack/spack:

○ Pull requests merged (new or bugfixes): geant4, opencascade, delphes, lhapdf, hepmc

● Spack forked repository at github.com/eic/spack:
○ Default master branch is latest upstream release (v0.15)
○ Upstream develop branch is periodically merged into forked develop
○ Intended for new package and bugfix branches, pull requests to upstream

● EIC Spack repository at github.com/eic/eic-spack:
○ EIC-specific software packages, stable in default branch:

■ bmf dire eicroot eic-smear eictoymodel ejana escalate g4e geant3-vmc geant4-vmc

genfit jana2 lhapdf5 libodbcpp nanocernlib py-pyminuit2 py-qmtest pythia6m
tricktrack vgm vmc

○ Branches with packages in development (still failing to build):
■ fun4all milou pythia6m pepsi djangoh rapgap

○ Candidates for submission to upstream repository:
■ geant3-vmc geant4-vmc vgm vmc libodbcpp lhapdf5

http://github.com/spack/spack
http://github.com/eic/spack
http://github.com/eic/eic-spack

EIC Spack: Interface to CVMFS
● Goal:

○ Providing single entry point to using all EIC software through CVMFS
■ Taking advantage of spack with environment (for all systems) setup with:

source /cmvfs/eic.opensciencegrid.org/packages/setup-env.sh
■ Next, user can load any software components they need with e.g.

spack load geant4@4.10.06.p01
spack load escalate@1.0.1 (loads environment with all dependencies)

○ Support a cross section of frequently used operating systems (with focus on HPC)

● Status:
○ Full software stack with all of Escalate, EicRoot, EicToyModel is ‘working’ on CVMFS

■ ‘Working’ = no known issues, with admittedly only limited testing

● Outlook:
○ Add more MC event generators soon

EIC Spack: Developer Support Welcome
● Releases:

○ While spack packages support e.g. eic-smear@master, released version are preferred (spack
package developer can pick a commit hash and tag it by date)

○ Developers: Please release at least one appropriate version for inclusion in spack.

● Testing:
○ A user installing a package wants to rely on the package working as expected. A package

maintainer wants to have some more rigorous way of testing the package.
○ Developers: Support a test build target that fails when something obviously went wrong.

● Collaboration:
○ Think about your software in the context of a suite of software packages: requiring ROOT with

c++11 conflicts hard with some other software; requiring specific version constrains the
dependency graph.

EIC Spack: Versioning
While the discussion of versioning is independent of using spack, we do need
some versioning scheme to delivering consistent software to the users.

● We cannot guarantee that all versions of all software will work well together.
○ Using meta package releases provides a target for testing that some versions do work well.

● In the absence of semantic versioning, there is no way a user can distinguish
minor and major upgrades in a consistent way for all software packages.

○ If there are no versions at all, the only info they have is time gaps between commits.
○ Using meta package releases provides guidance to the users in a curated way.

EIC Spack: Other Random Rollout Issues
● May need to expand operating systems to support

○ Currently all based on RHEL7, which seems to load just fine on Ubuntu20.04 etc.

● May need build server and binary buildcache
○ Already have docker builders to create binary packages for distribution

Backup slides.

EIC Spack: How To Get Started?
● spack.readthedocs.io:

○ git clone https://github.com/spack/spack.git
○ export SPACK_ROOT=`realpath spack`
○ export PATH=$SPACK_ROOT/bin:$PATH
○ source $SPACK_ROOT/share/spack/setup-env.sh
○ spack install root

● Find packages: spack list root
● Info on packages: spack info root
● Use variants: spack install root@6.14.04 +pythia8
● Load packages: spack load root (like module load root)
● Load environment (like conda env):

○ spack env create myenv
○ spack env activate myenv
○ spack env deactivate myenv

https://spack.readthedocs.io/en/latest/
https://github.com/spack/spack.git

EIC Spack: Writing Packages
● No packages for: lhapdf, genfit, dire, vgm, g4e, eic-smear
● From source location, e.g.

○ spack create https://gitlab.com/eic/eic-smear
○ Imports released version, supports git branches (spack install eic-smear@master)
○ Autodetection of build system not always successful (eic-smear needed cmake hint)

● Package recipe in repos/builtin/eic-smear/package.py
 version('1.0.2', branch='1.0.2')
 version('1.0.1', branch='1.0.1')

 depends_on('root')
 depends_on('cmake', type='build')
 depends_on('pythia6', when='+pythia6')

 def cmake_args(self):
 args = []
 if self.spec.variants['pythia6']:
 args.append('-DPYTHIA6_LIBDIR={0}'.format(
 self.spec['pythia6'].prefix.lib))
 return args

class EicSmear(CMakePackage):
 """Monte Carlo analysis package developed by BNL."""

 homepage = "https://wiki.bnl.gov/eic/index.php"
 url = "https://gitlab.com/eic/eic-smear"
 git = "https://gitlab.com/eic/eic-smear.git"

 variant("pythia6", default=False,
 description="Include Pythia6 support")

 version('master', branch='master')
 version('1.0.4', branch='1.0.4')
 version('1.0.3', branch='1.0.3')

https://gitlab.com/eic/eic-smear
https://gitlab.com/eic/spack/-/blob/master/packages/eic-smear/package.py

EIC Spack: Repositories
● Builtin repository though pull request on github.com/spack

○ “Your PR must pass Spack's unit tests and documentation tests, and must be PEP 8
compliant. We enforce these guidelines with Travis CI.”

● Dedicated repositories with git repo add
○ git clone https://github.com/eic/eic-spack.git
○ spack repo add eic-spack
○ spack install eic-smear

● Binary distribution through build caches (with http mirror)
○ spack gpg init
○ spack gpg create `git config --get user.name` `git config --get

user.email`
○ spack buildcache create -d ~/scratch/spack/ root
○ spack mirror add data file://$HOME/scratch/spack/
○ spack buildcache list
○ spack buildcache install

https://github.com/spack/spack
https://www.python.org/dev/peps/pep-0008/

EIC Spack: Containers
● From environments to Docker containers

○ spack env create myenv
○ spack env activate myenv
○ spack install eic-software-stack
○ spack env deactivate myenv
○ spack containerize myenv > Dockerfile

Strip all the binaries
RUN find -L /opt/view/* -type f -exec readlink -f '{}' \; | \
 xargs file -i | \
 grep 'charset=binary' | \
 grep 'x-executable\|x-archive\|x-sharedlib' | \
 awk -F: '{print $1}' | xargs strip -s

Modifications to the environment that are necessary to run
RUN cd /opt/spack-environment && \
 spack env activate --sh -d . >> /etc/profile.d/z10_spack_environment.sh

Bare OS image to run the installed executables
FROM ubuntu:18.04
COPY --from=builder /opt/spack-environment /opt/spack-environment
COPY --from=builder /opt/software /opt/software
COPY --from=builder /opt/view /opt/view
COPY --from=builder /etc/profile.d/z10_spack_environment.sh /etc/profile.d/z10_spack_environment.sh
ENTRYPOINT ["/bin/bash", "--rcfile", "/etc/profile", "-l"]

Build stage with Spack pre-installed and ready to be used
FROM spack/ubuntu-bionic:latest as builder

What we want to install and how we want to install it
is specified in a manifest file (spack.yaml)
RUN mkdir /opt/spack-environment \
&& (echo "spack:" \
&& echo " specs:" \
&& echo " - eic-smear" \
&& echo " view: /opt/view" \
&& echo " concretization: together" \
&& echo " config:" \
&& echo " install_tree: /opt/software") > /opt/spack-environment/spack.yaml

Install the software, remove unnecessary deps
RUN cd /opt/spack-environment && spack install && spack gc -y

