

First measurement of CNO solar neutrinos

Physics department, Princeton University, Princeton, NJ 08544, USA

BNL seminar 2020 07 23

Xuefeng Ding

- The carbon-nitrogen-oxygen (CNO) cycle
- Detection of CNO solar neutrinos with Borexino
- Low-Polonium-Field (LPoF) analysis
- Statistical analysis
- Conclusions

The carbon-nitrogen-oxygen (CNO) cycle

When do we first looked at how the Sun shines?

Copyright: George Washington University Libraries. https://archive.org/details/RG0031-001-0002-00050-00056_0007

- On March 17, 1938, fourth annual Washington
 Conference of Theoretical Physics was held in the Carnegie Institute and George Washington University's. How the Sun shines was brought into discussion.
 - One year before, Carl Friedrich von Weizsäcker proposed the energy comes from p+p-> ^{2}D + e+ + v_e
 - By the end of the conference, Bethe came up with subsequent processes that ²D are converted to ⁴He
 - After the conference, Bethe started to think about one question: What about heavier stars?

H. Bethe: discovery of CNO cycle mechanism

Photo from the Nobel Foundation archive.

Hans Albrecht Bethe

Prize share: 1/1

It is shown that the most important source of energy in ordinary stars is the reactions of carbon and nitrogen with protons. These reactions form a cycle in which the original nucleus is reproduced, viz. $C^{12}+H=N^{13}$, $N^{13}=C^{13}+\epsilon^+$, $C^{13} + H = N^{14}$, $N^{14} + H = O^{15}$, $O^{15} = N^{15} + \epsilon^+$, $N^{15} + H = C^{12}$ +He⁴. Thus carbon and nitrogen merely serve as catalysts for the combination of four protons (and two electrons) into an α -particle (§7). nitroann roactions are unique in their

The Nobel Prize in Physics 1967 was awarded to Hans Albrecht Bethe "for his contributions to the theory of nuclear reactions, especially his discoveries concerning the energy production in stars."

MARCH 1, 1939

PHYSICAL REVIEW

VOLUME 55

Energy Production in Stars*

H. A. BETHE Cornell University, Ithaca, New York (Received September 7, 1938)

> integration of the Eddington equations gives 19. For the brilliant star Y Cygni the corresponding figures are 30 and 32. This good agreement holds for all bright stars of the main sequence, but, of course, not for giants.

> For fainter stars, with lower central temperatures, the reaction $H+H=D+\epsilon^+$ and the reactions following it, are believed to be mainly responsible for the energy production. (§10)

It is chown further (85-6) that no elements heavier than

• Six month after the conference, H. Bethe submitted an article on energy production in stars with the CNO cycle process. His contribution was awarded Nobel prize in 1967.

Five proton fusion channels in the Sun

Standard Solar Model: Three pp chains and two CNO cycles are active in the Sun.

• CNO cycle contributes 1% energy in the Sun and remains hypothetical until this work.

Neutrinos from proton fusion

First Direct Experimental Evidence of CNO neutrinos, BOREXINO, 2020, hep-ex/2006.15115

Comprehensive measurement of pp-chain solar neutrinos, BOREXINO, 2018, Nature

• Neutrinos are produced during β^+ decay and electron capture.

They are named as pp, pep, ⁷Be, ⁸B, hep, and CNO (¹³N+¹⁵O+¹⁷F) solar neutrinos.

We have pp, pep, ⁷Be, ⁸B, hep, and CNO (¹³N+¹⁵O+¹⁷F) solar neutrinos.

Previous measurement of solar neutrino fluxes

- Radiochemical: Chlorine, Gallex/GNO, SAGE
 - Only weight sum of neutrino flux is given
- Elastic Scattering: Super-K, SNO, BOREXINO
 - Neutrino fluxes measured separately
 - Super-K, SNO: ⁸B and *hep* (limit)
 - Borexino: pp, pep, ⁷Be, ⁸B, hep (limit), and CNO (limit)
- pp chain (except *hep*) was fully measured. **CNO** cycle was not observed yet

Measurement by Borexino Phase-II (2018)

Article Published: 24 October 2018

Comprehensive measurement of *pp***-chain** solar neutrinos

The Borexino Collaboration

Nature	562.	505-510(2018)	Cite th	is article
i tatai c		000 010(2010)		

6838 Accesses 32 Citations 223 Altmetric Metrics

Solar neutrino	Rate (counts per day per 100 t)	Flux (cm ^{-2} s ^{-1})
рр	$134\!\pm\!10^{+6}_{-10}$	$(6.1\!\pm\!0.5^{+0.3}_{-0.5})\times10^{10}$
⁷ Be	$48.3 \!\pm\! 1.1^{+0.4}_{-0.7}$	$(4.99\!\pm\!0.11^{+0.06}_{-0.08})\times10^9$
pep (HZ)	$2.43 \!\pm\! 0.36 \substack{+0.15 \\ -0.22}$	$(1.27\!\pm\!0.19^{+0.08}_{-0.12})\times10^8$
pep (LZ)	$2.65 \!\pm\! 0.36 \substack{+0.15 \\ -0.24}$	$(1.39\!\pm\!0.19^{+0.08}_{-0.13})\times10^8$
⁸ B _{HER-I}	$0.136\substack{+0.013+0.003\\-0.013-0.003}$	$(5.77^{+0.56+0.15}_{-0.56-0.15})\times10^{6}$
⁸ B _{HER-II}	$0.087\substack{+0.080+0.005\\-0.010-0.005}$	$(5.56^{+0.52}_{-0.64}{}^{+0.33}_{-0.33})\times10^{6}$
⁸ B _{HER}	$0.223\substack{+0.015+0.006\\-0.016-0.006}$	$(5.68^{+0.39}_{-0.41}{}^{+0.03}_{-0.03})\times10^{6}$
CNO	<8.1 (95% C.L.)	${<}7.9 imes10^8$ (95% C.L.)
hep	<0.002 (90% C.L.)	${<}2.2 imes 10^5$ (90% C.L.)

Measured neutrino rates (second column): for pp, ⁷Be, pep and CNO neutrinos we quote the total counts without any threshold; for ⁸B and hep neutrinos we quote the counts above the corresponding analysis threshold. Neutrino fluxes (third column) are obtained from the measured rates assuming the MSW-LMA oscillation parameters¹⁹, standard neutrino–electron cross-sections²⁷ and a density of electrons in the scintillator of $(3.307 \pm 0.003) \times 10^{31}$ electrons per 100 t. All fluxes are integral values without any threshold. The result for pep neutrinos depends on whether we assume HZ or LZ SSM predictions to constrain the CNO neutrino flux. The last column shows the fluxes predicted by the SSM for the HZ or LZ hypotheses¹⁸.

Table 2 | Borexino experimental solar-neutrino results

- 1291 day (2011 Dec—2016 May) x 71 t data are analyzed
- Whole pp-chain (except *hep*) detected.
- **CNO cycle was not observed yet.**

Detection of CNO solar neutrinos with Borexino

The principle of neutrino detection of Borexino

- 1. Neutrinos are produced in the core of the Sun
- 2. Neutrinos propagate to the Earth. Part of electron neutrinos transform to muon/tau neutrinos.
- 3. Neutrinos elastically scattering on electrons in Borexino
- 4. Borexino measures the recoil-electron energy (signal).
- 5. Borexino obtain event energy distribution, and separate signals and backgrounds.

- 3. neutrino elastic scattering on electrons

Borexino detects the **recoil electron** of neutrino ES

- Borexino measures the energy of recoil electrons of solar neutrinos elastic scattering on electrons.
- The recoil electron energy distribution is **different** from the neutrino energy distribution.

- Scintillator repurification between July 2010 August 2011.
- Six cycles of "water extraction" and "nitrogen tripping" were used.
- Significant reduct achieved.

Background reduction by purification

Isotope	Initial impurity	Final impuri
⁸⁵ Kr	30 cpd/100t	<5 cpd/100t
	Reduced: >6	
²³⁸ U (²²⁶ Ra) ²¹⁴ Bi - ²¹⁴ Po	5.3x10 ⁻¹⁸ gU/g Reduced: >77	<8x10 ⁻²⁰ gU/ <0.8 c/100t/
²³⁸ U (²²⁶ Ra) ²¹⁴ Bi - ²¹⁴ Po	5.3x10 ⁻¹⁸ gU/g Reduced: >77	<8x10 ⁻²⁰ gU/ <0.8 c/100t/
²³² Th ²¹² Bi- ²¹² Po	3.8(8)x10 ⁻¹⁸ gTh/g Reduced: >3	<1x10 ⁻¹⁸ gTh/ <0.8 c/100t/
²¹⁰ Bi	70 cpd/100t Reduced: x4	17.5 cpd/100
²¹⁰ Po	Increased in first 2 cycles 20 →45 cpd/t Plant contaminants?	Decreased durin Cycles 4-6 return ~20 cpd/t and decaying.

Low Background Methods in Undergroup Astroparticle Physics. Frank Calaprice. TAUP 2017

e and Underground Physics

- Very low background nylon film made at Princeton University.
- Original consideration was thick acrylic walls emits too much gamma bkg.
- Later: decay daughters in the film gain kinetic energy, detach from the film, and migrate into the FV with convection currents.

The low background nylon vessel

Prototypes of the nested nylon vessels @ Jadwin Gymnasium at Princeton University

Background reduction by shielding

First detection of solar neutrinos from CNO cycle with Borexino. G. Ranucci. Neutrino 2020

- Outmost: 3800 w.m.e. rock as shield against **muons**
- Second band: water Cherenkov detector vetoing **muons**
- Third band: PC+DMP buffer kills **gammas** from PMTs
- Nylon between fourth and fifth band: stop radon
- Innermost: FV cut further removes gammas from PMTs

Backgrounds reduction through analysis

Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy, BOREXINO, 2014, PRD

- ¹¹C are suppressed by three-fold-coincidence (TFC, muon + neutron + ¹¹C) cut.
 - ¹¹C are mainly produced through ¹²C(γ/π,n)¹¹C etc. γ/π are from muons. Most ¹¹C are produced with a neutron.
 - We build a likelihood from distance & delay to nearest muons & neutrons and reduce ¹¹C rate by ~93%

Seven backgrounds of the Borexino detector

- ¹⁴C. Cosmogenic. τ=5730 years
 ²¹⁰Po. Decay descendant of ²¹⁰Pb
 ²¹⁰Bi. Decay daughter of ²¹⁰Pb
 ⁸⁵Kr. From Atom bombs. In the air.
 ¹¹C. Cosmogenic. τ=20 mins
- 6. pile-up. As its name.
- 7. Ext. γ from $^{208}\text{TI},~^{234}\text{Th},~and~^{40}\text{K}$ in PMTs

Important backgrounds for CNO

First Direct Experimental Evidence of CNO neutrinos, BOREXINO, 2020, hep-ex/2006.15115

- ROI: around 0.8—0.9 MeV
 - ~90% CNO $v + pep v + ^{210}Bi$
 - ~10% ⁷Be v + ¹¹C + ext. ⁴⁰K γ etc.

max(min)

Measure ext. 40 K, 11 C, internal 40 K, and v(7 Be)

CNO(bkg.)

First Direct Experimental Evidence of CNO neutrinos 3OREXINO, 2020, hep-ex/2006.1511:

Others =
$${}^{7}\text{Be } v + {}^{11}\text{C} +$$

ext. ${}^{40}\text{K} \gamma$ etc.

First Direct Experimental Evidence of CNO neutrinos, BOREXINO, 2020, hep-ex/2006.15115

First Direct Experimental Evidence of CNO neutrinos, BOREXINO, 2020, hep-ex/2006.15115

- Around 10% of ROI.
- Ext $\frac{208}{1}/\frac{232}{h}/\frac{40}{V}$ by event position distribution.
- ¹¹C: by **energy** distribution. Peak shape.
- Internal ⁴⁰K: by energy distribution. Double peak shape (beta + EC). Negligible.
- ⁷Be v: by **energy** distribution. Heaviside-step-function like shape.

Constrain v(pep)

CNO(bkg.)

First Direct Experimental Evidence of CNO neutrino BOREXINO, 2020, hep-ex/2006.15115

Regular Article - Theoretical Physics | Open Access | Published: 18 March 2016

Updated determination of the solar neutrino fluxes from solar neutrino data

Johannes Bergström, M. C. Gonzalez-Garcia, Michele Maltoni 🖂, Carlos Peña-Garay, Aldo M. Serenelli & Ninggiang Song

Journal of High Energy Physics 2016, Article number: 132 (2016) Cite this article 362 Accesses 33 Citations 2 Altmetric Metrics

$0.9800 \times \varphi_{\rm pp} + 0.0939 \times \varphi_{\rm Be} + 0.0092 \times \varphi_{\rm CNO} +$ $+0.0089 \times \varphi_{\text{pep}} + \text{small terms} = 6.379 \times (1 \pm 0.4\%)$

Luminosity constraint and entangled solar neutrino signals, F. Vissani, 2018

- ~30% of ROI
- From global fit.
 - Luminosity constraint constraints pp. Need also ⁷Be etc.
 - pp/pep ratio: known from nuclear physics

Standard MSW Pee used.

Challenges of constraining

CNO(bkg.)

First Direct Experimental Evidence of CNO neutrinos. BOREXINO, 2020, hep-ex/2006.15115

210Bi

• ~30% of ROI

900 2500

- Very similar shape compared with CNO. Difficult to separate through shape.
- Need to be measured independently.
- Solution: LPoF method.

Low-Polonium-Field (LPoF) analysis To measure ²¹⁰Bi

)	oot]
)	pd/1
)	tte [c
)	10 ra
)	Po-2
)	cted
)	orrec
	0

Strategy to measure ²¹⁰Bi

- When ²¹⁰Pb—²¹⁰Bi—²¹⁰Po reaches secular equilibrium, **their rates are equal.**
- ²¹⁰Po rate can be measured precisely.
 ²¹⁰Po decay through α decay. ²¹⁰Po events can be selected event-by-event using an α/β discriminator.

t

²¹⁰Po(Surface) and ²¹⁰Po(Volume)

- ²¹⁰Pb are present both in the liquid scintillator (hereinafter as ²¹⁰Pb(Volume)) and the surface of nylon vessel (hereinafter as 210Pb(Surface)).
 - It is supposed ²¹⁰Pb are deposited into the nylon during the first fill, when ²¹⁰Pb is not removed by purification yet.
- We need only R(²¹⁰Po(V)) = R(²¹⁰Bi(V))
 = R(²¹⁰Pb(V))
- ²¹⁰Po(S) is background and need to be suppressed.

Suppress ²¹⁰Po(Surface)

- ²¹⁰Po(S) need to travel a few meters to reach FV.
- Suppress convection, ²¹⁰Po(S) will decay halfway, and ²¹⁰Po(S, FV) will reduce.
- Solution: Keep the detector thermal condition stable to suppress convection.

Six years of efforts to stabilize thermal condition

First Direct Experimental Evidence of CNO neutrinos, BOREXINO, 2020, hep-ex/2006.15115

First measurement of CNO solar neutrinos, Xuefeng Ding

	N1
	S1
	N2
	S 2
	N3
	S 3
	N4
	S4
	N5
	S5
	N6
—	S6
	N7
	S7

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment Volume 964, 1 June 2020, 163801

Fluid-dynamics and transport of ²¹⁰ Po in the scintillator Borexino detector: A numerical analysis

V. Di Marcello ^a $\stackrel{ imes}{\sim}$ ⊠, D. Bravo-Berguño ^{b, 1}, R. Mereu ^c, F. Calaprice ^d, A. Di Giacinto ^a, A. Di Ludovico ^d, Aldo Ianni ^a, Andrea Ianni ^d, N, Rossi ^a, L, Pietrofaccia ^d

- Double layer of mineral wool for insulation & Active Temperature Control System (ATCS) (2014-2016)
- Temperature Probes (2014—2016)
- Fluid dynamical simulations \bullet
- Hall C Temperature stabilization (2019)

Outcome of the insulation & ATCS

First Direct Experimental Evidence of CNO neutrinos, BOREXINO, 2020, hep-ex/2006.15115

Approximately vertical position

- Temperature (top) much more stable after insulation & ATCS between 2017 Jan and 2019 Jan.
- Convection current suppressed, and less
 ²¹⁰Po(S) migrate into FV, and lower ²¹⁰Po rate (bottom).

First Direct Experimental Evidence of CNO neutrinos, BOREXINO, 2020, hep-ex/2006.15115

Breakthrough: Low Polonium Field (LPoF) analysis

- LPoF: Get minimum of R(²¹⁰Po)
- Align dataset vertically for the minimum calibrated by minimum of previous month (blind alignment)
 - Fit dataset splitter in one month with parabolic/spline functions to obtain the minimum position.
- Fit merged dataset with parabolic/ spline functions.

$$\frac{R_{min}(cpd/100t)}{11.5} = \frac{\sigma_{fit}}{0.88} = \frac{\sigma_{mass}}{0.36} = \frac{\sigma_{binr}}{0.33}$$

Result of LPoF analysis

Fit model
$$R_{Po} = R_{min}\epsilon \cdot \left(1 + \frac{\rho^2}{a^2} + \frac{(z - z_0)^2}{b^2}\right) + R_{\beta}$$

nning	$\sigma_{^{_{210}}}$ Bi homog.	σ_eta leak	σ_{Total}
.31	See next slides	0.30	See next slides

- LPoF provides the R(²¹⁰Bi) at the minimum of a 20 ton region (fit range used by LPoF).
- Assume $R(^{210}Bi, FV) = R(^{210}Bi, LPoF)$
- Spatial Inhomogeneity of R(²¹⁰Bi) introduce bias.

²¹⁰Bi homogeneity systematics based on Obi-wan

- Obi-wan = Optimized Bismuth window analyzer
- ~75% neutrinos, ~15% ²¹⁰Bi, ~10% ¹¹C and ⁸⁵Kr
- Inhomogeneity of Obi-wan is a conservative estimate of inhomogeneity of ²¹⁰Bi.

Obi-wan is optimized based on S/sqrt(S+B) of ²¹⁰Bi

²¹⁰Bi homogeneity systematics based on Obi-wan

0.51 cpd/100t

Overall ²¹⁰Bi spatial uniformity systematics: 0.78 cpd/100t

0.59 cpd/100t

Further proof of ²¹⁰Bi homogeneity

- ²¹⁰Bi activity evolution is simulated according to estimated convection current.
- Before the insulation, the convection is very strong.
- Even if ²¹⁰Bi is completely at the top in the beginning, after one year it will be completely mixed.

• $R(210Bi) \le 11.5 \pm 1.3 \text{ cpd}/100t$

• $R(^{210}Bi) + R(^{210}Po(S)) = 11.5 \pm 1.3 \text{ cpd}/100t$

• $R(^{210}Po(S)) \ge 0$

Result of LPoF analysis

Or

Statistical analysis

The Statistical analysis

- The statistical analysis has two objectives
 - Evaluate the confidence interval (counting + MV fit)
 - Evaluate the discovery significance (hypothesis test)

The discovery significance

- Test statistic *q* = profile likelihood = -2ln[L(no CNO) / L(CNO free)]
- Get **q of data** (= 30.05)
- Get distribution of q assuming null hypothesis (no CNO) with and without systematics using Monte Carlo method
 - Due to use of "half-gaussian" pull term, or the "upper limit", Cowan's fomula does not apply (half-chisquare)
 - When systemics uncertainty is included, distribution is completely unknown.
 - To prove 5 sigma, we need to show the p-value is less than 2.8x10⁻⁷. We simulated 13.8 million datasets. No event above q(data). So p-value of data is less than 5 sigma significance at 99% C.L.

The confidence interval — Multivariate fit

- Scan the test statistic over the CNO rate q(CNO).
- Convert q(CNO) to the P.D.F. of CNO rate according to p = C*exp(LL).
- Get 68% quantile as the 1 sigma Confidence Interval (C.I.)
- Smear the P.D.F. of CNO with systematic uncertainty (-0.5^{+0.6} cpd/100t)
- Get 68% quantile of the smeared P.D.F. as 1 sigma C.I. including systematic uncertainty.

Why asymmetric likelihood profile?

- The likelihood on the left is steep.
 - When CNO goes down, ²¹⁰Bi need to increase, but limited by the LPoF.
 - When CNO goes high, ²¹⁰Bi decrease, but ²¹⁰Po(S) can make up the LPoF.

The confidence interval — Counting analysis

Count number of events in ROI

 Subtract background randomly according to determined value. For ²¹⁰Bi, conservatively subtract follow Gaussian distribution 11.5 ± 1.3 .

 Obtained distribution of rate of residual events can be used to evaluate the confidence interval of CNO neutrinos.

Straightforward and robust.

 Extremely stable temperature after installation of new system last November.

 If convection is further suppressed, "plateau" is seen, we measure ²¹⁰Bi rate, rather than giving an upper limit.

 CNO will be measured (confidence interval) significantly improved).

 The "solar metallicity problem": the refined 3D model proposed in 2009 lost agreement with helioseismology data.

• Only metallicity (mass fraction of elements heavier than helium) is different between two

• Need to modify the opacity to restore the agreement.

Neutrino flux measurements may provide hints

Use CNO to measure C & N abundances

Sensitivity to neutrinos from the solar CNO cycle in Borexino, arXiv 2005.12829

- pp-chain solar neutrino fluxes depend on solar core temperature
- CNO cycle solar neutrino fluxes depend on temperature + C & N abundances.
 - Combine two to measurement C & N abundances directly

Use CNO to do hypothesis test

Solar ν

Sensitivity to neutrinos from the solar CNO cycle in Borexino, arXiv 2005.12829

B16(GS98)-HZ cpd/100 ton	B16(AGSS09)-LZ cpd/100 ton	Borexino Results cpd/100 ton
131.1 ± 1.4	132.2 ± 1.4	$134 \pm 10^{+6}_{-10}$
47.9 ± 2.8	43.7 ± 2.5	$48.3 \pm 1.1^{+0.4}_{-0.7}$
2.74 ± 0.04	2.78 ± 0.04	$2.43 \pm 0.36^{+0.15}_{-0.22}$ (HZ)
		$2.65 \pm 0.36^{+0.15}_{-0.24} \ (\mathrm{LZ})$
4.92 ± 0.78	3.52 ± 0.52	< 8.1 (95% C.L.)

Standard hypothesis test

Future experiments

Jingping Neutrino Experiment

Connection to cryogenics, purification, data acquisition

Anode

TPC with

Cathode

Bottom

photosensor array

central dark

matter target

First measurement of CNO solar neutrinos, Xuefeng Ding

- SNO+: existing, deep
- JPNE: directionality
- LAr/LXe: no ¹¹C, high energy resolution

PLY SUP

First measurement of CNO solar neutrinos, Xuefeng Ding

• With LPoF analysis, we obtained an upper limit of ²¹⁰Bi

 Based on this result, we evaluate discovery significance to no CNO hypothesis is more than 5 sigma at 99 C.L. It is first detection of CNO solar neutrinos. Finally proves CNO cycle proposed by H. Bethe 80 years ago.

We measured CNO neutrino flux to be 7.0 +3.0 -2.0 x 108 cm-2s-1

Backup

The systematic uncertainty

fit with un-distorted PDFs

- Using the Cousins & Highland, or hybrid frequentist-Bayesian method.

 - Simulate distorted datasets and fit with un-distorted PDF \bullet
 - Subtract quadratically width of distribution of results with 0-systemics.

 Define list of known inaccuracy type and magnitude (energy function, LY 0.23%) non-uniformity 0.28% and NL 0.4%; ¹¹C deformation 2.3%; ²¹⁰Bi shape 18%)

The Neutrino Oscillation

- Historically known as the "solar neutrino problem". Nobel prize in 2015. \bullet

When detected, part of solar electron neutrinos has oscillated into muon/tau neutrinos.

