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 Motivation & Goals 

 Search for and investigation of new symmetries and conservation laws 

which govern  physics at small scales.  

 Search for signatures of phase transitions in nuclear matter exploiting 

scaling properties in suitable representation of data.    

 Systematic analysis of  inclusive spectra in p+p, p+A and A+A 

collisions  to search for general features of  hadron structure,  

constituent interactions, and fragmentation processes over a wide scale 

range (RHIC, Tevatron, LHC). 

 Development of a unified approach for the description of  particle 

production reflecting the principles of self-similarity, fractality, and 

locality of  hadron interactions at the constituent level. 
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Principles & Symmetries 

 Principles are reflected as regularities in measurable observables and 

      can be usually expressed as scaling in a suitable representation of data. 
  z-Scaling of differential cross sections of inclusive particle production  
       in p+p, p+A and A+A is used as a tool to search for and study of principles 
       and symmetries that reflect properties of hadron interactions at constituent level.  

 z-Scaling is based on the principles of self-similarity, fractality, and locality.  

There exists a symmetry inherent to them: 

Symmetry with respect to structural degrees of freedom - structural relativity.  

 "Fundamental symmetry principles dictate the basic laws of physics,  

  control the structure of matter and  define the fundamental forces in nature."  

  Leon M. Lederman 

 “…for every conservation law there must be a continuous  symmetry....”  

  Emmy Nöether 

  Discrete (C,P,T,..) and continuous symmetries correspond to fundamental 

  principles (gauge, special, general and scale relativity, …)  and conservation 

  laws (charge,…. ) and vice versa. 
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Self-similarity in inclusive reactions 

Differential cross section Ed3σ/dp3 for production of an inclusive particle  

in the process M1+M2 → m+X depends on 
                            - reaction characteristics (A1, A2, P1, P2) 
                            - particle characteristics (m, p, ) 
                  - structural and dynamical characteristics (δ,ε, dN/dη,…) 

 We search for a solution ψ(z) ~ Ed3σ/dp3 that would depend on 

adequate, physically meaningful, but still simple  

self-similarity variable z in a universal way. 

 The assumption of self-similarity of hadron interactions at a constituent level  

transforms to the requirement of universal description of inclusive spectra  

      by a scaling function ψ(z). 

 

 It should be achieved  by grouping some characteristics of the inclusive reaction 

into a suitable variable z. 
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Type I  (Dimensional analysis) 

There are dimensional quantities F, {ai }  

Self-similarity variables Pj  are expressed via {ai }  

Self-similarity functions Ф(Pj)... 

G.I. Barenblatt (1978)  Self-similarity types 

Type II  (Intermediate asymptotics) 

If  (P) does not converge but has power asymptotic for extreme  

then self-similar solution Ф can be expressed via    iΔ

0 i{Π / Π }
0 i 1{ ,Π } P N

i

V.S. Stavinsky (1972)             Cumulative particle production    

                                                      

Self-similarity variables:                                                      ,  cumulative numbers        
   
Self-similarity functions:   Ф = exp (-Π/const) 
 

                           Universality is broken by power asymptotic at high pT  !!!  

2

0 1 1 2 2 1,2 1,2 1,2( ) / , 1P   P  Nx P x P m x x

3 3F Ed σ / d p , α {P,p, s}i 

A.M. Baldin (1998) 

Hypothesis of self-similarity in Relativistic Nuclear Physics:   

... search for (            ,..)  …parameters  i  should be found from experiment.   iΔ

0 iΠ / Π
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 -1  resolution at which the constituent sub-process   

           can be singled out of the inclusive reaction 
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Self-similarity of II type & variable z  

1 2 ε εδ δ

1 2 a bΩ (1-x ) (1-x ) (1-y ) (1-y )a b

Model parameters (fractal dimensions): 
       1,2  - structure of  M1, M2 
       εa, εb  - fragmentation processes 

  relative number of  constituent configurations  

        containing the sub-process defined by {x1, x2, ya, yb}  

1z if       ( )

 z  - self-similarity variable of II type 

     - expressed via momentum fractions   

     - fractal measure 

Fractal property of  z: 


 

1/2s
 z

i 

Momentum fractions {x1, x2, ya, yb} 

define a constituent sub-process  

2
0 1 1 2 2 Nx P x P m( ) /P   
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Locality & Minimal resolution Ω-1    

Fractal measure z 

  1,2, εa, εb - fractal dimensions 

Collisions of hadrons and nuclei are expressed  
 via interactions of their constituents 

  Constituent sub-processes  

  (x1P1+x2P2 –p/ya)
2 = MX

2  

 Kinematic constraint (*)   Recoil mass 

Wmax – max. relative No. of configurations that can lead to production of ma & mb 

( ) ( )1 2 a b ch 0 1 2 a b

cW x ,x ,y ,y = (dN / dη | ) Ω x ,x ,y ,y

 (x1M1) + (x2M2 ) → (ma/ya) + (x1M1+x2M2+mb /yb)  

 MX= x1M1+x2M2+mb/yb 

1 2

1 2(1 ) (1 ) (1 ) (1 )a b

a bx x y y     
  

Microscopic features of constituent sub-processes are given in terms of {x1, x2, ya, yb}  
obtained from minimal resolution  Ω-1 with the constraint (*).  

1/2

max

s
z =

W


0

maxmax

c

ch
W dN /dη Ω( ) 

8 

  c  - “specific heat” 

2/1

s  – transverse kinetic energy consumed on production of ma & mb 
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Scale transformation of z & ψ(z) 

W0 - absolute No. of configurations of the system 

         (drops out of the z-scaling) 

W0 - depends on type (F) of the inclusive particle 

-1

F Fz α z ψ α ψ   

Scaling functions for different hadrons  

collapse to a single curve  

using transformations with suitable aF  

aF ≡ W0(F)/W0()  

0

ψ(z)dz = 1





Scale transformation preserves 

 the normalization  

Scaling variable Scaling function 

0 0z = z / W ψ (z ) = W ψ(z)   

1/2

max

s
z =

W



inel

1 d
ψ(z) =

Nσ dz



Scale transformation with W0  

Scale transformation with αF  

9 

3
-1

3

inel

π d σ
ψ(z) = J E

(dN/dη) σ d p

J – Jacobian {z,h}/{pT
2,y} 

ψ(z) in terms of measurable quantities 
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  z-Scaling in p+p collisions at RHIC  

p  p  

s =20-500 GeV  
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z-Scaling of identified hadrons in p+p at RHIC 

KS , K
-
, K*, , Λ, , Ω, Σ*, Λ* 

0  , K
-
 p, Λ 
_ 

 FNAL & ISR 

 PRD 19 (1979) 764 

 NPB 100 (1975) 237 

 NPB 106 (1976) 1 

 PLB 64 (1976) 111 

 NPB 116 (1976) 77 

 NPB 56 (1973) 333 

 PRD 40 (1989) 2777 

STAR 

PRL 97 (2006) 132301 

PLB 612 (2005) 181 

PRC 71 (2005) 064902 

PRC 75 (2007) 064901 

PRL 108 (2012) 072302 

PLB 616 (2005) 8 

PLB 637 (2006) 161 

PHENIX 

PRD 83 (2011) 052004 

PRC 90 (2014) 054905 

  Energy & angular independence 

  Flavor independence  

  Saturation for z < 0.1 
  Power law y(z)z- for high z > 4 
  Fractal dimensions δ = 0.5,  F ≡ a= b 
  “Specific heat” c = 0.25 

 Int. J. Mod. Phys. A 32, 1750029 (2017) 

“Collapse” of data points onto a single curve 
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Self-similarity of strangeness production in p+p 

Momentum fraction Recoil mass Energy loss   ΔE/E~(1-ya) 

Constituent level of particle production in terms of  

KS , K
-
, K*, , Λ, , Ω, Σ*, Λ* 

0 

The more strangeness,  
the larger energy loss   

The more strangeness,  
the larger recoil mass 

The more strangeness,  
the larger momentum fraction  

ΣΞΩ εεε Σ

X

Ξ

X

Ω

X MMM 
Σ

1

Ξ

1

Ω

1 xxx 

 Self-similarity dictates  the properties of constituent sub-processes.  

Meson

1

Baryon

1 xx  Meson

X

Baryon

X MM  MesonBaryon εε 
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DØ CDF 

Main Injector 

 & Recycler 

Tevatron p  

p  

FNAL 

SPS 

LHC 

CERN 

  z-Scaling at the Tevatron and LHC  

ICHEP 2020, Prague, July 29, 2020 

p  p  

s =630-1960 GeV  

p  p  

s =900-14000 GeV  

¯ 
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Self-similarity of top quark production at the Tevatron & LHC 

  Energy independence of  y(z)   

  Flavor independence  of  y(z) 

  Saturation of  y(z) for  or z < 0.1 

  Fractal dimensions  δ = 0.5,   εtop = 0 

   “Specific heat”  c = 0.25 

LHC & Tevatron data  

confirm self-similarity  

 of top quark production in pp & pp 

“Collapse” of data points onto a single curve 

 – 
  J. Mod. Phys. 32, 815 (2012) 

  ISMD’16, Jeju Island, South Korea, 2016  
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CMS  
ATLAS 
ALICE 

DØ & CDF 

z-pT plot  

   Energy  √s = 8 TeV  up to the momentum  pT   2.4 TeV/c  and scale  ~ 810-5 fm 

Self-similarity of jet production at the Tevatron and LHC 

DØ & CDF 

CMS  
ATLAS 
ALICE 

z-scaling Jet spectra  

New test of z-scaling at LHC 

 Structural phenomena         constituent  substructure,… 
 Self-similarity at small scales        fractal topology of momentum space,… 

  M.Tokarev, T.Dedovich, I.Z. 
  Int.J.Mod.Phys.A15 (2000) 3495 
  Int.J.Mod.Phys.A27 (2012)1250115 Phys. Part. Nucl. Lett. 51, 141 (2020) 
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Properties of scaling function y (z) in p+p collisions 

  Energy independence of  y(z) (s1/2 > 20 GeV) 

  Angular independence of  y(z) (cms=30-900) 

  Multiplicity independence of  y(z) (dNch/dh=1.5-26) 

  Saturation of  y(z) at low z (z < 0.1) 

  Power law, y(z) ~z-β, at high z (z > 4) 

  Flavor independence of  y(z) (π, K,φ,Λ,..,D,J/ψ,B,,…, top) 

I. Z. and M.V. Tokarev, Phys. Rev. D 75, 094008 (2007) 

I.Z. and M.V. Tokarev, Int. J. Mod. Phys. A 24, 1417 (2009) 

M.V. Tokarev and I. Z., Int. J. Mod. Phys. A 32, 1750029 (2017) 

M.V. Tokarev, A.O. Kechechyan and I. Z., Nucl. Phys. A 993, 121646 (2020) 

M.V. Tokarev, I. Z., A.O. Kechechyan and T.G. Dedovich , Phys. Part. Nucl. 51, 141 (2020) 
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BNL, Upton, Long Island 

  z-Scaling in Au+Au collisions at RHIC  

     Au-Au & 200 GeV 

STAR 

AuAu & 7.7 GeV 

STAR 

STAR BES at RHIC 
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Self-similarity of h- production in Au+Au collisions 

Variable 

   Energy independence of  y(z)  

    Centrality independence of  y(z)    

    AA increases with multiplicity 

    Power law in low- and high-z  regions  

A+A collisions:   

AA

AA 0 neg pp(2 dN /d  )    h  

“Collapse" of data points onto a single curve 

 Indication of a decrease    

 of  for  √sNN  < 19.6 GeV 

A pA  

Nucl. Phys. A993 (2020) 121646 

1/2

max

z
W

s
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AuAu ppc 0 11 c 0 25. .  
 larger temperature fluctuations in AuAu than in pp   

 increase of energy loss with multiplicity   

 additivity of  fractal dimensions of nuclei   

z
10-1 100 101

y
(z

)

10-10 

10-9 

10-8 

10-7 

10-6 

10-5 

10-4 

10-3 

10-2 

10-1 

100 

101 

102 

  200

 62

 39

    27

             19.6

             11.5
     7.7

Au+Au h
-
+XSTAR  BES-I

|h.

0-5% central


AuAu

 

(2dN

neg
/dh)

pp


A

= 0.50A

s1/2 (GeV)
NN

"
"
"


A

= 0.37A


A

= 0.45A

c
AuAu

 0.11


A

= 0.50A

z
10-1 100 101

y
(z

)

10-10 

10-9 

10-8 

10-7 

10-6 

10-5 

10-4 

10-3 

10-2 

10-1 

100 

101 

102 

  200

 62

 39

    27

             19.6

             11.5
     7.7

Au+Au h
-
+XSTAR    BES-I

|h.

40-60% peripheral


AuAu

 

(2dN

neg
/dh)

pp


A

= 0.50A

s1/2 (GeV)
NN

"
"
"


A

= 0.37A


A

= 0.45A

c
AuAu

 0.11


A

= 0.50A

 A    - nucleus fractal dimension  

 AA  - fragmentation dimension  

 cAA  - “specific heat” of  bulk matter 

 dNch/dh|0 - multiplicity density in AA 

A A AA AAδ δ ε ε

1 2 a b(1 x ) (1 x ) (1 y ) (1 y )     

AA

0

c

max ch max
W dN /dη Ω( ) 
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20 % 
energy loss 
 q ≈ 5 GeV/c 

25 % 
 energy loss 

 q ≈ 5.3 GeV/c 

60 % 
 energy loss 

 q ≈ 10 GeV/c 

70 % 
 energy loss 

 q ≈ 13.3 GeV/c 

85 % 
 energy loss 

 q ≈ 26.6 GeV/c 

40 % 
energy loss 

 q ≈ 6.7 GeV/c 

50 % 
 energy loss 
 q ≈ 8 GeV/c 

 Energy loss:   ΔΕ/Ε~ (1-ya)   

      Energy loss as a characteristic of produced medium 
 decreases with pT  
 increases with √sNN   

 increases with centrality 

Constituent energy loss in Au+Au collisions 

20 % 
energy loss 
 q ≈ 5 GeV/c 

22 % 
 energy loss 

 q ≈ 5.1 GeV/c 

45 % 
 energy loss 

 q ≈ 7.3 GeV/c 

55 % 
 energy loss 

 q ≈ 8.9 GeV/c 

75 % 
 energy loss 

 q ≈ 16 GeV/c 

30 % 
energy loss 

 q ≈ 5.7 GeV/c 

35 % 
 energy loss 

 q ≈ 6.2 GeV/c 

(40-60)%   peripheral                    (0-5)%  central  

      p – momentum  of  the inclusive negative hadron  
      q – momentum  of  the scattered constituent  

   p = q ya 

pT =4 GeV  

in peripheral  

 collisions: 

pT =4 GeV  

in central  

collisions: 

ICHEP 2020, Prague, July 29, 2020 19 I. Zborovský 
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Variable z & Entropy 

1/2

max

z
W

s

 

 

 

 

 

 

 

 

 

 

 

0

c

max ch max
W dN /dη Ω( ) 

1 2 ε εδ δ

1 2 a bΩ (1 x ) (1 x ) (1 y ) (1 y )a b    

max max 0S ln W ln W 

   Entropy -                 thermodynamical                           statistical 

00
S = c ln (dN/dη ) + ln Ω + lnW

   dN/dη|0   characterizes “temperature” of the produced system  
   local equilibrium            dN/dη|0 ~T3   (for high T and small μ) 
   c  - “specific heat” of the produced medium 
   1, 2, a, b  fractal dimensions in space of momentum fractions {x1,x2,ya,yb} 
   entropy S increases with dN/dη|0 and decreases with increasing resolution Ω-1  

under condition:  (x1P1+x2P2–p/ya)
2 = (x1M1+x2M2+mb/yb)

2  

Scale transformation 

V= c ln + R ln + const.S T V

Ωmax z 

Max. entropy S(x1,x2,ya,yb)        Max. number of configurations W(x1,x2,ya,yb) 

= k lnS W

20 

Variable z is defined in terms of an underlying constituent sub-process 

Entropy  
of the remaining part 

of the system 

0 0z = z / W ψ (z ) = W ψ(z)   

All constituent sub-processes are mutually independent   

I. Zborovský 
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Maximum entropy principle & Momentum fractions 

1 2 a b 1 2 a b 1 2 a bΦ(x , x , y , y ) = Ω (x , x , y , y ) +β φ (x , x , y , y )

1 2 ε εδ δ

1 2 a b(1 x ) (1 x ) (1 y ) (1 y )a b     

( ) ( )1 2 1 2 0, , y , y ln , , y , y lna b a bS x x x x    

(x1P1+x2P2–p/ya)
2 = (x1M1+x2M2+mb/yb)

2  

1 2 1 2 2 1 0

1 2

φ = x x - x λ - x λ - λ

φ(x , x , y , y ) = 0a b

1,2 1,2

1,2

a by y
 

 


0 2 2

b a

b ay y

 
  

( )
( )

2,1

1,2

1 2 1 2

P p

PP M M
 



( )
2,1

1,2

1 2 1 2

bM m
v

PP M M




( )

2

,

,

1 2 1 2

0.5 a b

a b

m
v

PP M M




Maximization of the functional Ф with a Lagrange multiplicator β 

Entropy 

.  

Kinematic constraint Lorentz invariants 

                  for determination of the momentum fractions                     .  1 2 a b{x ,x , y , y }

21 I. Zborovský 
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Maximum entropy principle & New conservation law 

 
Principle of maximal entropy 

The momentum fractions  x1, x2 , ya, yb  

are determined in a way to maximize the 

entropy SΩ  with a kinematic constraint 

1 a

2 b

 / x 0  / y 0

 / x 0  / y 0

     

     

ba -ε

b

-ε

a
2-δ

2
1-δ

1

-1 )y(1)y(1)x(1)x-(1 Ω 

  (x1P1+x2P2 –p/ya)
2 = MX

2  

  Constraint on momentum fractions 

  Mass of the recoil system  

 MX= x1M1+x2M2+m2/yb 

 Resolution w.r.t. sub-processes 

Conservation law 

Conserved quantity  

ζ
C(D,ζ) = D g(ζ) g(ζ) =

1-ζ


for arbitrary                                  !!!                                1 2 1 2 a bP ,P ,p,δ ,δ ,ε ,ε

 +    

  D - fractal dimension 

   ζ  - momentum fraction 

Maximum of the functional Ф 

a b1 2
1 2 a b

1 2 a b

y yx x
δ + δ = ε + ε

1- x 1- x 1- y 1- y

Conservation  of  C(D,ζ)   

in out

i i j j

i j

C(D ,ζ ) = C(D ,ζ ) 

Int. J. Mod. Phys. A 33, 1850057 (2018) 
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Properties of the quantity C(D,z) 

ζ
C(D,ζ) = D

1-ζ
  D = (1, 2, a, b) – fractal dimension 

 z   (x1, x2, ya, yb) – momentum fraction 

C(D,z) characterizes:  
     -  property of a fractal-like object (or fractal-like process) with fractal  
        dimension D to form a “structural aggregate” with certain degree of local  
        compactness which carries the momentum fraction z  

    -  ability of  the fractal systems to create structural constituents 

    -  cumulative property of  internal structure of  hadrons and nuclei  

        with local compactness due to the Heisenberg uncertainty principle 

    -  aggregation property of fractal-like fragmentation processes  

C(D,z)  is proportional to the fractal dimension D of a respective fractal system.  

The larger momentum fraction z carries a structural constituent (or an aggregated  

part) of  the fractal-like system, the larger value of  C(D,z) it has. 

 C(D,z) is named “fractal cumulativity” of a fractal-like structure  

with the dimension D carried by its constituent with the momentum fraction z 

23 I. Zborovský 
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     Fractal cumulativity before interaction  

     is equal to fractal cumulativity after interaction 

     for any binary constituent sub-process.  

ζ
C(D,ζ) = D

1-ζ


 D = (1, 2, a, b)  

 z  (x1, x2, ya, yb)  

Conservation of fractal cumulativity C(D,ζ)  

 hadron constituents possess fractal structure 

 fragmentation processes have fractal-like character 

 corresponding structures are mutually similar  

 compactness of the fractal systems is governed   

      by the  Heisenberg  uncertainty principle 

in out

i i j j

i j

C(D ,ζ ) = C(D ,ζ ) 

We assume that   

Conservation law for  C(D,z)  does not depend on motion. 

 It depends only on resolution.  

24 I. Zborovský 
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 Composition rule for C(D,ζ) 

-1C(ζ'') = C(ζ) +C(ζ') + D C(ζ) C(ζ')

Composition rule for  C(D,z) leads to q-exponential type of the distributions 

with non-extensivity parameter q-1~1/D  

Properties of C(D,ζ) for a fractal with dimension D 

C(D,ζ) = D g(ζ)

'' ' 'g g g gg  

- different z correspond to different levels of resolution 

- additivity for small C(D,ζ)  

- non-additivity for large C(D,ζ)      

ζ
g(ζ) =

1-ζ

ζ'' = ζ' + ζ - ζ' ζ

25 

 z  momentum fraction  

I. Zborovský 



C(D,z) is function of the momentum fraction z 

in a resolution dependent ref. system {P1,P2,p}  

           (state of resolution)   

ICHEP 2020, Prague, July 29, 2020 

Cumulativity C(D,z) & energy E(M,) 

ζ
C(D,ζ) = D g(ζ) g(ζ) =

1-ζ
 0 0

2

1
E(M ,β) = M γ(β) γ(β) =

1-β


E(M0,) is function of the velocity fraction   

in a motion dependent ref. system {V1,V2,V3}  

                              (state of motion) 

Non-structural objects (D=0):  

D=0 g z1,  but C(0,1) is finite 

Photon  (M0 =0): 

M0 =0 g 1,  but E(0,1) is finite  

Analogy 

 C(D,z) is Lorentz invariant.  

 There is no absolute scale for z. 

 Dimension D can depend on other characteristics. 

Differences  

“Fractal-like” object  “Point-like” object 

 E(M0,β) is not a Lorentz invariant. 

 Velocity β has absolute scale. 

 Mass M0 is a relativistic invariant.  

 Quantization of fractal dimensions 

D = Dn d

 Quantization of fractal cumulativity  

C = Cn d

= ω p = k p = c  

 Quantization of energy 

E= εEn 

26 

conservation law 

I. Zborovský 
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 Max. entropy & constraints for momentum fractions 

1 2

0, 0, 0, 0
   

   
   a bx x y y

( ) ( ) ( ) ( )1 1 1 2 2 2 1 2 a a 1 2 b b 1 2x = x , , x = x , , y = y , , y = y ,       

1,2 2,1 1 2 1 2= ( ) / [( ) - ]P p PP M M

+   

Momentum fractions are functions of  κ1, κ2 : 

27 

( )
2,1

1,2

1 2 1 2

bM m
v

PP M M


 ( )

2

,

,

1 2 1 2

0.5 a b

a b

m
v

PP M M




Max. entropy max. 

( ) 1 2 1 2
1 1 2 1 2 1 2 2 1 2 1 2 2

1 1
, , y , y , , 0a b b a

a a b b b a

x x x x
F x x x x

y y y y y y
              

( )
( ) ( )1 21 1 2 2

2 1 2 1 2 1 2 2 2 1 2 1 1

1 1 2 2

1 1
, , y , y , , 0a b

a b a b

x xx x x x
F x x x x x x

y y x y y x
     

 

    
         

   

( )
1 1

1 1 2 2
1 1 2

1 2

, , y , y 0
1 1 1 1

a a b b
a b

a b

y y x x
G x x

y y x x

   
 

   
       

     

( )
( ) ( )

1 2 1 2
2 1 2 2 1 1 2 2 12 2 2

1 12
, , y , y 0b ab a b

a b

b b b b b b b a b a a

y yx x x x
G x x x x

y y y y y y y y y

  
   

 

    
           

   

1 

 

 

2 

 

 

 

3 

 

 

4 
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 Momentum fractions near fractal limit  Ω-1 → ∞  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2

1 2 1 2
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a b

a bL L L LL L

F F F F F F
x x y y
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( ) ( ) ( ) ( )1 2

1 2

1 1 1 1 0i i i i
a b

a bL L L L

G G G G
x x y y

x x y y

   
       

   

Constraints for  momentum fractions in the region  x1, x2, ya, yb g1 :  

Fractal limit (L):  x1x2yayb =1   

( ) ( )( ) ( )( ) ( )( ) ( )( )1 0 2 01 2 1 02 11 1 1 1 1a be e x x y y                 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 221 1 1 1

1 1 0 2 2 01 2 01 10 11 1aa b bx x y y                   

( ) ( ) ( ) ( )1

1 1

1 1 0 2 2 0 20 1 1x x           

( ) ( ) ( ) ( )1 1

00 1 1 1a ba by y        

1 2 1 2 1 2 b ae e v v v v       

Over-lined symbols are calculated at fractal limit (L);  Expressions in red depend on pT 
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1 2 ε εδ δ

1 2 a b(1 x ) (1 x ) (1 y ) (1 y )a b     

0ln lnS    

Momentum fractions near fractal limit Ω-1 → ∞  

Momentum fractions in the region  x1, x2, ya, yb g1 :  

Fractal limit (L):  x1x2yayb =1   

0 1 2, , ,         are known functions of 1 2 1 2, , , , ,a bP P M M m m

Maximal entropy near the fractal limit  
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Entropy S near fractal limit  Ω-1 → ∞  

Entropy  decomposition 

( ) ( )Γ 1 2 a b 1 2 a b 1 1 2 2 a a b bS = δ +δ +ε +ε ln δ +δ +ε +ε - δ lnδ - δ lnδ - ε lnε - ε lnε

Entropy  SG  depends solely on fractal dimensions  

0S S S S  G  

Entropy  Sϒ   depends on momenta and masses  

of the colliding and inclusive particles   

Symmetry property of   SG   

i j 1 2 a bD D , D = (δ ,δ ,ε ,ε )

SG  is invariant    under the transformation 
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Entropy  S0    is a constant   
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Entropy SG  of a statistical ensemble 

Statistical ensemble of  interacting fractal configurations 

b2
I I I

1 a

εδε
S +S +S

δ δ ε

   
   

      1 2δ δ δ 

a bε ε ε 

    Large collection of the interacting fractals  
    - with random configurations {x1, x2, ya, yb, ...} 

    - with the same fractal dimensions {1, 2, a, b} 

 Number of configurations 
      -  internal structure of  M1 

        -  internal structure of  M2 

        -  fragmentation process to ma 

      -  fragmentation process to mb 

Entropy SG of the whole statistical ensemble is additive  

Entropy SG of a  single “average” fractal configuration of the system 

1

2 b
Γ I I I

1 a

ε δ ε
S = S + S + S

δ δ εa
n n n  

   
   

     
1 2

 n n n  

1
n

b
n

a
n

2
n

( ) ( )IS (r) 1 r ln 1 r r lnrd     
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Quantization of fractal dimensions       

1 2δ δ δ 
a bε ε ε 

 The entropy SG can be represented by all possible arrangements, 

 in which the fractal dimensions of the interacting fractal structures  

 are composed of identical dimensional quanta, each of size d,  

 provided  the fractal dimensions have the quantum form: 

1 21 2 a bδ = , δ = , ε = , ε =
a b

d n d n d n d n      

The entropy of the statistical ensemble of interacting fractal configurations 

1

2 b
Γ I I I

1 a

ε δ ε
S = S + S + S

δ δ εa
n n n  

   
   

     

( ) ( )I(r) 1 r ln 1 r r lnrS d     
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Statistical interpretation of entropy SG    

The entropy SG can be expressed as the logarithm of  number of different ways  

in which identical dimensional quanta can be distributed  

among the fractal dimensions of  interacting fractal structures. 

( )
δ,ε

!

! !

n n

n n

 

 


G 

( )
1 2 a bΓ δ ,δ ,ε ,εS = ln Γd 

( )
1 2

1 2 a b 1 2 a b

1 2

δ ,δ ,ε ,ε δ,ε δ ,δ ε ,ε

+ + + !
Γ = Γ Γ Γ

! ! ! !

a b

a b

n n n n

n n n n

   

   

  

1 2
n n n   

 
a b

n n n  
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1 21 2 a bδ = , δ = , ε = , ε =
a b

d n d n d n d n      

The statistical interpretation of entropy SG  is only possible  

by the quantization of  fractal dimensions 
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Conservation of Number of Quanta of Cumulativity NQC 

Quantization of fractal dimensions  D = d·n  is connected  

 with quantum character of fractal cumulativity C(D,z) 

Conservation law for  Number of Quanta of Cumulativity 

The number of quanta of fractal cumulativity is conserved at any resolution 

 given by arbitrary momenta P1, P2, and p of the colliding and inclusive particles.   

ζ
C(D,ζ) = D

1-ζ

The quantization of  D and C(D,ζ) is based on the assumptions of 

       - fractal self-similarity of the internal hadron structure 

       - fractal nature of fragmentation processes 

       - locality of hadron interactions at a constituent level up to the kinematic limit 

 Number of Cumulativity Quanta  

before and after a binary sub-process is the same.  

ζ
NQC( ,ζ)=

1-ζ
n n 

in out

i i j j

i j

NQC( ,ζ ) = NQC( ,ζ )n n 
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Summary I     

    z-Scaling is a specific feature of high-pT particle production established  

       in p-(anti)p collisions at the U70, ISR, SppS, Tevatron, RHIC and LHC.  

  It reflects self-similarity, locality, and fractality of hadron interactions 

       at a constituent level. 

   The scaling behavior was confirmed for inclusive production of different  
       hadrons, jets, heavy quarkonia and top quark.        

   Hypothesis of self-similarity and fractality was tested in Au+Au collisions  
       at RHIC using z-presentation of spectra of negative hadrons.       

 
    Analysis of STAR BES-I data indicates approximate energy and multiplicity 

       independence of the scaling function  y(z).  

   The variable z depends on multiplicity density, “heat capacity”,  and entropy  

       of constituent configurations of the interacting system. 

  Constituent energy loss as a function of energy and centrality of collision and 

       momentum of inclusive particle was estimated.      
 

¯ 
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Summary II    

  We have shown that z-scaling containing the principle of maximum entropy  

      includes conservation of the quantity C(D,z)  (“fractal cumulativity”). 

    

  Fractal cumulativity reflects ability of fractal systems to create structural constituents.  

 

 The cumulativity C(D,z) of a fractal object or a fractal-like process  

     is proportional to its fractal dimension D and represents a simple function  

     of the momentum fraction z carried by the corresponding constituent. 

  

 A composition rule for C(D,z) connects the fractal cumulativity at different scales. 

 

 Fractal dimension D is interpreted as a quantity which has quantum nature.  

  
   The quantization of fractal dimension D results in preservation of the number  
       of quanta of cumulativity NQC(n,ζ) in binary sub-processes at any resolution. 
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Thank you for your attention ! 
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