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• Machine learning in nuclear 

structure theory
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• Bayesian extrapolations

• Bayesian model averaging
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• Summary
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Guiding principle: the scientific method
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Theory 
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In the context of the following discussion, it is useful to clarify 

the  notion of a “model”. In this talk, by a model I will understand 

the combination of a raw theoretical model (i.e., mathematical 

framework), the calibration dataset used for its parameter 

determination, and a statistical model that describes the error 

structure.

What is a Model?

https://serc.carleton.edu/
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Machine Learning Trivia
Learning algorithms
• Supervised machine learning: Training with known data and using this knowledge to predict 

the test data.

• Unsupervised machine learning: Finding patterns and relationship in datasets without any 

prior knowledge of the system (creating clusters and assigning data to these clusters).

• Reinforcement learning: Learning is achieved by trial-and-error, solely from rewards and 

punishment (learning from experience).

• …

Typical applications
• Interpolation. Finding missing information within the known domain.

• Extrapolation. Finding missing information outside the known domain.

• Accelerating simulation and model emulation.

• Improving the interpretability.

• Estimation of bias and uncertainty.

• Model calibration and model reduction.

• Model mixing.

• …

Tools
• Neural networks

• Bayesian networks

• Decision trees

• Support vector machines

• Regression analysis

• …
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March 4-6, 2020, Thomas Jefferson National Accelerator Facility

• Explore the ways in which A.I. can be used to advance research in 

fundamental nuclear physics and in the design and operation of large-

scale accelerator facilities. 

• Explore applications and research needed on several time frames, 

ranging from immediate benefit. 

• The results of the workshop will be summarized in a report that can serve 

as a roadmap for the future application of A.I. and a guide to areas for 

possible collaboration. (The report will be out very soon!)

https://www.jlab.org/conference/AI2020

https://www.jlab.org/conference/AI2020


ML tools can help us to speed up the scientific process cycle and hence 

facilitate discoveries: Beam time and compute cycles are expensive! 
• Enabling fast emulation for big simulations

• Revealing the information content of measured observables

• Identifying crucial experimental data for better constraining theory

ML tools can help us to reveal the structure of our models
• Parameter estimation with heterogeneous/multi-scale data

• Model reduction

• Uncertainty quantification

ML tools can help us to provide predictive capability
• Theoretical results often involve ultraviolet  and infrared extrapolations due 

to Hilbert-space truncations 

• Providing meaningful input to applications and planned measurements

• Theoretical models are often applied to entirely new nuclear systems and 

conditions that are not accessible to experiment

Machine learning & low-energy nuclear theory: Why?
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Early applications of neural networks: 1992-2015

Several applications of NN to various nuclear structure problems by Clark and his 

collaborators, including: nuclear systematics1,2; backpropagation algorithm for training NN3; 

Nuclear mass systematics4; Global properties: Support Vector Machines5

1Phys. Lett. B 300, 1 (1993); 2Neural Networks 8, 291 (1995); 3CPC 88, 1 (1995); 
4Nucl. Phys. A 743, 222 (2004); 5IJMP B 20, 5015 (2006)

new adaptive computational systems can grasp essential regularities of nuclear physics 

including the valley of β-stability, the pairing effect and the existence of shell structure. Significant 

predictive ability is demonstrated, opening the prospect that neural networks may provide a 

valuable new tool for computing nuclear properties and, more broadly, for phenomenological 

description of complex many-body systems.

The backpropagation learning algorithm is 

used to teach layered feedforward networks of 

model neurons the existing data on nuclear 

stability and atomic masses. Specific 

applications include (i) the construction of 

networks that decide stability, (ii) learning and 

prediction of nuclear mass excesses and (iii) 

analysis of the systematics of neutron 

separation energies. With suitable architecture 

and representation of input and output data, 

learning can be accomplished with high 

accuracy. Evidence is presented that these
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Recent applications (collected in March 2020)
Nuclear structure
• Masses: NN1; RBF, BNN2; Multilayer Perceptron NN3; BNN4,5,6

1Ann. Nucl. Energy 63, 172 (2014); 2Phys. Rev. C 100, 054311 (2019);
31912.11365; 4Phys. Rev. C 93, 014311 (2016); 5Phys. Rev. C 97, 014306 (2018); 
6Phys. Lett. B 778, 48 (2018)

• Mass extrapolations: BGP, BNN1; BGP, BMA2; BGP, BMA3; BGP, BMA4

1Phys. Rev. C 98, 034318 (2018); 2Phys. Rev. Lett. 122, 062502 (2019); 
3Phys. Rev. C 101, 014319 (2020); 42001.05924

• Masses for r-process: BC1

11901.10337

• Charge radii: naïve BNN1; NN2; BNN3

1Phys. Rev. C 101, 014304 (2020); 2J. Phys. G 40, 055106 (2012); J. Phys. G 43, 114002 

(20016); 3Phys. Rev. C 96, 044308 (2017)

• Excited states with CI: shell model with BC1; NN2

1Phys. Rev. C 98, 061301(R) (2018), 1907.04974; 22001.08561

• Excited 2+ states: NN1

12002.08218

The current universe of AI applications to nuclear structure theory
BC=Bayesian calibration; BGP=Bayesian Gaussian processes; BMA=Bayesian model averaging; 

BNN=Bayesian neural networks; NN=Neural Networks; RBF=Radial basis function
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Nuclear structure: model reduction
• Mass model structure: BC, BGP, BMA1

12002.04151

Recent applications of AI (cont.)
BC=Bayesian calibration; BGP=Bayesian Gaussian processes; BMA=Bayesian model averaging; 

BNN=Bayesian neural networks; NN=Neural Networks; RBF=Radial basis function

Nuclear structure: Dealing with Hilbert-space truncations
• Nucleon-nucleon phase shifts in EFT: BC1

1J. Phys. G 46, 045102 (2019)

• Collective states: emulating beyond-DFT with committee of deep NN1

11910.04132

• Potential Energy Surfaces: feedforward NN1

1Phys. Part. Nucl. Lett. 10, 528 (2013)

• Truncation errors in EFT: BGP1,2

1Phys. Rev. C 100, 044001 (2019); 2Phys. Rev. C 96, 024003 (2017)

• Finite-size corrections to A-body models: NN1; feedforward NN2

1Phys. Rev. C 100, 054326 (2019); 2Phys. Rev. C 99, 054308 (2019)

• A-body models: Subspace projected A-body technique1; BC2; feedforward NN3

1Phys. Rev. Lett. 123, 252501 (2019); 21912.02227; J. Phys. G 46 095101 (2019);
3arXiv:1911.13092
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Recent applications of AI (cont.)
BC=Bayesian calibration; BNN=Bayesian neural networks; NN=Neural Networks ;

RBF=Radial  basis function; SVM=Support Vector Machines 

Nuclear decays
• Beta-decay for r-process: BNN1

1Phys. Rev. C 99, 064307 (2019)

• Beta decay half-lives: SVM, feedforward NN1

10809.0383 [nucl-th]

• Alpha decays: BNN1,2; NN3

1J. Phys. G 46, 115109 (2019); 2EPL 127, 42001 (2019); 31910.12345

• Evaluation of incomplete fission yields: BNN1 and mixture-density NN2

1Phys. Rev. Lett. 123, 122501 (2019); 2EPJ Web Conf. 211, 04006 (2019)

Nuclear reactions
• UQ for direct nuclear reactions: BC1,2,3

1Phys. Rev. Lett. 122, 232502 (2019); 2Phys. Rev. C 97 064612 (2018); 
3Phys. Rev. C 100, 064615 (2019)

• Cross sections in proton induced spallation reactions: BNN1

1Chinese Phys. C 44, 014104 (2020)

• Fusion reaction cross-sections: NN1

1NIM B 462, 51 (2020)
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EXAMPLES OF RECENT WORK

ML for Nuclear Structure Theory
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Extrapolations of A-body results with ANN

Negoita et al. Phys. Rev. C 99, 054308 (2019)

Topological structure of 

the feed-forward 

artificial neural network 

used

Jiang et al. Phys. Rev. 100, 054326 (2019)

4He with NCSM+NNLOopt

16O with CC+NNLOopt

NCSM
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Melendez et al., Phys. Rev. C 100, 044001 (2019) 

Bayesian GP model for Quantifying Correlated Truncation Errors in EFT

Bayesian network 

used

Differential NN cross section coefficients 

from the semilocal EKM potential 
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Parameter estimation: Quantified DFT

McDonnell et al. 
Phys. Rev. Lett. 114, 122501 (2015)

Bivariate marginal estimates of the 
posterior distribution for the 12-dimensional 
DFT UNEDF1 parameterization. 

Simulated r-process abundances with 
astrophysical conditions corresponding to 
high-entropy (a), low-entropy (b), and 
fission-recycling (c).

Sprouse et al. 
arXiv 1901.10337
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Now: Extrapolations

using Bayesian learning

likelihood prior

model evidence

posterior

• Posterior: the degree of belief after incorporating news that B is true. Posterior 

probability is obtained from a prior probability, given evidence

• Likelihood: measures the goodness of fit of a statistical model to a sample of data for 

given values of the parameters.

• Prior: initial degree of belief in A

• Model evidence: this factor is the same for all possible hypotheses being considered.

Bayesian inference
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In many cases, nuclear input MUST involve massive 

extrapolations based on predicted quantities. And 

extrapolations are impossible tough.
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BML and quantified extrapolations

Residual of an observable O:

emulator of the residual

Estimate of an observable O:

Supervised learning: the nuclear modeling 

and the choice of priors represent two 

aspects of the supervision

Smooth part of the residual represents  missing physics

Charge radii with BNN
R.Utama et al., J. Phys. G 43, 114002 (2016) 

small number!
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Bayesian approach

(Z,N)i

residual

Prediction of unknown 

observable y* given 

known data y

Two statistical models used:

• Gaussian process (3 parameters)

• Bayesian neural network with sigmoid function (30 neurons, 1 layer; 181

parameters)

100,000+ iterations of an ergodic Markov chain produced by the Metropolis-

Hastings algorithm

Some refinements added based on our knowledge of trends

model parameters
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Training set

Testing sets

Residuals (based 

on data and theory) 

exhibit patterns

Mass extrapolations with BNN and GP

Neufcourt et al. Phys. Rev. C 98, 034318 (2018)

residual emulator
outcome

• This information can be used 

to our advantage to improve 

model-based predictions!

• It can also be used to 

improve models themselves

Models of different fidelity



21W. Nazarewicz,     INT seminar, May 14, 2020

Naïve nuclear theorist’s approach to a 

systematic (model) error estimate:
• Take a set of reasonable global models Mi, 

hopefully based on different assumptions/formalism, 

that satisfy basic theoretical requirements (here 

comes the expert belief thing).

• Make predictions.

• Compute average and variation within this set

• Compute rms deviation from existing experimental 

data. 

Can we do better? Yes!

Model mixing:
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Nov. 24, 2018, 8am

Nov. 26, 2018, 5.30am
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How many Ca nuclei exist? 
Neufcourt et al.,Phys. Rev. Lett. 122, 062502 (2019)

Calcium isotopes bound out to 

about 70Ca

Phys. Scr. 2013, 

014022 (2013)

DFT

60Ca weakly bound/unbound
S.R. Stroberg et al.

PRL 118, 032502 (2017)

A-body

Discovery of 60Ca

O. Tarasov et al. 

Phys. Rev. Lett. 121, 022501 (2018)
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Future: Quantified predictions with machine learning

Probability of existence

Bayesian model mixing, see L. Neufcourt et al., Phys. Rev. Lett. 122, 062502 (2019)
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Quantified limits of the nuclear landscape
Neufcourt et al., Phys. Rev. C 101, 044307 (2020)

Predictions made with 11 global mass model and Bayesian model averaging

The FRIB production rates estimated with the LISE++ . We assumed the 

experimental limit for the confirmation of existence of an isotope to be 1 event/2.5 

days.
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“0” corresponds is the neutron number of the heaviest isotope for which an experimental separation energy value 

is available

Of particular importance for constraining theory are 

the existence data for Z=28-30, Z=42-48, and Z=64-66
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Proton drip line and beyond: Bayesian analysis of proton-emitting nuclei
Neufcourt et al., Phys. Rev. C 101, 014319 (2020)

The most promising new candidates for the true 2p radioactivity are: 30Ar, 34Ca, 
39Ti, 42Cr, 58Ge, 62Se,66Kr, 70Sr, 74Zr, 78Mo, 82Ru, 86Pd, 90Cd, and 103Te. 
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“They’re basing their model on very few 

data, and because of that you have very 

large uncertainty” 

“If you’re just looking at one model, you’re 

not seeing the full diversity of what could 

happen”
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Statistical aspects of nuclear models
Kejzlar et al., J. Phys. G (2000) arXiv:2002.04151 

SV-min: informed by masses, sizes, pairing gaps

SV-E: informed by masses only

correlation matrix

principal component analysis

Conclusion: effective number of degrees of 

freedom is 4-6 for the 14-parameter Skyrme

functional. Long way to go!
Conclusion: correlations between parameters 

and observables  strongly depend on dataset 

of fit-observables.

r0 determined by charge radii data

See also G.F.  Bertsch et al, Phys. Rev. C 71, 

054311 (2005); Phys. Rev. Lett. 119, 252501 

(2017)
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radiimasses OES FI s.p.e.

Kortelainen et al. PRC 89, 054314 (2014)

Ekström and Hagen

PRL 123, 252501 (2019)

Energy density functional

NNLO chiral-EFT Hamiltonian

Sensitivity studies, model calibration
Identify key data to constraint models; Understanding model structure

Fox et al. 

PRC 101, 

054308 (2020)
Shell-

model

matrix 

elements
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Collaborators
Physics Statistics Applied math/CS

Y. Cao

J. Dobaczewski

G. Hagen

A. Ekström

D. Furnstahl

S. Gandolfi 

M. Hjorth-Jensen

Y. Jaganathen

M. Kortelainen

D. Lee

J. McDonnell

Th. Papenbrock

D. Phillips

P.-G. Reinhard

N. Schunck

…

D. Higdon

V. Kejzlar

L. Neufcourt

F. Viens

…

J. O’Neal

J. Sarich

S. Wild

…

A series of annual meetings on Enhancing the interaction 

between nuclear experiment and theory through 

information and statistics (ISNET): Kraków, Glasgow, 

ECT*, INT, York, Darmstadt, and Göteborg. 

ISNET-8 will be held (?)  at FRIB Dec. 14-17th, 2020:

https://indico.frib.msu.edu/event/21/



Summary

• Many exciting results achieved but the best is yet to come!

• To solve many complex problems in the field and facilitate 

discoveries, multidisciplinary efforts efforts are required 

involving scientists in  nuclear physics, computational 

science, applied math, and statistics.

• We need to invest in relevant educational efforts.
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Thank You
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Backup
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What is “microscopic”? In our field, theory is useful at a 

quantitative level only if the parameters, or coupling constants, 

of models are optimized to experiment. For that reason, all 

quantitative nuclear models are phenomenological at some 

level. Superlatives such as ‘fully microscopic’ or ‘from first 

principles’, sometimes used to characterize particular 

methods, may be viewed more as aspirational than the present 

reality. However, it is useful to distinguish the degrees of 

phenomenology in different theoretical approaches. The term 

“microscopic theory” is often used for theoretical approaches in 

which nucleonic degrees of freedom are explicitly present 

together with inter-nucleon forces. In this respect, A-body, CI, 

and DFT models all belong to this group; they of course differ 

in their resolution scales.

(from Future of Nuclear Fission 2020)

A disclaimer…
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https://xkcd.com/1838/



W. Nazarewicz,     INT seminar, May 14, 2020 36

When faced with several candidate models, the analyst can either choose 

one model or average over the models. Bayesian methods provide a set of 

tools for these problems. Bayesian methods also give us a numerical 

measure of the relative evidence in favor of competing theories. 

• Model selection refers to the problem of using the data to select one model 

from the list of candidate models. Model averaging refers to the process of 

estimating some quantity under each model and then averaging the 

estimates according to how likely each model is.

• Bayesian model selection and model averaging is a conceptually simple, 

unified approach.  An intrinsic Bayes factor might also be a useful 

approach. 

• There is no need to choose one model. It is possible to average the 

predictions from several models. 

• Simulation methods make it feasible to compute posterior probabilities in 

many problems. 

It should be emphasized that BMA should not be used as an excuse for poor 

science... BMA is useful after careful scientific analysis of the problem at 

hand. Indeed, BMA offers one more tool in the toolbox of applied statisticians 

for improved data analysis and interpretation.

From Hoeting and Wasserman:


