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What is streaming readout

Paradigm shift from traditional, triggered readout.
Two ways to de�ne it:

1. In an SRO system, there is no non-local, �xed-latency trigger signal that controls
the DAQ

2. In an SRO system, detector information are tagged/combined by time stamps

I believe that 2 follows from 1, and that it's more exact. Everything else follows, or

would be possible with a triggered readout.
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The semi-old ways
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Streaming readout anatomy

EXP FEEs Online Processing

I Convert all signals continuously (or self triggered)

I Almost always: Per channel zero suppression

I Maybe: Per detector noise suppression

I Maybe: Per channel / detector feature extraction (total energy, tracks, etc.)

I Maybe: High level feature extraction/physics extraction

I Maybe: Data selection based on extracted features←This is equivalent to a trigger!

I Maybe: Remove raw data

I Save data to long term storage

Most functionality is now software!
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General advantages of a SRO

I Reduce complexity in FEE

I Remove �trigger� module from already streaming electronics

I Relax hard timing constraints. Instead of latency, focus only on throughput.

I Bu�er memory in PCs is cheap. Could even use disk (LHCb)!

I Move complexity from hardware to software (and from hard-online to also-o�ine)

I More �exible, and more people can contribute. (Also gain do-overs)

I Remove bottleneck of event building.

I Can easily scale to large channel counts.
I Event building always �brittle�. What happens if FEE dies?

13



General advantages of a SRO

I Reduce complexity in FEE

I Remove �trigger� module from already streaming electronics

I Relax hard timing constraints. Instead of latency, focus only on throughput.

I Bu�er memory in PCs is cheap. Could even use disk (LHCb)!

I Move complexity from hardware to software (and from hard-online to also-o�ine)

I More �exible, and more people can contribute. (Also gain do-overs)

I Remove bottleneck of event building.

I Can easily scale to large channel counts.
I Event building always �brittle�. What happens if FEE dies?

14



General advantages of a SRO

I Reduce complexity in FEE

I Remove �trigger� module from already streaming electronics

I Relax hard timing constraints. Instead of latency, focus only on throughput.

I Bu�er memory in PCs is cheap. Could even use disk (LHCb)!

I Move complexity from hardware to software (and from hard-online to also-o�ine)

I More �exible, and more people can contribute. (Also gain do-overs)

I Remove bottleneck of event building.

I Can easily scale to large channel counts.
I Event building always �brittle�. What happens if FEE dies?

15



General advantages of a SRO

I Reduce complexity in FEE

I Remove �trigger� module from already streaming electronics

I Relax hard timing constraints. Instead of latency, focus only on throughput.

I Bu�er memory in PCs is cheap. Could even use disk (LHCb)!

I Move complexity from hardware to software (and from hard-online to also-o�ine)

I More �exible, and more people can contribute. (Also gain do-overs)

I Remove bottleneck of event building.

I Can easily scale to large channel counts.
I Event building always �brittle�. What happens if FEE dies?

16



Streaming readout continuum

min max
amount of online processing

CBM

LHC exps.

BDX

EIC?

I Save all data

I Lowest risk

I Maximum physics

I Highest rate

I Only keep high level data

I Highest risk

I Maximum physics/byte

I Generally: Can reach more physics than with a triggered system
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The software goal

We want to replace

run_exp ; process_raw; analyze ; write_paper

with

run_exp | process_raw | analyze | write_paper

...and everything right of run_exp be better non-blocking.
This task is somewhat orthogonal to SR (see HLT), but SR organically pulls in analysis
into DAQ.
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Software components

I A framework which can orchestrate the DAQ

I Device bring up, node bring-up, streaming connections
I resilient, highly performant, scalable
I data �ow management
I composable system

I (As universal as possible) protocols for data streams between components

I Data structures which are streaming, and HPC/accelerator compatible.

I The required �lters, data reducers, analyzers, writers, readers.

I This can potentially include everything up to the analysis

I Infrastructure for run monitoring.

I Also: MC which can produce streaming data.

Some of these things we have done before, some are newish.
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Real-time, near-line, o�ine

Reality strikes.
There are several reason, realtime analysis (that is, of data in �ight) might not be
possible.

I Analysis is not ready.

I Too CPU intensive. This can be attacked with better (or approximating)
algorithms, better use of accelerators.

I Latency sensitive: Cannot make use of compute not available right now. Federated
resources (tra�c), work queues, etc.

I Intrinsically: Some detector might need several loops over an extended set of data.

So we need to support �near online� (delays of minutes to days) and �o�ine� (delays of
weeks, months++)
Framework must support di�erent data sources.
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Challenges I: Social issues

I Compared to HEP, NP exps are often underfunded for computing aspects.

I And not enough people.

I This problem is inverse to the project size. NP has more small-scale exps than
HEP. There is a world beside EIC.
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Challenges II: Data, Events

Data amounts continue to grow.

I Despite SRO (See LHCb � SRO is used to maximize physics/byte)

I Because of SRO (see sPHENIX � we plan to record data we cannot trigger on!)

Main storage will likely be tape. Have to handle working set sensibly.

Streaming readout changes the type of data.

I Not event-id tagged, but time-tagged

I Event de�nition up to the analysis

I Di�erent way to think about things:

I Is imitating an �event builder� at an early stage bene�cial, or does it limit us?
I How to pump data through the analysis?
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Challenges III: Compute

Compute will be centralized / federalized

I Centralized to on-site farms, away from per experiment, and counting room

I Federalized to o�-site farms

Challenges:

I Orchestration

I Data storage. Tra�c can be expensive.

I Less control over compute infrastructure.

I Must make good use of available hardware. Heterogenous!
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Users or programmers?

Some people do analysis. Some do core programming (tracking, etc). Some do both.

Fraction of both larger for small exps. For larger exps, physicists become users.

I There is a big �black box� problem here.

Possibly con�icting goals: Make it easy for analysis people? Or make it easy to
contribute?

I DSL / high level �slow� language for analysis plumbing. Heavy lifting by libraries.

I Easier to start. Flexibel. More productive (You don't have to sell me on
python)

I But additional barrier to start digging into the libraries.

I Jupyter / AaaS / docker images

I Again, easier to start. Until you hit a wall.
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Hic sunt dracones

The following are some devil's advocate / discussion stimulating thoughts.
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Other thoughts: EIC will come in 10 years

I Infrastructure-level software must be available earlier (no �leaps� after that)

I 10 years ago:

I I �nished my PhD!

I No TensorFlow (�rst release 2015)
I No Jupyter (also 2015. IPython 2001!)
I Windows 7, Linux kernel 2.6.??
I GO released 2009, Rust in 2015
I CUDA 3.0 (now 11.1)
I Python 3.1.2 (anybody here still using 2.7?)
I ROOT 5.26, Geant 4.9.4
I 14 qubits (in 2011. We are now at 53)
I Aggregated top 10 of TOP500: 12.6 PFlop/s, 3 with GPU, (Today: just

below 1 EFlop/s, 6+1)

I Be ready for new things. Do not rely on them.
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Other thoughts: Languages I
Close to hardware, C, C++ and things like System-C will probably be widely dominant.
I This is where much activitiy will be done early.
I Performance, closeness to hardware. Kernel.
I Rust might be a player, but not enough people know it.

Performance-critical infrastructure libs likely
in C/C++.
True even for new accelerator/compute
hardware. OpenCL, CUDA all C-like.
Some stu� will be in Fortran.

(from arxiv:2009.11295)
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Other thoughts: Languages II

I despise CINT. I hate ROOT macros. I hate the bad behaviors ROOT macros have
taught to generations of programmers.

But.
It is a rather straight forward transition from using ROOT GUI, ROOT command line
interface, to ROOT macros, to C++ programs using ROOT.
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All documentation is bad

It really is.

Multiple reasons:

I Nobody likes to write documentation. Doxygen is enough, right?

I Most code is written by physicists. Documentation is time/resource intensive. And
hard to include on a grant application.

I The best documentation can only express what the author thinks the code does.
Not what the code does.

Only code speaks the truth.
I regularly read ROOT/Geant4 source code to identify what I'm doing wrong (and
sometimes what they are doing wrong).
Consequence: Make it easy to explore the code.
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