

Electronics Status at USTC

Feng Li, Shuang Zhou, Peng Miao, Ge Jin

July 21st, 2020 University of Science and Technology of China

Outline

- System Architecture
- FEB Status
- VMM3 Usage on FEB
- ROD Status
- Adapter Board design

System Architecture

University of Science and Technology of China

Complete sTGC layer

- The strips of each sTGC layer can be handled by 24 Front-End Boards.
- In total, there will need 96 FEBs for 4 sTGC layers.
- The innermost sTGC layer locate in the cone at the place with diameter of 152cm
- About 10cm gap between the sTGC border and the cone
- FEB boards are vertically inserted in the sTGC chamber.

Layout in the cone

- 7-inch distance between adjacent sTGC chambers.
- FEBs are vertically inserted into the connector slots on chamber.
- FEBs are almost parallel to the particle beams.
- 3-6 power cables can be grouped together and then distributed to each FEB near the chamber.

Connector between chamber and FEB

- Connector P/N on chamber: SAMTEC HSEC1-060-01-S-DV-A-K, used as board slot connector
- Connector size on chamber: 69.5 * 5.6 * 7.8mm (L*W*H)
- 1.0mm pitch, dual rows, 60 positions/row
- 120 strip signals can be connected to the connector
- Surface-mounted, can be soldered manually.
- No connectors needed on FEB: Golden fingers on both layers of FEB
- Each FEB contains two connectors, capable of up 240 strip channels (sTGC chamber can supply ~210 strips for each FEB).

Connector Pin Map

• 120 positions:14 for signal Ground(marked with 'G'), 106 for strips.

Golden fingers on FEB

Read-out Electronics Architecture

• 96 Front-End Boards

AL LABORATORY

- 16 Read Out Driver Module
- ROD modules are designed based on Standard VME 6U Crate(with DC power supply)

FEB Status

3D show of FEB

- FEB is shown on the right.
- Test the performance of the GTX link .
- The VMM configuration and readout.
- Check the power supply of the FEB.
- FEB weight:
 - shown<70g
 - cooling pad and cages (power) < 20g
 - data cable and power cable < 15g

•

FEB weight < 110g

- Test the performance of the GTX link at 4 Gbps by Xilinx IBERT core.
- The left picture shows the test platform, and the results are shown below.
- Test the GTX link with different length of the mini-SAS cable (0.5m, 1m, 2m, 3m), and the GTX link works steadily at all length.
- Power: 10V, 0.8A (4 VMMs configured and readout, GTX activated).

lame	ТХ	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern	RX Pattern	RX PLL Status	TX PLL Status
Ungrouped Links (0)											
% Link Group 0 (1)							Reset	PRBS 7-bit 🛛 🗸	PRBS 7-bit 🛛 🗸		
N Link 0	MGT_X0Y3/TX	MGT_X0Y3/RX	4.000 Gbps	4.544E12	0E0	2.2E-13	Reset	PRBS 7-bit 🗸 🗸 🗸	PRBS 7-bit 🗸 🗸	Locked	Locked

Completed work:

- 1. VMM configuration and readout. We can configure VMM in right mode, and readout the events data of test pulses from VMM.
- 2. Reformat events data. Add Cyclic Redundancy Check in each data packet, and scramble the data stream before transmitting.
- 3. Transmit data packets at 4 Gbps by GTX.
- 4. Slow data links(40Mbps) tests. Slow data links between FEB and ROD, include the clock signal, the trigger signal, and the commands.

Next to do:

- 1. Test VMM readout with the external test pulse.
- 2. Monitor the temperature sensor of VMM.
- 3. Power connector and Data connector will be replaced by vertical types in the next version of FEB.

VMM3 usage on FEB

configuration and readout

Architecture of VMM3

VMM3 configuration

- Global register: 192 bits
 - Charge polarity
 - Gain(0.5,1,3,4.5,6,9,12,16mV/fC)
 - Peaking Time(200,100,50,25ns)
 - Coarse threshold DAC
 - Test Pulse DAC

•

Global Configuration Reg										
	alusia di dinatanta 10-									
Spinger charge polarity	Sivs. enable ulreet output los									
sup. arsable at peak	surv.tristates analog outputs with token									
Summer outes analog monitor to the output	stor.enable auto reset									
✓ sbit.enable The buffer	start.enable fast recovery from bigh charge									
✓ sbip.emable HDG buffer	\square size. Enable fast recovery from high charge									
□ slg:leakage current disable	Ship:enable bipolar shape									
Channel Monitor V Ch50 V	srat:enable timing ramp at threshold									
	│									
Sfa:AKI enable iming at threshold ~										
Peaktime 50ns 🔻										
✓ sfm:enable dynamic discharge for AC coupling	🔽 slvstp: enable slvs 100ohm on cktp									
Gain 3.0 mV/fC 🔹	🗹 slvstk: enable slvs 100ohm on cktk									
sng:enable neighbor triggering	🗹 slvsdt: enable slvs 1000hm on ckdt									
TtP:threshold-to-peak 🔹	🗹 slvsart:enable slvs 100ohm on ckart									
🗌 sttt:enable direct-output logic	🗹 slvstki:enable slvs 100ohm on cktki									
🗌 ssh:enable sub-hysteresis discrimination	🗹 slvsena:enable slvs 100ohm on ckena									
TAC slope adjustment:60ns 🔹 🔻	🗹 slvs6b: enable slvs 100ohm on ck6b									
200 • • • • • • • • • • • • • • • • • •	🗌 sLOenaV:disable mixed signal functions when LO enabled									
SUD sat: coarse threshold DAC (10bit,	□ reset[1]:Hard reset □ reset[0]:Hard reset									
800 • Incha90:Test pulse DAG (10bit)	🗌 sLOena:enable LO core and clk									
supportest parse bac (10011)	0 🖨 lOoffset_i:LO BC offset (12bit)									
10bit ADC conversion time : 00 🔹 🔻	0 🔹 offset_i:Channel tagging BC offset (12bit)									
8bit ADC conversion time : 00 🔹	0 🛊 rollover_i:Channel tagging BC rollover (12bit)									
6bit ADC conversion time : 000 🔹	0 🖨 window_i:Size of trigger window (3bit)									
s8b:8bit ADC conversion mode	0 🛊 truncate_i:Max hits per LO (6bit)									
🗹 s6b:enable 6bit ADC	0 🛊 nskip_i:Number of LO triggers to skip on overflow									
🗹 s10b:enable high resolution ADCs	🗌 sLOcktest:enable clocks when LO core disabled(test)									
🗌 sdcks: enable dual clock edge serialized data	🗌 sLOckinv:invert BC clk									
🗌 sdcka: enable dual clock edge serialized ART	sLOdckinv:invert DCK									
🗌 sdck6b:enable dual clock edge serialized 6bit	nskipm_i:BCID skip									

VMM3 configuration

• Channel register: 24 bits/CH

- Threshold trimming
- Internal test pulse

Channel Configuration Reg

st:

- sc: large sensor capacitance mode([0]<200pF [1]>200pF)
- sl: leakage current disable([0=enable]) 300pF test capacitor([1=enable])
- multiplies test capacitor by 10 sh:

sd: trim threshold DAC, 1mV step sz10b: 10-bit ADC zero

mask enable([1=enable])

- sz8b: 8-bit ADC zero
- channel monitor mode([O=analog output] [trimmed threshold])
 - sz6b: 6-bit ADC zero

- VMM Configuration Process:
 - 192 + 24 * 64 = 1728 bits
 - configure VMM through SPI.
 - Each VMM can be configured individually.
 - 18*96-bits: 2*96-bits for global registers, 16*96-bits for channel registers.

VMM3 configuration GUI

洯 VMM3 Config

Chan	hannel Configuration Reg														
sc:	large sensor capacitance mode([0]<200pF [1]>200pF)	<pre>sm: mask enable([1=enable])</pre>													
sl:	leakage current disable([0=enable])	sd: trim threshold DAC, 1mV ste													
st:	300pF test capacitor([1=enable])	sz10b: 10-bit ADC zero													
sh:	multiplies test capacitor by 10	sz8b: 8-bit ADC zero													
sex:	channel monitor mode([O=analog output] [trimmed threshold])	sz6b: 6-bit ADC zero													
Ch	as all at the part of an 10k and and the so all at the	an any od aviob aveb													

Ch so sl st sh sm smx sd	sz10b	sz8b	sz6b	Ch	sc	sl	sl st		SM SM3	ı sd	sz10b	sz8b	sz6b
Ch 0 🗌 🗹 🗌 🗌 🚺 🌲	0 🜲	0 🜲	0 🜲	Ch32			\checkmark			0 💲	0 🛊	0 🛟	0 🜲
Ch 1	0 🜲	0 🜲	0 🜲	Ch33			\checkmark			0 🜲	0 🛊	0 🛊	0 🜲
Ch 2 🗌 🖉 🗌 💭 🚺 🗍	0 🜲	0 🜲	0 🜲	Ch34			\checkmark			0 🜲	0 🛊	0 🗘	0 🜲
Ch 3 🗌 🗹 🗌 🗌 🚺 🔹	0 🜲	0 🛟	0 🜲	Ch35			\checkmark			0 🛟	0 🛊	0 🛟	0 🜲
Ch 4 🗌 🗹 💭 💭 💭 🌲	0 🜲	0 🜲	0 🜲	Ch36			\checkmark			0 💲	0 🛊	0 🛟	0 🜲
Ch 5 🗌 🗹 🗌 🗌 🚺 🚺	0 🜲	0 🜲	0 🜲	Ch37			\checkmark			0 💲	0 🗘	0 🛟	0 🜲
Ch 6	0 🜲	0 🜲	0 🜲	Ch38			\checkmark			0 🜲	0 🗘	0 🛊	0 🜲
Ch 7 🗌 🗹 🗌 💭 💭 🌲	0 🜲	0 🜲	0 🜲	Ch39			\checkmark			0 💲	0 🛊	0 🛊	0 🜲
Ch 8 🗌 🗹 🗖 💭 💭 🗘 🌩	0 🜲	0 🛟	0 🛟	Ch40			\checkmark			0 🛟	0 🛊	0 🛟	0 🜲
Ch 9 🗌 🗹 🗌 🗌 🚺 🌲	0 🜲	0 🛟	0 🜲	Ch41			\checkmark			0 🛟	0 🛊	0 \$	0 🛟
Ch10	0 🜲	0 🗘	0 🜲	Ch42			\checkmark			0 🜲	0 🗘	0 🗘	0 🜲
Ch11	0 🜲	0 🜲	0 🜲	Ch43			\checkmark			0 🜲	0 拿	0 拿	0 🜲
Ch12	0 🜲	0 🜲	0 🜲	Ch44			\checkmark			0 🜲	0 🛊	0 🛊	0 🜲
Ch13 🗌 🗹 💭 💭 💭 🌲	0 🛟	0 🜲	0 🜲	Ch45			\checkmark			0 💲	0 🛊	0 🛟	0 🛟
Ch14	0 🜲	0 🜲	0 🜲	Ch46			\checkmark			0 💲	0 🛟	0 🛟	0 🛟
Ch15 🗌 🗹 💭 💭 💭 🌲	0 🜲	0 🜲	0 🜲	Ch47			\checkmark			0 💲	0 🗘	0 🛟	0 🜲
Ch16	0 🜲	0 🜲	0 🜲	Ch48			\checkmark			0 💲	0 🗘	0 💲	0 🜲
Ch17	0 🜲	0 🜲	0 🜲	Ch49			\checkmark			0 🜲	0 🛊	0 🛊	0 🜲
Ch18 🗌 🗹 🗖 💭 💭 🗘 🌲	0 🜲	0 🛟	0 🛟	Ch50			\checkmark			0 🛟	0 🛊	0 🛟	0 🜲
Ch19 🗌 🗹 💭 💭 💭 🌲	0 🜲	0 🛟	0 🜲	Ch51			\checkmark			0 🛟	0 🛊	0 🛟	0 🜲
Ch20 🗌 🗌 🖉 🗌 💭 🚺 🌲	0 🜲	0 🛟	0 🜲	Ch52			\checkmark			0 🜲	0 🛊	0 🛊	0 🜲
Ch21 🗌 🗹 💭 💭 💭 🌲	0 🜲	0 🜲	0 🜲	Ch53			\checkmark			0 🜲	0 🗘	0 🛊	0 🜲
Ch22 🗌 🗹 💭 💭 💭 🌲	0 🜲	0 🜲	0 🜲	Ch54			\checkmark			0 🜲	0 🛊	0 🛊	0 🜲
Ch23 🗌 🗹 💭 💭 💭 🌲	0 🜲	0 🜲	0 🜲	Ch55			\checkmark			0 🜲	0 🛊	0 🛟	0 🛊
Ch24 🗌 🗹 🗖 💭 💭 🌲	0 🜲	0 🛟	0 🜲	Ch56			\checkmark			0 🛟	0 🛊	0 🛟	0 🛊
Ch25 🗌 🗹 🗖 💭 💭 🌲	0 🜲	0 🛟	0 🜲	Ch57			\checkmark			0 🜲	0 🛊	0 🛊	0 🜲
Ch26 🗌 🗹 🗖 🗌 💭 🌲	0 🜲	0 🗘	0 🜲	Ch58			\checkmark			0 🜲	0	0 🛊	0 🜲
Ch27	0 🜲	0 🜲	0	Ch59			\checkmark			0 🌲	0 🛊	0 🛊	0 🜲
Ch28	0 🜲	0 🜲	0 🜲	Ch60			\checkmark			0 🜲	0 🛊	0 拿	0 🜲
Ch29 🗌 🗹 🗖 📄 🖉 🌲	0 🜲	0 🜲	0 🜲	Ch61			\checkmark			0 💲	0 🛊	0 🛟	0 🜲
Ch30 🗌 🗹 💭 💭 💭 🌲	0 🜲	0 🜲	0 🜲	Ch62			\checkmark			0 💲	0 🛊	0 🛟	0 🛟
Ch31	0 🜲	0	0	Ch63			\checkmark			0 🜲	0 🛊	0 🛊	0 🜲
Allo 🗌 🗹 🗌 🗌 🖉 🖨	0 🜲	0 🜲	0 🜲	All1			\checkmark			0 🜲	0 \$	0 拿	0 🜲

Clobal Configuration Reg													
Giobal Configuration Reg													
y sp:input charge polarity	✓ slvs:enable direct output IOs												
∟ sdp:disable at peak	sdrv:tristates analog outputs with token												
✓ sbmx:routes analog monitor to PDO output	stor:enable auto reset												
✓ sbft:enable TDO buffer	Sartienable AKT flag synchronization												
✓ sbfp:enable PDO buffer	srec:enable fast recovery from high charge												
⊻ sbfm:enable MO buffer	S32:skip Ch16-47 and make 15 and 48 neighbors												
slg:leakage current disable	∐ sbip∶enable bipolar shape												
Channel Monitor V Ch21 V	srat:enable timing ramp at threshold												
\Box sfa:ART enable Timing at threshold \sim	sfrst:enable fast reset at 6-b completion												
Peaktime 50ns \sim	✓ stlc:enable mild tail cancellation												
sfm:enable dynamic discharge for AC coupling	⊻ slvsbc: enable slvs 100ohm on ckbc												
Gain 3.0 mV/fC ~	⊻ slvstp: enable slvs 100ohm on cktp												
sng enable neighbor triggering	⊻ slvstk: enable slvs 100ohm on cktk												
TaB: church of data and	⊻ slvsdt: enable slvs 100ohm on ckdt												
Iti the eshold to peak V	⊻ sivsart:enable sivs 100ohm on ckart												
Sttt:enable direct-output logic	⊻ slvstki∶enable slvs 100ohm on cktki												
SSN:enable sub-hysteresis discrimination	✓ sivsena:enable sivs 100ohm on ckena												
TAC slope adjustment:60ns 🗸 🗸	✓ sivs6b: enable sivs 100ohm on ck6b												
400 \$ sdt:Coarse threshold DAC (10bit)	sUJenaV disable mixed signal functions when UJ enabled												
	reset[U]:Mard reset												
800 🗘 sdp90:Test pulse DAC (10bit)	sLUena:enable LU core and cik												
	U IUoffset_1:LU BL offset (12bit)												
10bit ADC conversion time : 00 ~	0 🕞 offset_i:Channel tagging BC offset (12bit)												
8bit ADC conversion time : 00 $$ $$ $$ $$	0 🖨 rollover_i:Channel tagging BC rollover (12bit)												
6bit ADC conversion time : 000 $\qquad \sim$	0 🚖 window_i:Size of trigger window (3bit)												
s8b:8bit ADC conversion mode	0 🖨 truncate_i:Max hits per LO (6bit)												
🗌 s6b:enable 6bit ADC	0 🖨 nskip_i:Number of LO triggers to skip on overflow												
☑ s10b:enable high resolution ADCs	sLOcktest:enable clocks when LO core disabled(test)												
🗌 sdoks: enable dual clock edge serialized data	sLOckinv:invert BC clk												
🗌 sdoka: enable dual clock edge serialized ART	sLOdokinv:invert DCK												
🗌 sdck6b:enable dual clock edge serialized 6bit	🗌 nskipm_i:BCID_skip												
0													
Uperation .													
● nFEB 0 ○ sFEB 0 ● VMM0 ○ VMM4	0 🗘 QuickMonitor FEB PDO Scan 🗌 Bypass Mode												
	STOC REP.												
O DLER I O ZLER I O AWWI O AWW2	Butter This VMM reserved												
○ pFEB 2 ○ sFEB 2 ○ VMM2 ○ VMM6	Load Config Data Chl + 1 Export Commands												
◯ pFEB 3 ◯ sFEB 3 ◯ VMM3 ◯ VMM7	Save Config Data Scan Chl Config VMM3												

Used for ATLAS FEB mass ĥ. inspection

• Can be transplanted to be used for STAR FEB test before shipment.

S2 Config / FEB Display

University of Science and Technology of China

A

2

中国総

VMM Mode: Non-ATLAS Continuous Mode.

VMM Data Format:

Each event data is 38 bits, contains 1 bit flag, 1 bit threshold, 6 bits channel ID, 10 bits PDO, 8 bits TDO, and 12 bits BCID.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
hit data	F	Ν		C	nan	# (6	5)					A	DC	(10))							TDC	(8))							В	CID) (1	2)				

ROD Status

ROD Architecture

- 6 DATA connectors compatible with 6 FEBs
- Xilinx Kintex-7 FPGA: XC7K325T-2FFG900I
- FEAST power modules
- 2 optical fiber SFP+ to communicate with STAR DAQ (1 for spare)
- ROD size:233*100mm
- TCD circuit for STAR DAQ connection.
- USB3.0 connector added for communication with PC(not necessary for STAR).

- LVPECL(from cable) \rightarrow LVTTL \rightarrow FPGA
- 120-ohm resistors kept but only one board needs to solder them
- Busy signal from FPGA will return to TCD board.

POWER

- 4 FEAST ASICs used:
 - Digital 3.3V: SFP+ Powering, SPI Flash, TCD, GPIO
 - DDR_1.5V(LDO): DDR powering
 - 0.75V(LDO):DDR reference voltage
 - Digital 1.0V: FPGA core voltage and MGT_AVCC
 - Digital 1.2V: MGT_AVTT
 - Digital 1.8V: FEB links

Board Status

- ROD boards will be back early August. Then 1-2 weeks for soldering.
- Firmware development ongoing:
 - Decode data packet; Descramble; CRC
 - 10G SFP+ code transplanting;
 - DDR3 code development

Adapter between FEB and Simulator Board

STGC Signal Simulator board

- 256 channels charge output, ~0.4pC
- Used as external test pulse source for FEB

0

Adapter board design

Connection

Thanks!