FCS Trigger Status

Web document : <u>https://www.star.bnl.gov/protected/spin/akio/fcs/index.html</u>			
Mapping	: https://www.star.bnl.gov/protected/spin/akio/fcs/index.html#mapping		
Triggering	: <u>https://www.star.bnl.gov/protected/spin/akio/fcs/trigger.html</u>		
EPD as PRS	: <u>https://www.star.bnl.gov/protected/spin/akio/fcs/epd.htm</u>		

Akio Ogawa

2020 July20

FCS Trigger Algorithm

1 DEP=32ch=4x8 tower

Stage-0 Time bin sum, Ped Sub, Apply ET and SiPM/FEE gain

Stage-1 makes 8 of 2x2 sums

```
Stage-2 makes overlapping 4x4 sums

Match Ecal4x4 – Hcal4x4

Match Ecal4x4 – EPD with mask

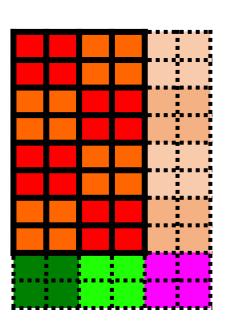
EM Trigger = H4x4 < E4x4 * RATIO_THR(=0.25)

Had Trigger = H4x4 > E4x4 * RATIO_THR(=0.25)

ELE Trigger = EM Trigger * (PRES * Mask)

GAM Trigger = EM Trigger * ! (PRES * Mask)

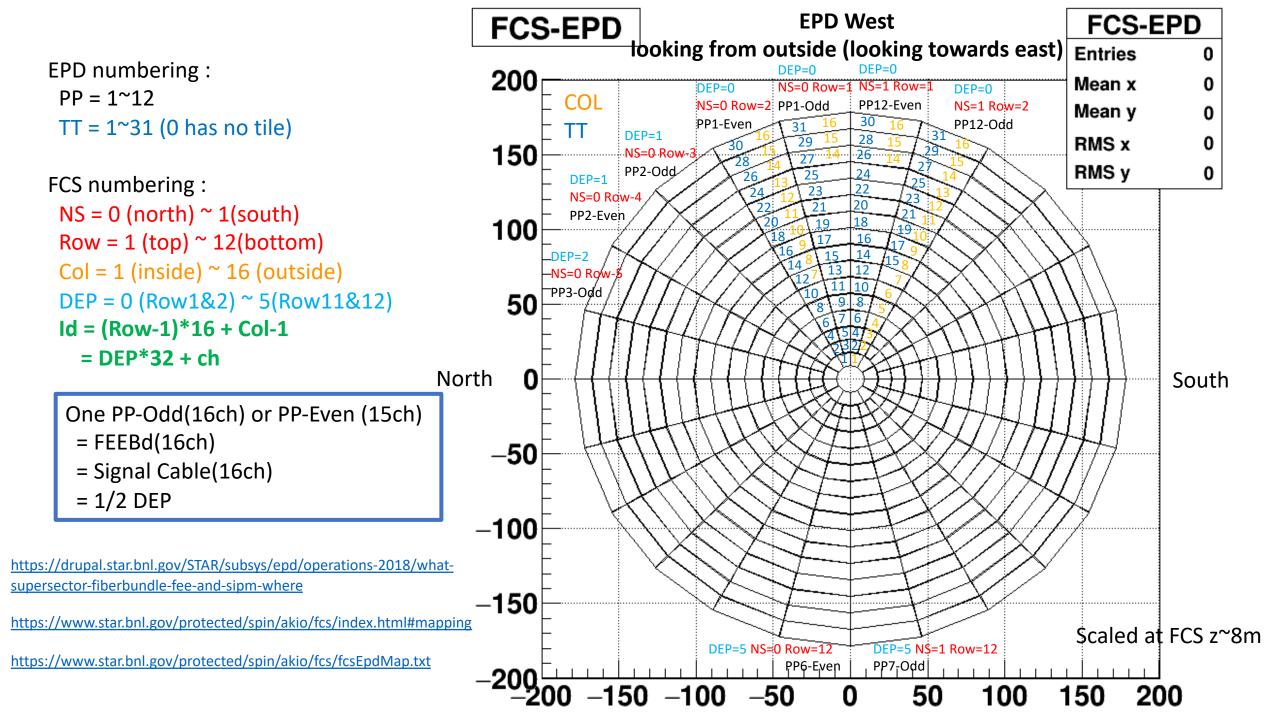
JET trigger = Ecal + Hcal Jet Pacth


Cosmic = Total sum of Ecal and Hcal separately

Apply thresholds on those 6 triggers
```

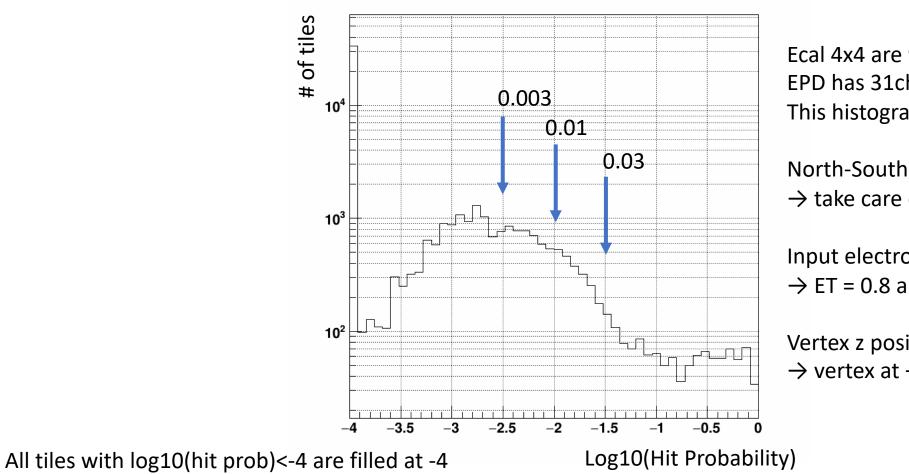
Stage-3 North OR South for singles triggers North AND South for doubles triggers

https://www.star.bnl.gov/cgibin/protected/cvsweb.cgi/StRoot/RTS/src/TRG_FCS/ This will be the document & bit checker & trigger emulator for MC



Possible Further Optimizations

- Ecal4x4 Hcal4x4 match
 - Closest (current)
 - Best of 4 nearby Hcal 4x4?
- EPD Mask (see later slides)
- North-South coincidence
 - Simple N&S (current)
 - Divide by geometry to avoid triggering on jet heading N-S gap
- Jet trigger
 - 3 (Top. Mid, Bottom) JP (current)
 - Eta division?
- How many thresholds for each trigger?

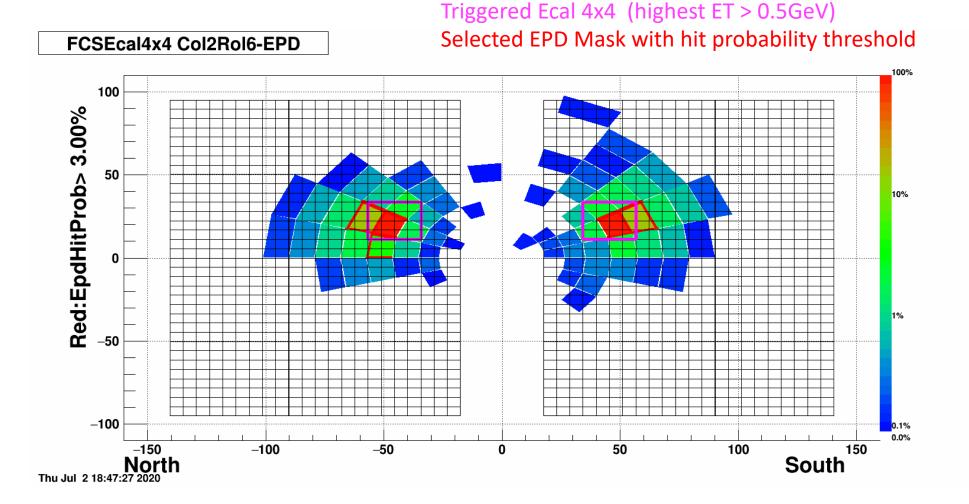

Selecting bit ranges at trigger stages

Stage	# of bit (Max)	E [GeV/cou nt]	ET @ near beam [MeV / Count]	ET @ far corner [MeV / Count]
Total Pulse (16 time bin) (100% integral)	16 bit (65k) 32k <= 180GeV	0.0053		
Peak Time bin (1/8 integral)	12 bit (4k) 4k == 180GeV	0.045		
8 Time bin Sum (~75% integral)	15 bit (33k) 26k <= 180GeV	0.0070	0.24711 (26k= 6.4GeV)	1.47035 (26k=38.2GeV)
4.6 bit ET*GainCorr	19 bit (524k)		0.24711 (26k= 6.4GeV)	0.24711 (156k=38.2GeV)
2x2 Sum	21 bit (2097k)		0.24711 (26k=6.4GeV)	0.24711 (156k=38.2GeV)
Cut top 6 bit And bottom 7 bit	8 bit (255)		31.6 MeV/count (202= 6.4GeV)	31.6 MeV/count (255=8.0 GeV)
Cut top 4 bit And bottom 5 bit	12 bit (4k)		7.9MeV / count (808 = 6.4GeV)	7.9MeV / count (4k = 32 GeV)

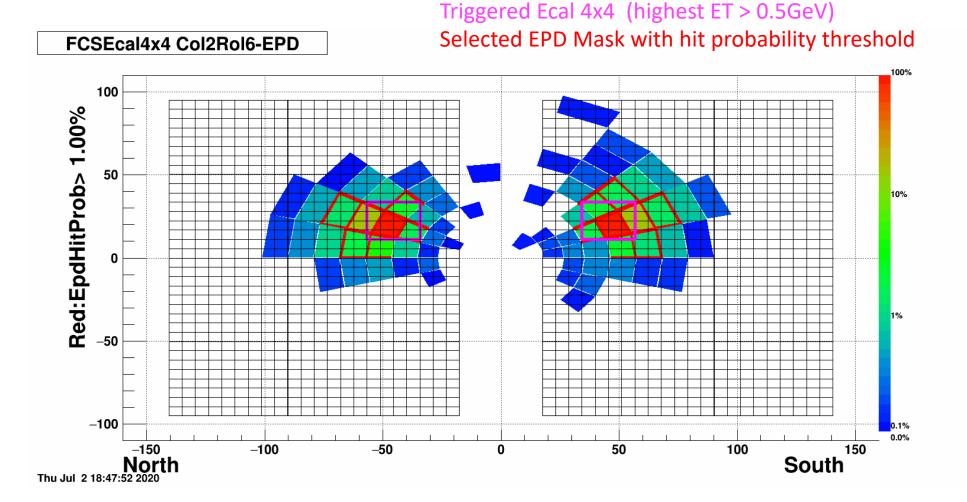
EPD Hit probability distribution for ET=0.6GeV Single Electron

Log10HitProb

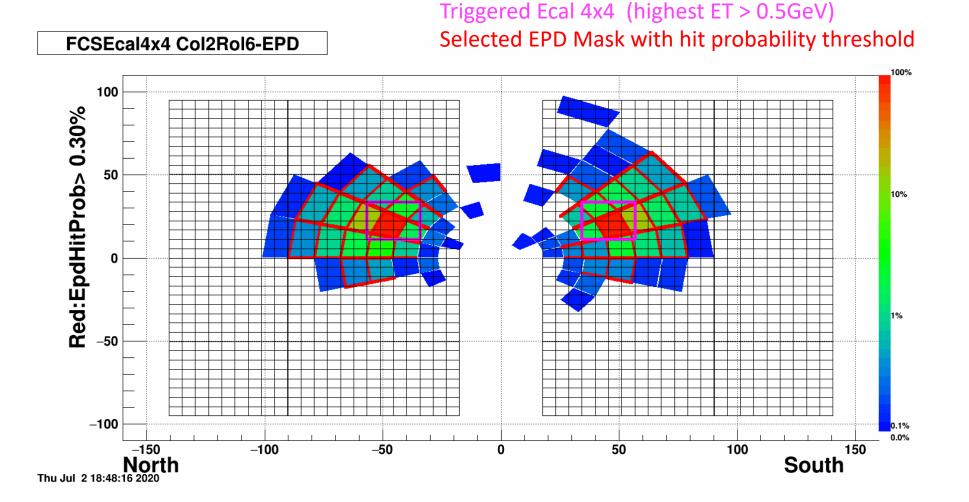
Ecal 4x4 are 9col*15row = 135 per side EPD has 31ch*6dep = 186 tiles per side This histogram has 135*186*2 = 50k entries

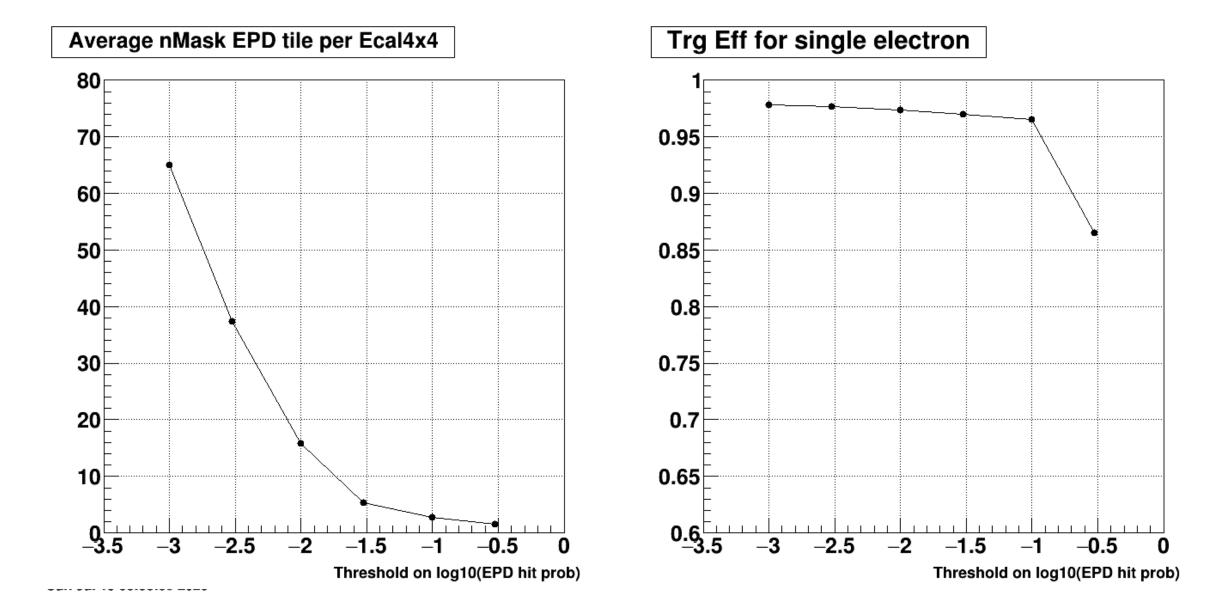

North-South mask ORed \rightarrow take care charge positive/negative

Input electron ET=0.6GeV \rightarrow ET = 0.8 and 1.0GeV available

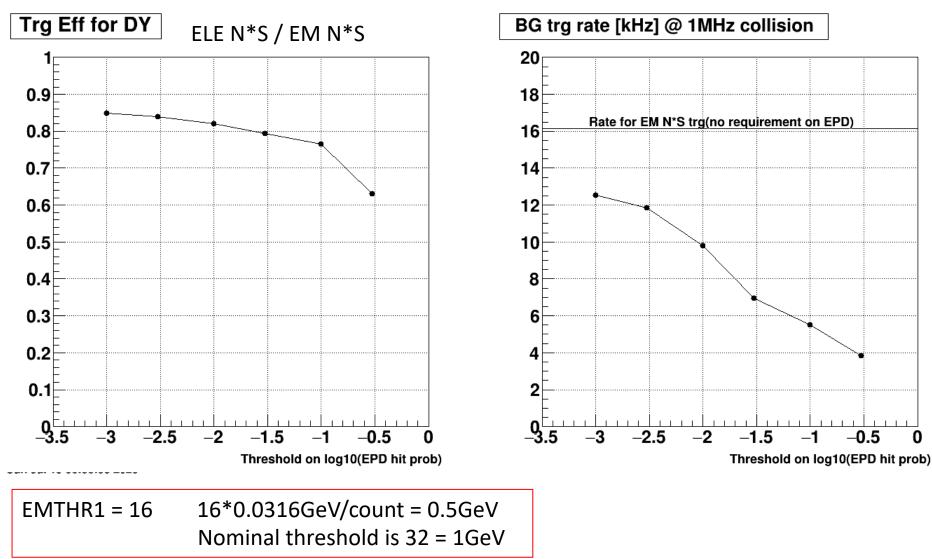

Vertex z position is 0 \rightarrow vertex at +-50cm available

More plots for different ET, Z Vertex, etc and actual mask, code location & howto documents are at https://www.star.bnl.gov/protected/spin/akio/fcs/epd.html#mask


Single electron Hit Probability > 0.03


Single electron Hit Probability > 0.01

Single electron Hit Probability > 0.003


Masks made with varying threshold on hit probability

PYTHIA Sample @ RCAS, 400 jobs done in few hours

PYTHIA	DY	Minbias	
Cross Section	2.23D-04	3.15D+01	
# of Run	200	200	
Pythia generated Evt/Run	~100k	~5k	
Total generated	~20M	~1M	
Equiv. run time @ 1MHz collision	~3e6sec (~36days)	~1sec	
Filter	FcsDYFilter.cxx	FcsDYBGFilter.cxx	
Filter rejection power	~1/200	~1/10	
After Pythia Filter/Run	500	500	
After Pythia Filter total	100k	100k	
EM N*S Triggered (ET>0.5GeV)	67k (67%)	16k (16%)	
ELE N*S Triggered (ET>0.5GeV, 0.003 mask)	55k (55%)	7k (7%)	
CPU time/run	~3hour	~2hour	
CPU time/event	~20sec	~14sec	
StRoot/StarGenerator/FILT/FcsDYFilter.cxxStRoot/StarGenerator/FILT/FcsDYBGFilter.cxxe+ and e- with ET>1GeV heading Ecal box2 of any stable particle with ET>1GeV heading Ecal boxmass > 2.5GeVmass (any combination from above) > 2.5GeV			

DY trigger efficiency for PYTHIA DY events and DY trigger Rate from PYTHIA QCD events

FCS Trigger code

- <u>https://www.star.bnl.gov/protected/spin/akio/fcs/trigger.html</u>
 - has links to VHDL code by Tonko (used for run19, need to be evolved to run22 algo)
 - And C++ emulation codes
 - Now with all run22 base triggers, including ETOT/cosmic trigger
 - Switchable (.h file or reading from text) EPD mask for ELE trigger
- StFcsDbMaker gives proposed EPD mapping (and reverse mapping to EPD numbering)
- StFcsFastSimmulatorMaker
 - It now reads EPD g2t hit table and make StFcsHit with proposed map
 - It is based on StEpdFastSimMaker provided by EPD group
 - Still need mapping verification \rightarrow FIXED and DONE
- StFcsTriggerSimMaker
 - Now it run with Tonko's wrapper class and DAQ code StRoot/RTS/src/FCS_DAQ StRoot/RTS/src/FCS_TRG
 - Added hooks for QA
- **StFcsEventDisplay** now shows EPD hits
- StFcsTrgQaMaker has trigger QA and should evolved to online trigger QA

FCS trigger & software

- 1. GEANT geometry, g2t and fast simulator
- 2. Mmapping & calibration tables
- 3. DST data model Usable interface to trigger data from DEP
- 4. Raw data reader
- 5. Ecal Cluster Finder
- 6. Ecal Photon Fit
- 7. 2D and 3D Event Displays
- 8. Analysis of run19 AuAu200 test data
 - 1. Ecal: Reconstruction of pi0 put in CVS
 - 2. Ecal : Finding MIP peaks put in CVS
- 9. Trigger Algorism overall design and Emulation in C++ for bit checker and for MC
 - EPD as PRES Mask for electron trigger June2020 Almost DONE
 - 4x4 Ecal best of four 4x4 Hcal correlation map for EM/Hadron trigger Aug2020
 - North-South coincidence geometry?
 - Jet trigger optimization?
- 10. Update VHDL code for stage2 & 3 Need Eleanor's help Winter 2021
- 11. Robust (accidental hits proof) signal fitting vs time-bins & signal simulator Summer 2021
- 12. Hcal hadronic shower characterization (Hcal cluster finder?) Fall2020
- 13. Hcal calibration using cosmic muon pre beam time MC(see Navagyan's) & cosmic trigger Data taking summer 2021
- 14. Integration and matching with Tracking Fall 2020
- 15. PYTHIA level event filter for DY/QCD for MC
 - 1. During/After GEANT filter for QCD background for DY Early 2021
 - 2. Large scale MC sample for Jpsi, DY, QCD background for DY, and jets Fall 2020
- 16. Physics analysis code Early 2021
 - Finding J/Psi and DY
 - Jet finder and high pT charged hadron reconstruction
- 17. jEVP and online QA Summer 2021
- 18. GEANT4 for STAR ???

Done Working on To do Possible timescale