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|Forward-central dijet decorrelations pp → 2j|
AvH, Kutak, Kotko, Sapeta 2014
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|Forward-central dijet decorrelations pp → 2j|
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|Forward-central dijet decorrelations pp → 2j|
AvH, Kutak, Kotko, Sapeta 2014
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Hybrid factorization:

dσpp→X =

∫
dk2T

∫
dxA

∫
dxB

∑
b

Fg∗(xA, kT , µ) fb(xB, µ)dσ̂g∗b→X(xA, xB, kT , µ)

kµ1 = xAP
µ
A + kµT P2A = 0 k21 = k

2
T

kµ2 = xBP
µ
B P2B = 0 k22 = 0

xB � xA
∣∣~p1 + ~p2

∣∣ = ∣∣~kT ∣∣
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|Trijets in kT -factorization| Van Haevermaet, AvH, Kotko,
Kutak, Van Mechelen 2020
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pp→ 3j

Require two jets with
pseudorapidity

2 < |η| < 4.7

and a third one with

|η| < 2

∆φdijet is the angle between
the sum of the 2 hardest
jets, and the 3th jet.

Calculations performed with parton-level event generator KATIE (AvH 2016) and parton
shower Monte Carlo CASCADE (Jung et al. 2010), using TMDs from the parton-branching
method Hautmann et al, 2018, Bermudez Martinez et al. 2019.

Hardly any difference between and
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|High Energy Factorization| a.k.a. kT -factorization

Catani, Ciafaloni, Hautmann 1991 Collins, Ellis 1991

σh1,h2→QQ =

∫
d2k1⊥

dx1

x1
F(x1, k1⊥)d

2k2⊥
dx2

x2
F(x2, k1⊥) σ̂gg

(
m2

x1x2s
,
k1⊥

m
,
k2⊥

m

)
• reduces to collinear factorization for s� m2 � k2⊥, but holds al so for s� m2 ∼ k2⊥

• typically associated with small-x physics

• k⊥-dependent F imagined to satisfy BFKL-eqn, CCFM-eqn, . . . . . .

• allows for higher-order kinematical effects at leading order

• requires matrix elements with off-shell
initial-state partons with k2i = k

2
i⊥ < 0

k1 = x1p1 + k1⊥

k2 = x2p2 + k2⊥

• Can this be generalized to “arbitrary” processes,
with higher multiplicities in the final state?

• With well-defined gauge-invariant matrix elements?
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|KATIE| https://bitbucket.org/hameren/katie

• parton level event generator, like Alpgen, Helac, MadGraph, etc.

• arbitrary processes within the standard model (including effective Higgs-gluon coupling)
with several final-state particles.

• 0, 1, or 2 off-shell intial states.

• produces (partially un)weighted event files, for example in the LHEF format.

• requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids,
or with TMDlib.

• a calculation is steered by a single input file.

• employs an optimization stage in which the pre-samplers for all channels are optimized.

• during the generation stage several event files can be created in parallel.

• event files can be processed further by parton-shower program like CASCADE.

• (evaluation of) matrix elements now separately available, including C++ interface.

9997



|kT -dependent factorization with KATIE|

Hadron-scattering process Y with partonic processes y contributing to multi-jet final state

dσY(p1, p2;k3, . . . , k2+n) =
∑
y∈Y

∫
d4k1 Py1(k1)

∫
d4k2 Py2(k2)dσ̂y(k1, k2;k3, . . . , k2+n)

Collinear factorization:

Pyi(ki) =

∫
dxi

xi
fyi(xi, µ) δ

4(ki − xipi)

kT -dependent factorization factorization:

Pyi(ki) =

∫
d2kiT
π

∫
dxi

xi
Fyi(xi, |kiT |, µ) δ

4(ki − xipi − kiT)

Differential partonic cross section:

dσ̂y(k1, k2;k3, . . . , k2+n) = dΦY(k1, k2;k3, . . . , k2+n)ΘY(k3, . . . , k2+n)

× flux(k1, k2)× Sy |My(k1, . . . , k2+n)|
2

KATIE creates tree-level event files corresponding to dσY,
requires LHAPDF, TMDlib or grid files to evaluate fy and/or Fy.
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|kT -dependent factorization with KATIE|

eh-scattering process Y with partonic processes y contributing to multi-jet final state

dσY(p1, p2;k3, . . . , k3+n) =
∑
y∈Y

∫
d4k1 Py1(k1) dσ̂y(k1, k2;k3, . . . , k3+n)

Collinear factorization:

Pyi(ki) =

∫
dxi

xi
fyi(xi, µ) δ

4(ki − xipi)

kT -dependent factorization factorization:

Pyi(ki) =

∫
d2kiT
π

∫
dxi

xi
Fyi(xi, |kiT |, µ) δ

4(ki − xipi − kiT)

Differential partonic cross section:

dσ̂y(k1, k2;k3, . . . , k3+n) = dΦY(k1, k2;k3, . . . , k3+n)ΘY(k3, . . . , k3+n)

× flux(k1, k2)× Sy |My(k1, . . . , k3+n)|
2

KATIE creates tree-level event files corresponding to dσY,
requires LHAPDF, TMDlib or grid files to evaluate fy and/or Fy.
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|QCD evolution, dilute vs. dense|

A dilute system carries a few high-
x partons contributing to the hard
scattering.

A dense system carries many low-x
partons.

At high density, gluons are imag-
ined to undergo recombination,
and to saturate.

This is modeled with non-linear
evolution equations, involving ex-
plicit non-vanishing kT .

Saturation implies the turnover of
the gluon density, stopping it from
growing indefinitely for small x
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|ITMD Factorization| For forward dijet production
in dilute-dense hadronic collisions

Dominguez, Marquet, Xiao, Yuan 2011

McLerran, Venugopalan 1994, Iancu, Venugopalan 2003

Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015, Altinoluk, Boussarie, Kotko 2019

Glass

Color

Condensate

Hybrid High Energy Factorization

generalized TMD factorization

Collinear
improved TMD factorization

easy

easy

Model interpolating between hybrid High Energy Factorization and Generalized TMD
factorization and valid for kinematical regions with hard scale & kT & saturation scale.

Partonic cross section dσ̂
(i)
gb depends on color-structure i,

and is calculated with space-like initial-state gluons.

dσAB→X =

∫
dk2T

∫
dxA

∑
i

∫
dxB

∑
y

φ(i)
gy(xA, kT , µ) fy(xB, µ)dσ̂

(i)
gy→X(xA, xB, kT , µ)
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|ITMD Factorization|

ITMD formalism is obtained from the CGC formalism, by neglecting certain twist correc-
tions (so-called genuine twist as opposed to kinematic twist). Antinoluk, Boussarie, Kotko
2019

Comparison of ITMD and CGC for forward quark dijets shows that the first is a good
approximation of the second for reasonable large pT (much larger than Qs) of the final-
state jets Fujii, Marquet, Watanabe 2020.
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|ITMD Factorization| for 3 or more jets
Bury, Kotko, Kutak, 2019

Color decomposition of, for example, the amplitude Ma1a2i3i4
j3j4

for two gluons and two
quark-anti-quark pairs in terms of color factors and partial amplitudes Aσ:

M̃i1i2i3i4
j1j2j3j4

≡
(√
2Ta1

)i1
j1

(√
2Ta2

)i2
j2
Ma1a2i3i4

j3j4
=

∑
σ∈S4

δi1jσ(1)δ
i2
jσ(2)
δi3jσ(3)δ

i4
jσ(4)

Aσ

The sum over colors for the squared amplitude is facilitated by a color matrix Cτσ

Ma1a2i3i4
j3j4

M
∗a1a2j3j4

i3i4
= M̃i1i2i3i4

j1j2j3j4
M̃
∗j1j2j3j4
i1i2i3i4

=
∑
τ,σ

AτCτσA
∗
σ

Each element of the matrix Cτσ is a single power of Nc (Kanaki, Papadopoulos 2002).
The cross section formula for ITMD is obtained by inserting color correlators like

TMD1 × M̃i1i2i3i4
j1j2j3j4

M̃
∗j1j2j3j4
i1i2i3i4

⇒ 〈〈
Fj1i1 U

k2
i2
Uk3i3 U

k4
i4
Fk1l1 U

j2
i2
U
j3
i3
U
j4
i4

〉〉
M̃i1i2i3i4
j1j2j3j4

M̃∗l1l2l3l4k1k2k3k4

where the Ukl are certain Wilson line operators, depending on the external partons, and Fkl
the field strenght. This leads to a

TMD-valued color matrix Cτσ(x, kT)

This has been implemented in KATIE.
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|ITMD gluons|

Bury, AvH, Kutak,
Kotko 2020

• KS gluon (Kutak, Sapeta 2012) is the dipole-distribution as a solution to the BK
equation (Balitsky 1996, Kovchegov 1999) formulated in the momentum space with
corrections of higher order, and fitted to F2 data.

• ITMD gluons follow from the KS gluon
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|Saturation effects from forward jets| AvH, Kotko, Kutak,
Sapeta 2019

Study of saturation using dijet production in p-p and p-pB collisions.
Angle ∆ϕ between the jets is particularly sensitive to saturation effects.

Data points from ATLAS 2019. Arbitrary normalization and relative shift to to accentuate
the difference in shape between p-p and p-Pb.

Calculations where performed within ITMD factorization.
Besides saturation, the inclusion of resummed Sudakov logarithms are essential to reach
this accuracy, included here via event-reweighting.
Both KATIE and LxJet (http://nz42.ifj.edu.pl/~pkotko/LxJet.html) were used for
independent cross checks.
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|Saturation at EIC|

Probing Gluon Saturation through Dihadron Correlations at an Electron-Ion Collider
Zheng, Aschenauer, Lee, Xiao
Phys. Rev. D 89, 074037 (2014)

Multi-gluon correlations and evidence of saturation from dijet measurements at an Electron
Ion Collider
Mäntysaari, Mueller, Salazar, Schenke
Phys. Rev. Lett. 124, 112301 (2020)
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|Forward jets in DIS|

Try to study saturation like with forward jets in h-h scattering.

Need gluon as initial-state parton =⇒ consider dijets.

Need small xgluon =⇒ consider forward(backward?) jets.
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|Azimuthal angle at EIC energies|
Need observable sensitive to final state momentum inbalance, eg. the angle between the
electron and the jet pair.
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The shapes of the distribution are clearly different, for TMDs with different rates of satu-
ration included.

Angle between final-
state lepton and jets
studied previously by
H1 (2012), and in the
context of azimuthal
assymetries Jacobsson
PhD-thesis 1994.
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Thank you for your attention.


