DIS Event shape (1-jettiness) studies for EIC YR

Sookhyun Lee (UM, Ann Arbor)

EIC Jets & HF Working Group Meeting

July 20, 2020

In collaboration with Leticia Cunqueiro (ORNL) Peter Jacobs (LBNL) Henry Klest (SBU)

 $\tau_1 = \frac{2}{Q^2} \sum_{i \in X} \min\{q_B \cdot p_i, q_J \cdot p_i\}$

A global shape measuring degree to which final state is 1-jet (+ beam ISR jet) - like.

Motivation:

N³LL ressummed high precision prediction expected in theory; if similar precision achievable experimentally, can measure running of α_s down to low Q²

- Past presentations:
 - by Christopher Lee <u>https://indico.bnl.gov/event/8238/contributions/36464/attachments/27</u> <u>517/421 05/EICUG_2020_Apr_06.pdf</u>
 - by Leticia Cunqueiro <u>https://indico.bnl.gov/event/8494/contributions/37481/attachments/28</u> <u>026/43014/1-jettiness_at_the_EIC.pdf</u>
 1

3 versions of 1 jettiness at x=0.5, Q=50 GeV, E_p =275 GeV, E_e= 18 GeV (Truth)

 $au_1 a$: 'A'ligned with jet axis. $au_1 b$: 'B'reit frame. $au_1 c$: 'C'M frame. Distributions of constituent particles in $\tau - \theta$ space at x=0.5, Q=50 GeV, E_p = 275 GeV, E_e= 18 GeV (Truth)

Red: $\tau_{1 \text{ J}}$ Blue: $\tau_{1 \text{ B}}$

Considerations for YR detector requirements

- Oth order considerations are :
 - Kinematic reach
 - Statistics limited by luminosity \checkmark
 - Theoretical uncertainties: WIP by Daekyoung/Chris
- 1st order define performance criteria for observables
 - x & Q² resolutions \checkmark
 - τ_1 resolution \checkmark
 - Missing particle suppression factors \checkmark
- 2nd order distortions in tau measurements :
 - Default EIC smear
 - Hadronic calorimeter resolution: energy and position of hadrons
 - Particle identification, tracking
 - Modes of measurements
 - Exploration of unfolding to correct smearing due to various resolution factors

Theoretical precision in Q² vs. x phase space

From Chris's presentation in April (Updated predictions WIP)

Kinematic reach for EIC

Q² resolutions (EIC Smear)

• Event cuts: y > 0.1, Q² >25 GeV²

x resolutions (EIC Smear)

• Event cuts: y > 0.1, $Q^2 > 25 \text{ GeV}^2$

Summary & Plans

- Basic DIS kinematics studies for 1-jettiness measurements completed.
- Define key detector requirements to be able reach theoretical sweet spot in Q²-x phase space.
- Assess effects of detector imperfectness:
 - PID
 - Low momentum cutoff & tracking limitation
 - Explore different modes of measurment (track-only, track+EMCAL, track+EMCAL+HCAL)
 - Explore unfolding to correct smearing due to various resolution factors