STAR Forward Upgrade Software Update

Daniel Brandenburg
July 20, 2020
Forward Upgrade Face-2-Face Meeting

Outline

\rightarrow Forward Tracking
\rightarrow Refitting with Si hits
\rightarrow Geometry
\rightarrow sTGC simulations
\rightarrow Tracking Studies
\rightarrow Roadmap
backup slides contain renders of STAR forward upgrade for talks, etc.

STAR Forward Software packages

\rightarrow STAR Forward tracking : https://github.com/jdbrice/star-fwd-dev
\rightarrow StRoot maker (StgMaker) for forward tracking (currently includes fast simulators) : https://github.com/jdbrice/star-sw
\rightarrow standalone sTGC cluster simulator : https://github.com/jdbrice/stgc-cluster-sim
\rightarrow Tracking software on RCF (32-bit): https://github.com/jdbrice/star-fwd-tracking-rcf-32
\rightarrow FWD Simulation tools : https://github.com/jdbrice/star-fwd-sim
\rightarrow CA Optimization : https://github.com/jdbrice/FwdCAOptimization
\rightarrow Analysis of simulated HIJING / Pythia events:
https://github.com/jdbrice/StHijingAna
All code lives on github. StRoot packages are being gradually integrated into STAR CVS as part of StRoot

Forward Tracking Updates : Si Refitting

\rightarrow Last f2f meeting: Presented track refitting with Si hits
\rightarrow At that time I required simplest case $\rightarrow 3$ Si hits found on track projection
\rightarrow Suggestion to look for 1 at a time \& re-project track to improve finding others.

Simulation Details:

$\rightarrow 1 \pi$ track / event
$\rightarrow p_{T}>0.2 \mathrm{GeV} / \mathrm{c}$
$\rightarrow 2.5<\eta<4.0$
\rightarrow Refit $\approx 90 \%$ tracks found with all 3 Si
\rightarrow Search in $\pm 3 \sigma$ window
\rightarrow Large search window works well in very low multiplicity

Forward Tracking Updates : Si Refitting

\rightarrow Last f2f meeting: Presented track refitting with Si hits
\rightarrow At that time I required simplest case $\rightarrow 3$ Si hits found on track projection
\rightarrow Suggestion to look for 1 at a time \& re-project track to improve finding others.

Simulation Details:

\rightarrow Pythia8 p+p events @ 200 GeV
$\rightarrow p_{T}>0.2 \mathrm{GeV} / \mathrm{c}$
$\rightarrow 2.5<\eta<4.0$
\rightarrow Refit 80\% more tracks than requiring all 3 Si hits
\rightarrow Search in $\pm 3 \sigma$ window
\rightarrow Not as many tracks find all 3 Si hits
\rightarrow Still working on improving this

Forward Tracking Updates : Si Refitting

\rightarrow Last f2f meeting: Presented track refitting with Si hits
\rightarrow At that time I required simplest case $\rightarrow 3$ Si hits found on track projection
\rightarrow Suggestion to look for 1 at a time \& re-project track to improve finding others.

Forward Tracking Updates: Geometry

\rightarrow We discovered (~March) that the high-detail FST geometry causes GenFit to run extremely slow note: GenFit only uses geometry for computing Kalman transfer function.
\rightarrow May (or may not) be related to the strange behavior found recently in the FST material plot.
\rightarrow Both use the ROOT TGeo interface for interacting/stepping through geometry
\$ cvs co StarVMC/Geometry/macros
\$ cvs co StarVMC/StarAgmIChecker/
\$ In -s StarVMC/StarAgmIChecker/macros/makeMaterialPlot.C \$ root makeMaterialPlot.C
root [0] materialPlot("FTUS")->Draw("colz")

Forward Tracking Updates: Geometry

Two "solutions" are being pursued:

1. Immediate: Use low-resolution FST geometry in GENFIT
\rightarrow Identical to dev2021 except for the FST Geometry - use 'old' low res model.
\rightarrow A separate geometry dev2021x is used to keep it organized.
\rightarrow For now seems to work OK (see next slides)
\rightarrow A better solution may improve tails of momentum distribution slightly
2. Long-term: Fix underlying root issue
\rightarrow Understand problem and patch in place existing GENFIT (ROOT5)
\rightarrow STAR-wide upgrade to ROOT6 imminent(?)
\rightarrow ROOT6 support would allow upgrade to newest GENFIT
\rightarrow New version of GENFIT may solve problem directly (need to investigate).

Integration of sTGC simulator

\rightarrow Zhen Wang has a detailed presentation about the sTGC simulator progress - see next

Plan for sTGC slow simulator

1. StgcSlowSimulator: Convert existing standalone cluster simulator into sTGC slow simulator
\rightarrow Slow sim output into StEvent (goal: use the same data structure as for data)
2. StgcClusterFinder : Integrate standalone cluster finder (what Zhen is working on) into StRoot chain
3. Integrate with tracking framework

Tracking in HIJING Events

\rightarrow For HIJING Au+Au events @ 200 GeV:
\rightarrow Mean multiplicity in Forward region ≈ 255 (with maximum up to ~ 1000)
\rightarrow Shown below, average η and p_{T} spectra for 25 events.

Tracking in HIJING Events

\rightarrow Naïve CA implementation is very slow for high-multiplicity events.
\rightarrow Scales with combinatorial pairs
\rightarrow Split high multiplicity events into ϕ-slices
\rightarrow I showed a proof of concept few months ago

Tested on p+p (pythia8) events

\rightarrow No visible loss in efficiency
\rightarrow I expect some efficiency loss though (tracks that cross boundary), need to study more.
\rightarrow Speedup already noticeable on Pythia8 $p+p$ events

Tracking in HIJING Events

\rightarrow Number of ϕ-slices can be set for each tracking iteration via config:

```
<?xml version="1.0" encoding="UTF-8"?>
<config>
    <TrackFinder nIterations="1">
        <!-- Options for first iteration -->
        <Iteration nPhiSlices="12" >
            <SegmentBuilder>
            </SegmentBuilder>
            <ThreeHitSegments>
            </ThreeHitSegments>
        </Iteration>
    </TrackFinder>
</config>
```


Tracking in HIJING Events

\rightarrow For HIJING Au+Au events @ 200 GeV:
\rightarrow About 75\% correct hits on tracks (3/4)

\rightarrow Tracking code is highly configurable, good but
\rightarrow Still need dedicated studies to understand optimal settings
\rightarrow Initial optimization studies performed using pythia8 $p+p$ events (see https://github.com/jdbrice/FwdCA Optimization)

Tracking in HIJING Events

\rightarrow For HIJING Au+Au events @ 200 GeV :

very similar to previous result
Good behavior with increased multiplicity

Tracking in HIJING Events

\rightarrow For HIJING Au+Au events @ 200 GeV:

Notes:

\rightarrow All HIJING Events \langle mult $\rangle \approx 255$
$\rightarrow \approx 10 \%$ of tracks reconstructed with 4 sTGC hits are very low quality.
\rightarrow Maybe we can clean up by requiring matching Si hits
\rightarrow Need to study HIJING cases more

TODO List

Immediate

\rightarrow Integrate FST Slow simulator
\rightarrow Implement diagonal strips in sTGC cluster simulator
\rightarrow +Incorporate into cluster finder
\rightarrow sTGC slow simulator chain :
Integrate sTGC cluster sim/cluster finder into simulation / reconstruction chain
\rightarrow With sTGC slow sim
\rightarrow realistic studies of tracking Au+Au (high multiplicities)

On the horizon

\rightarrow Vertex finding with forward tracks
\rightarrow Last f2f meeting: demonstrate viability
\rightarrow Implement RAVE vertex finder (part of GENFIT package)
\rightarrow Match tracks to ECAL/HCAL
\rightarrow Allow track refit using CAL energy measurement?
\rightarrow StEvent formats

