

 A High-Granularity Timing Detector for the Phase-II upgrade of the
 ATLAS Detector system

C.Agapopoulou on behalf of the ATLAS Lar-HGTD group

2017 IEEE Nuclear Science Symposium and Medical Imaging Conference 24th Symposium on Room Temperature X- and Gamma-Ray Detectors

Outline

•The High Luminosity LHC

•Motivation for a High Granularity Timing Detector

Detector Overview

Sensor Technology and Testing

• Electronics

Conclusions

The High Luminosity LHC

•increase in instantaneous luminosity from 10³⁴ to 7.5x10³⁴ cm⁻² s⁻¹

- •Increasing the integrated luminosity from 100 to 4000 fb⁻¹
- •Scheduled to start at 2026
- •Main challenge of HL-LHC will be **pile-up** interactions

- •Pile-up: all interactions happening around the interaction of interest
 - Run 2 (now) : 30 PU/event
 - HL-LHC:<µ>=200!

Pile-up particles contaminate all physics objects, degrading the performance of the current detectors...

Time information is completely orthogonal to space information

- Pile-up mitigation by rejecting out-of-time tracks
- Improvements in: jet reconstruction, electron isolation, b-tagging and MET, Primary Vertex ID and track-to-vertex association
- HGTD can also be used as a luminometer:
 - High granularity → good linearity between n. of hits and n. of interactions

At HL-LHC: vertex spread in time ~ 180ps Time resolution of 30 ps can greatly help disentangle merged-inspace vertices

Z0 resolution of ITk as a function of η : for $|\eta| > 2.5$ η resolution increasing above the average vertex density (1.6vertex/mm).

IEEE-ATLANTA 2017

Detector Overview

HGTD will be placed in the **forward region**, between the **Inner Tracker** and the end-cap **EM Calorimeter** and will include 4 Layers per side:

- **Time resolution: 30ps/mip** (60ps/mip/layer)
- Granularity (<10% Occu): 1.3x1.3mm²

- **Pseudorapidity** coverage: 2.4<|η|<4 ٠
- **Radial extension:** R=110-1100mm (120-640mm • active area)
- **Position in z**: 3420<z<3545mm (50mm of moderator + Δz =75mm HGTD)

After ½HL-LHC, fluence @ inner-radius region about 4x10¹⁵ n_{eq}/cm² and TID of 4MGy

 \rightarrow Replacement of pads planned for R<300mm

Detector Overview

Sensor Material: **Si** - radiation hard, compact, sufficient time resolution, 1.3x1.3mm² granularity achievable

C.Agapopoulou – LAL Orsay

Sensor Technology: Low Gain Avalanche Detectors

LGAD: n-on-p Si detector with extra doped p-layer:

- $\,\circ\,$ The doped layer causes internal amplification \rightarrow x20 gain
- Increases S/N w.r.t external amplifiers

Manufacturers: CNM , FBK and HPK Sensors produced in single pads and arrays

Centro Nacional de Microelectrónica

Sensor dimensions that optimize the time resolution:

- Thin sensors (50 μ m) \rightarrow higher slew rate and minimum Landau contributions
- \circ Small area \rightarrow minimizes the detector capacitance

IEEE-ATLANTA 2017

Sensor Testing

•Sensor characterization in lab probe stations (laser, β-source measurements)

- Testbeam measurements to estimate performance in more realistic conditions
 - August/October/November 2016 and June/July/August/September 2017 @ Cern, lines H6A and H6B of SPS with 120GeV pions

Results Before Irradiation:

- Gain = Charge in LGAD / Charge in p-n diode without amplification layer
 - increases as a function of Vbias and for lower T
- •Time resolution reaches a 25ps plateau for gain>20
 - Operation at g=20 meets the timing requirements

Gain

ember

Nov

H6A

line

201

Sensor Performance After Irradiation

Sensors were irradiated by neutrons at the JSI research reactor in Ljubljana up to $6\times10^{15} n_{eq} / cm^2$ fluence •Reduction of gain because dopants are removed \rightarrow need to operate at higher V_{bias} •Increase of leakage current \rightarrow need to operate at T=-20-30 C •electrically active defects in the bulk \rightarrow high fields in the bulk

Time resolution worsened due to the loss of gain

Sensors irradiated up to various fluences –higher V_{bias} needed

HGTD Front End Electronics

Convert the LGAD **signal** into a **time measurement** integrated into the 225 channel - 1x1cm² ALTIROC ASIC.

Each channel of the ASIC contains:

- Preamplifier that shapes the LGAD signal
- **Discriminator** for a **TOT** (=**T**ime **O**ver **T**hreshold pulse width above threshold)
- **Time-to-Digital Converter (TDC):** digitization of the TOA and TOT measurement
- Local FIFO memory : stores information until trigger signal

Contributions of the electronics to the time resolution:

$$\sigma_{elec}^2 = \sigma_{TimeWalk}^2 + \sigma_{jitter}^2 + \sigma_{TDC}^2$$

•TimeWalk: large signals cross threshold faster than small ones biasing the time measurement \rightarrow can be corrected with a TOT measurement (offline) Expecting <10ps contribution.

•Jitter: Noise contribution to the signal $-\sigma_{jitter} = N/(\frac{dV}{dt})$. Minimized for high slew rate and small detector capacitance.

- TDC error due to the TDC binning = 20ps . $\sigma_{TDC} = 20 ps/\sqrt{12}$

First Measurements with the ALTIROCO

ALTIROC-0 prototype was designed by Omega – 7 boards received in March 2017

- 8 Channel chip with preamplifier + TOT
- No TDC \rightarrow test analog characteristics

Prototype tested *@Omega Testbench* using a ps generator, without sensors

First Measurements with the ALTIROCO

Prototype also tested *@Cern Testbeam line H6B – September 2017* with a 2x2 un-irradiated bump-bonded sensor array.

Time resolution as a function of the preamplifier pole capacitance:

- Pole capacitance=adjusts the preamplifier rise time
- Best time resolution achieved for $C_p = 0 \rightarrow 48ps$
- Testbeam results show *preamplifier slower than expected*

Conclusions

•The HGTD is a timing detector that can significantly improve the reconstruction of all physics objects and the selection of events of interest by **mitigating pile-up interactions**

•Its requirements to be radiation hard, compact and highly granular are well met with **Si sensors**, while the **LGAD technology** meets the time resolution requirements

• Sensor tests have proven that a <30ps time resolution can be achieved pre-radiation

•First prototype of the electronics ASIC, **ALTIROCO** has been fabricated, integrating only 8 channels with the analog parts of the electronic design:

So far, tests of the preamplifier and TOT, with pulse generator @ testbench and bump-bonded sensors @ testbeam

• Next iteration: improved preamplifier, include TDC and local FIFO memory

Results preliminary but very promising – 30ps time resolution achievable!

Backup Slides

p_T weighted 2D distribution of the time and z position of tracks from a VBF Higgs to invisible event with on average additional 200 pileup interactions
Merged tracks in z can be disentangled using time information!

Local pile-up vertex density comparison between Run 2 and HL-LHC. The density is calculated as the number of truth vertices in a +- 3mm range around the signal vertex.

Efficiency for pile-up jets \sqrt{s} =14 TeV, < μ > =200 **ATLAS** Simulation Preliminary Inclined Barrel σ₇ = 50mm PowhegPythia tt 10^{-1} 2.4<|nu|<3.8 Efficiency for PU jets as a function of HS jet efficiency for HS jets with $20 < p_T^{jet} < 40 \text{GeV}$. R_{pT} jet variable to 10⁻² distinguish between PU and HS jets. ITk The selection efficiency for jets improves by using track ---- $ITk + HGTD, \sigma(t)=30 ps$ time selection provided by a 30ps resolution HGTD! 10^{-3} ---- Tracks from hard scattering-0.75 0.65 0.8 0.85 0.9 0.95 0.6 0.7 Efficiency for hard-scatter jets $R_{pT} = \frac{\sum_{k} p_T^{trck}(PV_0)}{\dots}$.5 for HS jets ,~0 for PU

- •Time information is completely orthogonal to space information
 - Pile-up mitigation by rejecting out-of-time tracks
 - Improvements in: jet reconstruction, electron isolation, b-tagging and MET
 - Also in: Primary Vertex ID and track-to-vertex association!
 - HGTD can also be used as a luminometer:
 - Sampling n.of hits before triggers
 - High granularity \rightarrow good linearity between n. of hits and n. of interactions
 - Time information before and after nominal interaction can help study afterglow

Detector Overview

Sensor Testing

I-V curves of un-irradiated sensors with different Aver doping dose. Sensors with high dose exhibit lower diffe breakdown Voltage due to higher internal field

Average single-pad un-irradiated sensors with different doping doses and preamplifiers

Sensor Testing

Gain increases as a function of $V_{\mbox{\tiny bias}}$ and doping concentration.

C.Agapopoulou – LAL Orsay

250000

Sensors After Irradiation

At high fluence, part of multiplication happens at the bulk of the LGAD, due to high fields induced by defects \rightarrow rise time decreases

Electronics for the HGTD

IEEE-ATLANTA 2017

Contributions of the electronics to the time resolution: Front End Electronics: convert the LGAD signal into a time measurement integrated into the 225 channel - 1x1cm² ALTIROC ASIC. Each channel of the $\sigma_{elec}^2 = \sigma_{TimeWalk}^2 + \sigma_{jitter}^2 + \sigma_{TDC}^2$ **ASIC** contains: •TimeWalk: large signals cross threshold faster than small 2 Time-to-Digital Converters (TDC): digitization of the TOT and CFD ones biasing the time measurement \rightarrow can be corrected measurements. The TDC has 2 Vernier Lines, one 'slow' with a 135ps delay with (1) a TOT measurement (offline) or (2) a CFD (online) that receives the TOA and a 'fast' one with 115ps delay that receives the measurement. Expecting **<10ps** contribution. end of measurement window. The time needed for the fast signal to surpass the slow one corresponds to the time measurement with a bin of •Jitter: Noise contribution to the signal – $\sigma_{jitter} = N/(\frac{dv}{dt})$. 135-115=20ps. Minimized for high slew rate and small detector capacitance. Time-to-Digital Converter (TDC) • **TDC** error due to the TDC binning = 20ps . $\sigma_{TDC} =$ End of 115ps 115ps 115ps F128 $20ps/\sqrt{12}$ measurement ASIC READOUT CHANNEL OF ONE CELL Lumi hit<i> TOA TOA START 8 bit for cell position 135ps Hit Flag TOT/Arming Discri O128 O128 TOT Local FOT (TOE) Time-to-l l Converter Time measurement (TOA, TOE) FIFO (TDC) = Offline Data Out Vth 17x400 Range = 10 ns Bin=40 ps Bin128 Preamp Bin2 Bin3 Rin4 WR = 40 MHz24 bits @ L1 (1 MHz) 16 bits RD = 1 MHzTOA Time-to-Digital-Converter (TDC) One line 24 Mb/s per channel Range = 2.5 ns Bin = 20 nsCFD Discri CFD Delay Fraction

C.Agapopoulou – LAL Orsay

Jitter optimized when preamplifier rise time = LGAD drift time

$$\sigma_{t}^{J} = \frac{N}{\frac{dV}{dt}} = \frac{N}{\frac{S}{\sqrt{t_{r_{a}}^{2} + t_{d}^{2}}}} = \frac{\sqrt{t_{r_{a}}^{2} + t_{d}^{2}}}{\frac{S}{N}} = \alpha \frac{\sqrt{t_{r_{a}}^{2} + t_{d}^{2}}}{\sqrt{\frac{g_{m}}{4kT\Gamma}} \frac{Q_{in}}{C_{d}} \sqrt{t_{r_{a}}}} = \alpha \frac{C_{d}}{Q_{in}} \sqrt{\frac{4kT\Gamma}{g_{m}}} \frac{\sqrt{t_{r_{a}}^{2} + t_{d}^{2}}}{\sqrt{t_{r_{a}}}}$$
Optimum value: $t_{r_{a}} = t_{d}$

$$\sigma_{t}^{J} \approx \alpha \frac{C_{d}}{Q_{in}} \sqrt{\frac{4kT\Gamma}{g_{m}}} \sqrt{t_{d}}$$

225-Channel ASIC conceptual design

C.Agapopoulou – LAL Orsay

Data Transfer to Offline Electronics

- Transfer with 320/640/1280Mbps e-links (depending on ASIC position)
- Only channels with hits are transmitted to minimize the readout amount (and power consumption?)
 - Average n. of readout cells radius dependent ~30 hits for inner radius.
- <Hitchannels> x 24 bits (7bits TOA, 9bits TOT, 8 bits pixel position)
- FIFO memory averages the rates to "fit" in the LpGBT entries

30 30 ZS Average # Cells

20

15

10

500 600

Stave FLEX

റക്ക

500

400

300

200

100

LGAD

Bump bonding

ASIC

100

200

HV Wire bonding

300

400