Backward-angle u-Channel π^0 Production Update

Wenliang (Bill) Li on behalf of Justin Stevens, Garth Huber, **Bernard Pire***, Lech Szymanowski*, Kirill Semenov-Tian-Shansky*

23/July/2020

PR12-20-007 Submitted PAC 48

EIC $e+p \rightarrow e+p+\pi^0$ for 5 GeV e on 100 GeV p

5 GeV electron on 100 GeV proton

Previously

- 20-60% two photon efficiency are expected
- Question: would a different collision energy help with the measurement?
 - Choice #1: 10 GeV e on 100 GeV proton
 - Choice #2: 5 GeV e on 41 GeV proton
- Since we fix W=3.16 GeV (s=10 GeV²) Choice #2 is much better than

EIC $e+p \rightarrow e+p+\pi^0$ for 5 GeV e on 41 GeV p

						,							
Q^2 (GeV ²)	W (GeV)	$x_{\rm B}$	$ heta_{e'}$ (deg)	$\eta_{e'}$	$P_{e'}$ (GeV)	$\theta_{p'} \ ({ m deg})$	$\eta_{p'}$	$P_{p'}$ (GeV)	$ heta_{\pi^0}$ (deg)	η_{π^0}	P_{π^0} (GeV)	-t (GeV ²)	-u (GeV ²)
6.2	3.19		152	-1.39	5.31	-1.84	4.13	43.40	1.43	4.38	56.29	14.84	-0.37
7.0	3.19		150	-1.32	5.35	-1.92	4.09	45.50	1.43	4.38	54.12	16.19	-0.39
8.2	3.19		148	-1.24	5.40	-1.85	4.12	49.74	1.43	4.38	49.84	16.80	-0.42
9.3	3.19		146	-1.19	5.46	-1.92	4.09	51.90	1.43	4.38	47.60	18.19	-0.44
10.5	3.19		144	-1.12	5.52	-1.94	4.07	54.96	1.43	4.38	44.50	19.32	-0.47

5 GeV e on 100 GeV p

													1
Q^2	W	$x_{\rm B}$	$\theta_{e'}$	$\eta_{e'}$	$P_{e'}$	$\theta_{p'}$	$\eta_{p'}$	$P_{p'}$	$ heta_{\pi^0}$	η_{π^0}	P_{π^0}	-t	-u
(GeV^2)	(GeV)	2010	(deg)		(GeV)	(deg)		(GeV)	(deg)		(GeV)	(GeV^2)	(GeV^2)
6.1	3.15		152	-1.39	5.25	-6.54	2.86	17.69	1.43	4.38	23.05	14.67	-0.37
7.1	3.14		150	-1.32	5.29	-6.55	2.86	18.97	1.43	4.38	21.73	15.61	-0.40
8.1	3.14		148	-1.24	5.34	-6.67	2.84	19.96	1.43	4.38	20.69	16.83	-0.42
9.1	3.14		146	-1.19	5.39	-6.71	2.84	21.16	1.43	4.38	19.44	17.90	-0.44
10.4	3.19		144	-1.12	5.43	-7.72	2.70	19.95	1.43	4.38	20.61	21.29	-0.42
						-↓					_ ↑ ;		

5 GeV e on 41 GeV p

Much improved

Momentum too low!

EIC $e+p \rightarrow e+p+\pi^0$ for 5 GeV e on 41 GeV p

Conclusion:

- No double photon detection on the ZDC!
- Proton will be at a more optimal angle
- 5 GeV e on 100 GeV p is more optimal.
- The setting configuration of 10 GeV e on 100 GeV p is similar

In progress

- G4E simulation results will be available soon
 - Low energy forward going proton detection
 - Neutral particle PID on ZDC. (dE/dx vs momentum plot)
- LUND file submitted to Alex and Yulia for helping out with the magnet apertures
- Initial results from the generator are started to be loaded to the Yellow Report

Outline

- Last pre-full simulation feasibility update
- Answers to some questions:
 - Will photon reach ZDC and where?
 - Rough detection efficiency
 - Detector constrains
 - Physics background (to our best knowledge)
- Lund files for the simulation is ready to go

Photons at the ZDC (Before Pavia meeting)

 π^0 momentum vector

- - ZDC size 60 cm x 60 cm. Ο
 - Even 4cm x 4cm in block size would be sufficient Ο for π^0 :)
 - There is +-5 mrad Ο

From Pavia Meeting

cm radius circle at 32 meters from IR! much smaller than expected 60x60 cm² square!

What does this mean for the two photons?

U-channel Meson Production (After Pavia Meeting)

Slight shift in -u' will give us larger coverage.

 π^0 momentum vector

Impact to the efficiency

- Double photon efficiency for the nominal π^0 event is larger than 20%
- Detector (magnetic aperture) constrains:
 - Fixing center of the neutral particle at ZDC
 - Ensuring largest possible symmetrical acceptance

Physics background (to our current best knowledge)

- Double photon case:
 - Primary reaction: $e+p > e'+p' + \pi^0$
 - \circ ~ Ideal expected trigger: e'+p'+ 2 γ
 - Physics background: none
 - \circ ~ Less than ideal trigger: e'+2 γ
 - Background: $\Lambda n + \pi^0$
 - Single photon case:
 - Primary reaction: $e+p > e'+p' + \pi^0$
 - \circ ~ ldeal expected trigger: e'+p'+ γ
 - Physis background: DVCS, eta, Λ ->n+ π^{0}
 - \circ ~ Less than ideal trigger: e'+ γ
 - Background: many many possibility

We can use the double photon event to normalize the single photon events

Conclusion

• U-channel π^0 (2gamma) will be on ZDC at specific location and we conclude it is possible to reconstruct this reaction.

• Full simulation will provide further detail including realistic efficiency, PID, signal/background estimation, etc.

- Lund file for both pi0 and two-photon scenario are ready to go
 - For detector experts to study acceptance
 - PID study (myself)

Question and Discussion

- How ready is fast-smear and full simulation for the tagging detector to perform photon/neutron PID study?
- Small angle proton detection, complications?
- Backward π^0 is just the beginning
 - Study on u-channel η , ω , π^{+} is in the plan (not inclued in YR)
 - Our currently knowledge of *u*-channel physics in the DIS region almost none
 - Unknown W dependence (EIC possible)
 - Unknown x_B dependence (EIC + 12 GeV possible)
 - Unclear -t dependence (EIC possible, but required significant modification to ZDC, bigger ZDC)
 - L/T Separation possibility? (Need more study)
- More and more *u*-channel data will come out of 12 GeV, on all meson production channels
- Would be there a universality (*t*-channel and *u*-channel) effort in the EIC era?

Thank you

Advertisement:

- The first *u*-channel physics workshop will be held at JLab in September 21-22.
 - Event page: https://www.jlab.org/conference/BACKANGLE
 - Indico page: https://www.jlab.org/indico/event/375

Photons at the ZDC

Kinematics table

Q^2	W	$x_{\rm B}$	$\theta_{e'}$	$\eta_{e'}$	$P_{e'}$	$ heta_{p'}$	$\eta_{p'}$	$P_{p'}$	$ heta_{\pi^0}$	η_{π^0}	P_{π^0}	-t	-u
(GeV^2)	(GeV)		(deg)		(GeV)	(deg)		(GeV)	(deg)		(GeV)	(GeV^2)	(GeV^2)
6.2	3.19		152	-1.39	5.31	-1.84	4.13	43.40	1.43	4.38	56.29	14.84	-0.37
7.0	3.19		150	-1.32	5.35	-1.92	4.09	45.50	1.43	4.38	54.12	16.19	-0.39
8.2	3.19		148	-1.24	5.40	-1.85	4.12	49.74	1.43	4.38	49.84	16.80	-0.42
9.3	3.19		146	-1.19	5.46	-1.92	4.09	51.90	1.43	4.38	47.60	18.19	-0.44
10.5	3.19		144	-1.12	5.52	-1.94	4.07	54.96	1.43	4.38	44.50	19.32	-0.47

Validation of TDA or u-channel factorization scheme

- EIC L/T separation ability is unclear
- Initial phase to study TDA at EIC: studying scaling
 - Low hanging fruit
- Advance phase: Single Spin Asymmetry and Double spin Asymmetry

- Two Postulation: — \circ 1/ Q^8 scaling behavior \circ $\sigma_{\tau} > \sigma_{l}$, $\sigma_{l} \sim 0$ ———
- Verified with all meson production channel

Simplest case 1: pi0 at 50 mrad (along p incidence angle)

Q^2 (space-like) and q^2 (time-like) Scaling

Far-Forward hadron detection

G4BeamLine → GEANT4

- π^{0} acceptance into the foward tagging detector should be similar to recoiled neutron:
 - Maximum: 20 mrad cone down to 0 deg
- π^0 momentum ?
- Resolution needed to resolve the π⁰-> 2 gamma ?

Old slides from Charles Hyde

Backward-angle structure of Proton

Q² (GeV)

Higher momentum is better

- $Q^2 = 6.2 \text{ GeV}, \pi^0 \text{ momentum} = 56.29 \text{ GeV}$
- Minimum two photon separation: ~15 cm
- Separation distribution max: 16 cm

Photon study PID study (from neutron) in fast smear and and full EIC simulation

- Awaits for the physics TDA model/calculation from Bernard, Lech and Kirill
- Similar backward angle studies on
 - \circ η (planning)
 - $\circ \omega$ (in progress)
 - \circ π^+ (speculating)

Backward-angle structure of Proton

- Complete description of Nucleon
 - GPD = Hadron tomography of the proton
 - TDA = tomography of partonic distributions in the nucleon
 --> meson and vice versa transitions probed in the backward angle kinematics

 η decay on ZDC

- s=10 GeV², Q²=10 GeV², η momentum = 42GeV
- Impossible for ZDC with 60 cm x 60 cm size at 32 m
- Still worth studying as it contribute to single photon background
- Possibility for end-cap detector? Need to study, same of for ω

In this Update

- Kinematics changed to focus on $Q^2 < 10 \text{ GeV}^2$
- Corrected and adjusted
 - Proton incidence angle 50 mrad-> 25 mrad
 - Pi0 constrained to +-10 mrad from proton incidence angle
- Photon detection in ZDC
 - Position and angle expectation
- Question to experts and convenors

Question to experts and convenors

• Are there any plot to generate to demonstrate kinematics coverage?

• Plots to show detector constraints.

Backup

Kinematics Table

Q^2 (GeV ²)	W (GeV)	$x_{\rm B}$	$ heta_{e'}$ (deg)	$\eta_{e'}$	$P_{e'}$ (GeV)	$\theta_{p'}$ (deg)	$\eta_{p'}$	$P_{p'}$ (GeV)	$ heta_{\pi^0}$ (deg)	η_{π^0}	P_{π^0} (GeV)	-t (GeV ²)	-u (GeV ²)	
6.0 12.0	3.19 3.19													50 mrad
18.0 24.0	3.19 3.19		134	-0.86	5.91	-2.53	49.89	66.3	2.86	4.60	32.74	26.98	-0.55	
30.0 36.0	3.19 3.19													
~ 0						0						20.5.2		
Q^2 (GeV ²)	W (GeV)	$x_{\rm B}$	$\theta_{e'}$ (deg)	$\eta_{e'}$	$P_{e'}$ (GeV)	$\theta_{p'}$ (deg)	$\eta_{p'}$	$\begin{array}{c} P_{p'} \\ \text{(GeV)} \end{array}$	$ heta_{\pi^0}$ (deg)	η_{π^0}	P_{π^0} (GeV)	-t (GeV ²)	-u (GeV ²)	
$\frac{Q^2}{(\text{GeV}^2)}$	W (GeV) 3.19	x _B	$ heta_{e'} \ (\mathrm{deg})$	$\eta_{e'}$	$P_{e'}$ (GeV)	$\theta_{p'}$ (deg)	$\eta_{p'}$	$P_{p'}$ (GeV)	$ heta_{\pi^0}$ (deg)	η_{π^0}	P_{π^0} (GeV)	-t (GeV ²)	-u (GeV ²)	
$ \begin{array}{r} Q^2 \\ (GeV^2) \\ \hline 6.0 \\ 12.0 \end{array} $	W (GeV) 3.19 3.19	x _B	$ heta_{e'}$ (deg)	$\eta_{e'}$	P _{e'} (GeV)	$\theta_{p'}$ (deg)	$\eta_{p'}$	$P_{p'}$ (GeV)	$ heta_{\pi^0}$ (deg)	η_{π^0}	P_{π^0} (GeV)	-t (GeV ²)	-u (GeV ²)	35 mrad
$\begin{array}{c} Q^2 \\ (\text{GeV}^2) \\ \hline 6.0 \\ 12.0 \\ 18.0 \end{array}$	W (GeV) 3.19 3.19 3.19	$x_{\rm B}$	$\theta_{e'}$ (deg) 134	η _{e'} -0.86	P _{e'} (GeV) 5.91	$\theta_{p'}$ (deg) -3.02	η _{p'} 3.63	P _{p'} (GeV) 55.63	$ heta_{\pi^0}$ (deg) 2.00	η_{π^0} 4.05	$\begin{array}{c} P_{\pi^0} \\ \text{(GeV)} \end{array}$	-t(GeV ²) 25.92	-u (GeV ²) 0.50	35 mrad
$\begin{array}{c} Q^2 \\ (\text{GeV}^2) \\ \hline 6.0 \\ 12.0 \\ 18.0 \\ 24.0 \end{array}$	W (GeV) 3.19 3.19 3.19 3.19	x _B	$\theta_{e'}$ (deg) 134	η _{e'} -0.86	P _{e'} (GeV) 5.91	$\theta_{p'}$ (deg)	η _{p'} 3.63	P _{p'} (GeV) 55.63	$ heta_{\pi^0}$ (deg) 2.00	η_{π^0} 4.05	P_{π^0} (GeV) 43.45	-t(GeV ²) 25.92	-u (GeV ²) 0.50	35 mrad
$\begin{array}{c} Q^2 \\ (\text{GeV}^2) \\ \hline 6.0 \\ 12.0 \\ 18.0 \\ 24.0 \\ 30.0 \end{array}$	W (GeV) 3.19 3.19 3.19 3.19 3.19 3.19	x _B	$\theta_{e'}$ (deg)	η _{e'} -0.86	P _{e'} (GeV) 5.91	$\theta_{p'}$ (deg)	η _{p'} 3.63	P _{p'} (GeV) 55.63	$ heta_{\pi^0}$ (deg) 2.00	η_{π^0} 4.05	P_{π^0} (GeV) 43.45	-t (GeV ²) 25.92	-u (GeV ²)	35 mrad

In this Update

- Short information on the backward-angle (u-channal) meson production
- U-channel pi0 production in EIC
 - Where particles go?
 - Kinematics
 - Produced pi0 momentum distribution
- Our plan and timeline

Short update on the backward-angle π^0 Production Bill and Bernard on behalf of backward meson production group

- Bill merged the EIC exclusive charged pion production generator into a C++ coding platform
- Bill is now working on this platform to make it more general (by separating the physics section of the code and make it modular)
- The same platform could be used for other processes (such as backward-angle DVCS) in the EIC
- Justin Stevens will give an update on our progress at the Temple meeting in March
- Any question or interested in helping, contact Bill: billee@jlab.org

Simplest case: pi0 at 20 mrad

Simplest case: pi0 at 10 mrad

Simplest case 2: pi0 at 35 mrad (15 mrad from p incidence angle)

Q^2 (space-like) and q^2 (time-like) Scaling

Detecting a 20-50 GeV pi0

- At 20-50 GeV, π^{0} -> 2 gamma decay angle (between two photon) is 0.8-0.4 degree.
- Best way to detect π^0 at neutro $\sin \theta_{\max} = \frac{m_{\pi}}{2E_{\gamma}}$ we need to insert lead to slow down π^0 ? Resolution needed to distinguish pi0 from single photon DVCS events?
- Simulation is needed to answer these questions
- Some feedbacks and suggestions from experts:
 - Abhay: PHENIX central arm, 5 meters from IR. pi0->2photon separation at about 20 GeV. Our calorimeter granularity 2.7 cm square facing the IR.
 - Elke: In Star, ECal at 7m and separate pi0 up to 60 gev
 - Preshower to the calorimeter?

Far-Forward hadron detection

G4BeamLine → GEANT4

- π⁺ acceptance into the foward tagging detector should be similar path to proton:
 - Maximum: 10 mrad cone down to 0 deg
- The kinematics tables are coming.

Old slides from Charles Hyde