## sTGC cluster finder

Zhen Wang<br>Shandong University

## Outline

$>$ How to find the sTGC cluster
$>$ Simple start with low multiplicity events
$>$ Results
$>$ Summary and outlook

## How to find the sTGC cluster

1) Algorithm to find 1D clusters
2) Get the 1D hit position information
3) Combine 1D cluster from $X$ and $Y$ back into 2D

How to find the 1D cluster

1) Projection ADC distribution to $1 D$

## 1D Strip measurements

Module 1 yGroup 0


Module 1 yGroup 0


Strips that run along $y$ give $x$-position information

## How to find 1D cluster

How to find the 1D cluster

1) Projection ADC distribution to 1 D
2) Remove noise
3) Get the 1th order Derivative of 1D ADC distribution
4) find the key point :
start point of signal region (derivative $=0->$ derivative $>0$ )
end point of signal region (derivative $<0->$ derivative $=0$ )
maximum point(s) in signal region (derivative $>0->$ derivative $<0$ )
minimum point(s) in signal region (derivative $<0->$ derivative $>0$ )





## 1D cluster finder (high multiplicity)

Total hits $=200$, more overlap events
Module 2 yGroup 0
4) find the key point :
start point of signal region (derivative $=0->$ derivative $>0$ ) end point of signal region (derivative $<0->$ derivative $=0$ ) maximum point(s) in signal region (derivative $>0->$ derivative $<0$ ) minimum point(s) in signal region (derivative $<0->$ derivative $>0$ ) With high multiplicity, the minimum points become more important to split hits with similar $x(y)$ position.
( Maximum point + hits width ?)




## Cluster finder performance with low multiplicity events

1) Algorithm to find 1D clusters Total hits = 10
2) Get the 1D hit position information



## Combine the 1D hits to 2D hits



3 modules in both horizontal and Vertical direction. Combining the x and y information with different module. This part still need to be finalized.

Low multiplicity event

- ghost hits $\sim 0$, will be studied at high multiplicity events
- how to combine hits at group edge will be studied at high multiplicity events


## Summary and next to do

## Summary

$>$ Test the 1D cluster finder performance at low multiplicity

Next to do
$\Rightarrow$ Finalize the combine 1D hits to 2D hits part
$>$ Test the performance at high multiplicity event
>Add Time information and diagonal strip in cluster finder

## Reason of skip


start point of signal region (derivative $=0$-> derivative $>0$ )
These points have a additional condition:
For example : if bin 10 is a candidate of start point.
( bin10 derivative $=0 \& \&$ bin11 derivative $>0$ )

And bin content of bin 11, 12, 13 must larger than 0 , then bin10 become a start point. (Condition2)

The purpose of condition 2 is to move the noise in right bottom plot


## XY Strip Groups

## XY Strip groups




Vertical strips: project onto the $x$-axis to get signal on strip @ $x$ position.

