Spack for EIC

2020-07-08



What is Spack /JL

configurations, platforms, and compilers.”

e spack.io: “Spack is a package manager for supercomputers, Linux, and
macOS. It makes installing scientific software easy.”

e Benefits for EIC:

o  Support for environments of scientific software, natively compiled on HPC architectures

o Entirely controlled by user (think conda create myenv, conda activate myenv)
e Disadvantages:

o Yet another package manager when “everyone can just run cmake .. && make”

o  Primarily automates build from source; not a binary distribution system without add’l effort

o Compiling is not a guarantee for valid results; no validation steps currently included


https://github.com/spack/spack
https://spack.io/

() github.com/spack W @spackpm

Spack

Building & Deploying the ECP Software Ecosystem

Gregory Becker*, Peter Scheibel*, Tamara Dahlgren*, Mario Melarat, Scott Wittenburg$, Omar Padron¥, Bryon
Beant, Zack Galbreath#, Aashish Chaudhary, and Massimiliano Culpo®, and Todd Gamblin*
*Lawrence Livermore National Laboratory, tLawrence Berkeley National Laboratory, $Kitware, Inc., $ Sylabs, Inc.

Worldwide community spans Government, Academia, Industry

Spack is enabling delivery of the exascale software stack > 3,800 software packages

> 2,000 monthly active users
+ ECP asks us to build a software stack that will have broad impact beyond DOE.
— Needs to be robust, tested, and reliable
— Needs to be easy to get up and running ( : ’ g
: e A
« Spack will provide the infrastructure necessary to make this tractable through automation: S &
1. A dependency model that can handle HPC software
2. Ahub for coordinated software releases (like xSDK)
3. Build and test automation for large packages across facilities
4. Hosted binary and source software distributions for all ECP HPC platforms
i i i i i i ntribution k are increasin
Easy Installation Easily Experiment with Build Optigns o 75 CON butions to Spack are increasing
$ git clone https://github.com/spack/spack $ spack install mpileaks unconstrained T e o e Active Spack users over time
$ . Spqc{(/Share/sPaCk/SEtuP'enV-Sh $ spack install mpileaks®3.3 @ custom version
$ spack install hdfS $ spack install mpileaks®3.3 %gcc4.7.3 % custom compiler
$ spack install mpileaks®3.3 %gcc@4.7.3 +threads  +/- build option
=Clone from github and you're ready to go! $ spack install mpileaks®3.3 cppflags="-03 -g3" set compiler flags
. . . P - : $ spack install mpileaks®3.3 target=skylake set target microarchitecture
= Sourcing configuration script is optional $ spack install mpileaks®3.3 Ampich3.2 %gcc@4.9.3 A dependency information



https://ecpannualmeeting.com/assets/overview/posters/spack-ecp-poster-2020.pdf
https://ecpannualmeeting.com/assets/overview/posters/spack-ecp-poster-2020.pdf

Why Spack?

e \While containers are the easiest and fastest way to start with a curated
environment, some users express strong desire to run software natively.

e This is particularly relevant for large scale simulations on HPC systems
(containers provide a solution through singularity, at reduced performance).

e Ideally we would like a single solution that works for general central
installations (using CVMFS) as well as individual user systems.

What else exists?

e Scientific and HPC:;

o EasyBuild: non-NP/HEP community (latest are geant4.10.5, root6.14.06)
o Conda: binary, python-centric (though also support for C++)
o  GuixHPC, NIX: binary, uncommon build recipe languages

e Non-HPC: portage, pkgsrc, homebrew



platforms

CC

ffgzeasyhu\w

\\/éuixI-FC

N, o
1’_‘. Nix

@ Spack

Linux, macOS,
Windows

Linux, Cray

GNU/Linux

Linux, macOS,
Unix

Linux, macOS,
Cray

implementation

Python 2/3,
YAML

Python 2

Scheme, Guile

C++,
Nix (DSL)

Python 2/3

supp. software

> 3,500

> 2,000

< 6,500

> 13,000

> 2,300

releases,
install & update

* k

documentation

configuration

usage

time to result

performance

reproducibility

FOSDEM’18, https://archive.fosdem.or

/2018/schedule/event/installin

software_for_scientists



https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

EIC Spack: Status Update

e Spack upstream repository at github.com/spack/spack:

o Pull requests merged (new or bugfixes): geant4, opencascade, delphes, lhapdf, hepmc
e Spack forked repository at github.com/eic/spack:

o Default master branch is latest upstream release (v0.15)

o Upstream develop branch is periodically merged into forked develop

o Intended for new package and bugfix branches, pull requests to upstream
e EIC Spack repository at github.com/eic/eic-spack:

o EIC-specific software packages, stable in default branch:

| bmf dire eicroot eic-smear eictoymodel ejana escalate gde geant3-vmc geantd-vmc
genfit jana?2 lhapdf5 libodbcpp nanocernlib py-pyminuit2 py-gmtest pythiaém
tricktrack vgm vmc

o Branches with packages in development (still failing to build):
[ | fund4all milou pythia6m pepsi djangoh rapgap

o Candidates for submission to upstream repository:
| geant3-vmc geantd4d-vmc vgm vmc libodbcpp lhapdfb


http://github.com/spack/spack
http://github.com/eic/spack
http://github.com/eic/eic-spack

EIC Spack: Interface to CVMFS

e Goal:

o  Providing single entry point to using all EIC software through CVMFS
m Taking advantage of spack with environment (for all systems) setup with:
source /cmvfs/eic.opensciencegrid.org/packages/setup-env.sh
m Next, user can load any software components they need with e.g.
spack load geant4@4.10.06.p01
spack load escalate@1.0.1 (loads environment with all dependencies)
o  Support a cross section of frequently used operating systems (with focus on HPC)
e Status:

o Full software stack with all of Escalate, EicRoot, EicToyModel is ‘working’ on CVMFS
m ‘Working’ = no known issues, with admittedly only limited testing

e Outlook:

o Add more MC event generators soon



EIC Spack: Developer Support Welcome

e Releases:
o  While spack packages support e.g. eic-smear@master, released version are preferred (spack
package developer can pick a commit hash and tag it by date)
o Developers: Please release at least one appropriate version for inclusion in spack.
e Testing:
o Auserinstalling a package wants to rely on the package working as expected. A package
maintainer wants to have some more rigorous way of testing the package.
o Developers: Support a test build target that fails when something obviously went wrong.

e Collaboration:

o Think about your software in the context of a suite of software packages: requiring ROOT with
c++11 conflicts hard with some other software; requiring specific version constrains the
dependency graph.



EIC Spack: Versioning

While the discussion of versioning is independent of using spack, we do need
some versioning scheme to delivering consistent software to the users.

e \We cannot guarantee that all versions of all software will work well together.
o Using meta package releases provides a target for testing that some versions do work well.

e In the absence of semantic versioning, there is no way a user can distinguish

minor and major upgrades in a consistent way for all software packages.

o If there are no versions at all, the only info they have is time gaps between commits.
o Using meta package releases provides guidance to the users in a curated way.



EIC Spack: Other Random Rollout Issues

e May need to expand operating systems to support
o  Currently all based on RHEL7, which seems to load just fine on Ubuntu20.04 etc.

e May need build server and binary buildcache
o Already have docker builders to create binary packages for distribution



Backup slides.



EIC Spack: How To Get Started?

spack.readthedocs.io:

(@)

o O O O

git clone https://github.com/spack/spack.git
export SPACK ROOT= realpath spack"

export PATH=$SPACK_ROOT /bin:S$PATH

source S$SPACK ROOT/share/spack/setup-env.sh

spack install root

Find packages: spack list root

Info on packages: spack info root

Use variants: spack install root@6.14.04 +pythia8
Load packages: spack load root (like module load root)
Load environment (like conda env):

(@)

@)

(@)

spack env create myenv
spack env activate myenv

spack env deactivate myenv



https://spack.readthedocs.io/en/latest/
https://github.com/spack/spack.git

EIC Spack: Writing Packages ¢ .,

e No packages for: Ihapdf, genfit, dire, vgm, g4e, eic-smear
e From source location, e.g.

0 spack create https://gitlab.com/eic/eic-smear
o Imports released version, supports git branches (spack install eic-smear@master )
o Autodetection of build system not always successful (eic-smear needed cmake hint)

e Package recipe in repos/builtin/eic-smear/package.py

class EicSmear(CMakePackage): version('1.0.2', branch="'1.0.2")
"""Monte Carlo analysis package developed by BNL.""" version('1.0.1", branch='1.0.1")
homepage = "https://wiki.bnl.gov/eic/index.php" depends_on('root')
url = "https://gitlab.com/eic/eic-smear" depends_on('cmake’, type='build")
git = "https://gitlab.com/eic/eic-smear.git" depends_on('pythia6', when="+pythia6')
variant("pythia6", default=False, def cmake_args(self):
description="Include Pythia6 support") args = ]
if self.spec.variants['pythia6":
version('master’, branch="master’) args.append('-DPYTHIA6_LIBDIR={0}".format(
version('1.0.4', branch='1.0.4") self.spec['pythia6'].prefix.lib))

version('1.0.3', branch='1.0.3") return args


https://gitlab.com/eic/eic-smear
https://gitlab.com/eic/spack/-/blob/master/packages/eic-smear/package.py

EIC Spack: Repositories

e Builtin repository though pull request on github.com/spack
o “Your PR must pass Spack's unit tests and documentation tests, and must be PEP 8
compliant. We enforce these guidelines with Travis CI.”

e Dedicated repositories with git repo add
O git clone https://github.com/eic/eic-spack.git

O spack repo add eic-spack

O spack install eic-smear

e Binary distribution through build caches (with http mirror)
0 spack gpg init
0 spack gpg create "git config --get user.name  “git config --get
user.email"
spack buildcache create -d ~/scratch/spack/ root
spack mirror add data file://SHOME/scratch/spack/
spack buildcache list

o O O O

spack buildcache install



https://github.com/spack/spack
https://www.python.org/dev/peps/pep-0008/

EIC Spack: Containers

From environments to Docker containers

O spack env create myenv

O spack env activate myenv

O spack install eic-software-stack

0 spack env deactivate myenv

O spack containerize myenv > Dockerfile

# Build stage with Spack pre-installed and ready to be used
FROM spack/ubuntu-bionic:latest as builder

# What we want to install and how we want to install it
# is specified in a manifest file (spack.yaml)

RUN mkdir /opt/spack-environment \

(echo "spack:" \

&&
&&
&&
&&
&&
&&
&&

echo "
echo"
echo"
echo "
echo"
echo"

specs:" \
- eic-smear" \
view: /opt/view" \
concretization: together" \
config:" \
install_tree: /opt/software") > /opt/spack-environment/spack.yaml

# Install the software, remove unnecessary deps
RUN cd /opt/spack-environment && spack install && spack gc -y

# Strip all the binaries
RUN find -L /opt/view/* -type f -exec readlink -f'{}' \; | \
xargs file -i | \
grep 'charset=binary' | \
grep 'x-executable\|x-archive\|x-sharedlib' | \
awk -F: {print $1}' | xargs strip -s

# Modifications to the environment that are necessary to run
RUN cd /opt/spack-environment && \
spack env activate --sh -d . >> /etc/profile.d/z10_spack_environment.sh

# Bare OS image to run the installed executables

FROM ubuntu:18.04

COPY --from=builder /opt/spack-environment /opt/spack-environment

COPY --from=builder /opt/software /opt/software

COPY --from=builder /opt/view /opt/view

COPY --from=builder /etc/profile.d/z10_spack_environment.sh /etc/profile.d/z10_spack_environment.sh
ENTRYPOINT ["/bin/bash", "--rcfile", "/etc/profile”, "-I"]



