ICHEP 2020 | PRAGUE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

VIRTUAL CONFERENCE

28 JULY - 6 AUGUST 2020

PRAGUE, CZECH REPUBLIC

Precision Jet/Event Substructure using Collinear Drop

Yang-Ting Chien

July 28, 2020 In collaboration with Iain Stewart and Yen-Jie Lee JHEP 06 (2020) 064

Outline

- Jet and event substructure as multi-scale probes
- Collinear drop: taming soft radiation
 - Soft-collinear effective theory with Glauber interaction (SCET_G)
- Applications to pp, AA, e+e- and EIC (work in progress)
 - Parton shower
 - Hadronization and underlying event
 - Medium-induced bremsstrahlung
- Conclusion

Distinct physics happening at all scales

Distinct physics happening at all scales

Jet and event substructure as multi-scale probes

- We need qualitatively different observables sensitive to specific energy scales
- Sensitivity and precision are the key
 - The effect is large and can be measured precisely
- This requires an optimization in the design of substructure observables
 - Flexibility with tunable parameters

Soft drop

- Recluster the jet using C/A algorithm: angular-ordered tree
- For each branching, consider the momentum fraction z and angle θ
- Soft-drop condition:
 - $z < z_{cut} (\theta / R)^{\beta}$
- z_{cut} and β are the soft-drop parameters
 - z_{cut}: setting the energy scale
 - β: setting the angular scale

Thanks James for the nice introduction

Collinear drop

Chien et al, JHEP 06 (2020) 064

 $(z_{\mathrm{cut}\,1},eta_1)$ $(z_{\mathrm{cut}\,2},eta_2)$

As one concrete example,

- Consider the observable $\ \Delta m^2 = m_{\mathrm{SD}_1}^2 m_{\mathrm{SD}_2}^2$
- Collinear-drop condition:
 - $z_{cut1} (\theta / R)^{\beta 1} < z < z_{cut2} (\theta / R)^{\beta 2}$
- Enhance the sensitivity to the soft and intermediate radiation (See also Cal et al, Jet energy drop 2007.12187)

Soft Collinear Effective Theory

Bauer et al, PRD 63, 114020 (2001)

Soft Collinear Effective Theory with Glauber interaction (SCET_G)

Bauer et al, PRD 63, 114020 (2001) Ovanesyan et al, JHEP06(2011)080

Factorization and resummation

- Hierarchical soft-drop conditions SD₁ < SD₂ with
 - Fixed β and varying z_{cut}
 - Fixed z_{cut} and varying β
- Identify relevant SCET degrees of freedom with corners of phase space boundaries
- Factorization and resummation with renormalization group evolution

$$\frac{d\sigma}{d\Delta m^2} = \sum_{i=q,g} N_i(z_{\text{cut }i}, \beta_i, \mu) P_i^{\text{CD}}(\Delta m^2, z_{\text{cut }i}, \beta_i, \mu)$$

$$P_i^{\text{CD}}(\Delta m^2, \mu) = \int dk_i D_{C_2,i}(k_2, \mu) S_{C_1,i}(k_1, \mu) \delta(\Delta m^2 - 2E_J(k_1 + k_2))$$

Factorization and resummation

- Hierarchical soft-drop conditions SD₁ < SD₂ with
 - Fixed β and varying z_{cut}
 - Fixed z_{cut} and varying β
- Identify relevant SCET degrees of freedom with corners of phase space boundaries
- Factorization and resummation with renormalization group evolution

$$rac{d\sigma}{d\Delta m^2} = \sum_{i=q,g} N_i (z_{\mathrm{cut}\,i}, eta_i, \mu) P_i^{\mathrm{CD}}(\Delta m^2, z_{\mathrm{cut}\,i}, eta_i, \mu) \ P_i^{\mathrm{CD}}(\Delta m^2, \mu) = \int dk_i D_{C_2,i}(k_2, \mu) S_{C_1,i}(k_1, \mu) \delta(\Delta m^2 - 2E_J(k_1 + k_2))$$

Turning off collinear drop: soft drop

Larkoski et al '16, Marzani et al '17, Kang et al '18 ATLAS: PRL 121.092001, CMS: JHEP11(2018)113

- Soft drop reduces sensitivity to soft physics
- Bands correspond to next-to-leading log (NLL) calculation with uncertainty estimated by scale variations
- Good agreement with ATLAS measurements

Probing soft components of jets

 Significant difference between PYTHIA and VINCIA is observed
 Impressive agreement between VINCIA and analytic calculation

Probing soft components of jets

 Significant difference between PYTHIA and VINCIA is observed
 Impressive agreement between VINCIA and analytic calculation

Underlying event can be suppressed while keeping sensitivity to hadronization

Probing soft components of jets

- Significant difference between PYTHIA and VINCIA is observed
- Impressive agreement between VINCIA and analytic calculation

 $R = 0.8, pp \rightarrow dijet$

Pythia had+MPI
Pythia hadron
Pythia parton

 $\log_{10}(\Delta m^2/p_T^2)$

 $(z_{\text{cut }1}, \beta_1) = \text{w/o}$

 $(z_{\text{cut }2}, \beta_2) = (0.1, 1)^{\frac{1}{2}}$

Underlying event can be suppressed while keeping sensitivity to hadronization

Medium-induced radiation

Ovanesyan et al, JHEP06(2011)080

 $\Delta m^2 = m_{\rm SD_1}^2 - m_{\rm SD_2}^2$

- Distribution of medium-induced radiation affects jet substructure
- Medium contribution to collinear drop is physically cutoff
 - The shapes are the same for quark and gluon jets
 - Normalizations are different
- Examine the Sudakov peak modification in jet substructure distribution (work in progress)

Previous CMS measurement cut off the Sudakov peak region

Heavy ion quark gluon jet

$$\Delta m^2 = m^2 - m_{\rm SD}^2$$

- Soft drop helps remove soft particles and expose collinear components
- Collinear drop isolates the soft particles and shows its universal structure in JEWEL quark and gluon jets

17

Application to LEP and EIC

- Significant hadronization correction to collinear drop observables at LEP
 - Ideal for testing hadronization modeling
- Data and Monte Carlo agree at reco level
- Work in progress:
 - Unfolding
 - Heavy quark hadronization
 - Hunting for QGP in high multiplicity events
 - Struck quarks at EIC hadronize without much parton shower evolution: the emergence of jets and extension to eventlevel substructure studies

Conclusion

- Collinear drop is a new class of observables
- Collinear drop can be used to directly examine soft physics in jets for
 - Probing soft radiation contributions
 - Testing Monte Carlo simulations
 - Determining hadronization corrections
 - Studying perturbative-nonperturbative transition
 - Probing QCD medium in heavy ion collision
- Factorization of collinear drop observables is derived in SCET which allows us to resume logarithmically enhanced contributions

Conclusion

- Collinear drop is a new class of observables
- Collinear drop can be used to directly examine soft physics in jets for
 - Probing soft radiation contributions
 - Testing Monte Carlo simulations
 - Determining hadronization corrections
 - Studying perturbative-nonperturbative transition
 - Probing QCD medium in heavy ion collision
- Factorization of collinear drop observables is derived in SCET which allows us to resume logarithmically enhanced contributions

Thank you!