Chapter 2

Statistics and the Treatment of
Experimental Data



statistics plays an essential part in all the sciences.

Many of the process involved with detection of particles are statistical in nature.

« For the experimentalist, it is also a design and planning tool.

before performing any measurement, one must consider the tolerances
required of the apparatus, the measuring times involved, etc., as a function
of the desired precision on the result. Such an analysis is essential in order

to determine its feasibility in material, time and cost.

« The understanding and interpretation of all experimental data depend on
statistical and probabilistic concepts.



Characterization of data

A collection of N independent measurements of the same physical quantity:
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Data Reduction - Counter

count [50]1= 0O count [60]= 20 count [70]= 85 count [80]= @
count [51]= O count[61]= 11 count [71]= 81 count [81l]= 7
count [52]= 0 count [62]= 20 count [72]= &1 count [B2]= 3
count [53]= 0 count [63]= 21 count [73]= &5 count [83]= &
count [54]= O count [64]= 31 count [74]= 54 count [84]= O
count [55]= O count [65]= 48 count [75]= 43 count [85]= O
count [56]= 2 count [66]= 42 count [Ta6]= 33 count [86]= 1
count [57]= 1 count [67]= 70 count [77]= 23 count [87]= O
count [58]= 3 count [68]= 68 count [78]= 21 count [88]= O
count [52]= 6 count [69]= 74 count [72]= 20 count [82]= 1



Histogram

« define bins for the possible values of a variable

» plot the number of entries in each bin
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Characteristics of Probability Distributions

The probability of finding x between certain limits, P(z; < z < z))

Discrete distributions

Continuous distributions

The probability to measure a value x
in the interval [x, x+dx] is given by

probability density function f(x) (p.d.f)
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Expectation(mean) values

Discrete p=Elz] =) z;P(z;)

Continuous p= FElz] = /:Bf(m)da:

Variance: 72

o* = El(z — p)*] = /(-’E—u)Qf(fL’)da3 ﬁﬁ\_ g

7
it 1 B
Standard deviation: Frifi {2 H
Measure for dispersion/spread of a distribution is given
o= o2

by variance around a single mean p

Report result: puto



Example: Uniform distribution: U(a,b)

f(ic)
a 1
p= /mf(w)dw = b; ba |

Silicon Strip Detectors:

Resolution of one strip cluster:

slg




Some common probability distributions

Consider N independent experiments (Bernoulli trials):

1. The experiment has two possible outcomes, sucess(s) and faliure(f).
2. The probability that any given observation results in an outcome of

type s or fis constant, independent of the number of observations.

Trial Definition of a success Probability of a success
Toss of a coin “Heads” 1/2
Toss of a die “A four” 1/6
Observation of a radioactive It decays 1-e™
nucleus for a time “t”
Observation of a detector of A count E(1 - e™)

efficiency E placed near a
radioactive nucleus for a time “t”

N(t) = Nye ™
AN(t) = Ny(1 —e ™)
AN(t)

N

=1—e ™

p:



The Binomial Distribution it 74

probability of success on any given trial is p.
Probability of a specific outcome (in order), e.g. ‘ssfsf is

pp(1 — p)p(1 — p) = p*(1 — p)*3

Probability of r successes in n trails (in order), is
pr(l - p)n—r

regardless of the order,

n!

Prip.n) = rl(n — 7“)!pr(1 —p)

the expectation value and variance

p = np
o = u(1 - p)



10,p=0.125

Prob(r;n

AO_S.I- .u- rrrrfrrryrrrprrrr l- G T T T T T T T 8 T T T T ™ T
i — : C\! “ — Lr)' [ IJ — -
S| p=0.125 | oco3f | p=0.25 4 oco3f | p=0.5

04F 4 i I :

L E Q: L f +0 Q: L

[ h‘i—’i()' ] o - ! - o L

5 - b L ‘IT L
o 1 592 1 %% to ]
[ { © | ] = .
02F 1 2 | 1 2 | ]
[ 1 % oaf 4 B oaf .
0.1F . L - L -
0:. ., ,I__,._._,,_.,: O.H' ' .|l.l...|...|' OII-I-H- ah a1 .".H.l-
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Occurrences, r Occurrences, r Occurrences, r

« The distribution is not symmetric.

« The peak or maximum of the distribution does not correspond to the mean.

« Binomial distribution is the most general model and is widely applicable

to all constant-p processes.



Example — Detector Design

 Particle goes through a detector layer. : |
— “success” measuring signal (p), - efficiency
— “failure” no meas. (1-p)

N, det
Ni ne

efficiency =

« How many layer do | need to have high overall track finding efficiency ?
(3 points without magnetic field, with B field at least 4)

« Assume efficiency: p = 95%
— 3 layers: P(3;3,0.95) = 0.857
— 4 layers: P(3;4,0.95) + P(4;4,0.95) = 0.986
— 5 layers: P(3;5,0.95) + P(4;5,0.95) + P(5;5,0.95) = 0.999

« Redundancy is very important when building detectors, assume always
worst case



The Poisson Distribution it 1

The Poisson distribution occurs as the limiting the binomial distribution
when the probability p — 0 (unknown) and the number of trials N —o0 ,

such that the constant average rate 1. = Np, remains finite.

The probability of observing r events in this limit then reduces to
B u?‘e—,u,

7l

The standard deviation

P(r)

o= (r—pu)?P(r)]"? = Ju  Thisis the origin of the formula n++/n

r

The Poisson distribution depends on only one parameter:pu, so that
knowledge of N and p is not always necessary.

Examples:

- number of a specific type of events in a particle-particle scattering, when
the total number of events is large and this specific process is very rare:
e.g. Higgs decay



An example of radioactive decay.
Decay of 25 mg of an element, with the lifetime of 10?2 years .
N= 1020 atoms (very large), T4,=5x10"9 seconds.
The probability of a given nucleus to decay , A=In2/T,,= 2x10-2%/sec (very small).
Np = 2 (finite!)
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» The distribution is not symmetric.
» The peak or maximum of the distribution does not correspond to the mean.

1< 1: most probable result is 0

As 1 becomes large, the distribution becomes more and more symmetric
and approaches a Gaussian form(u=20).



Example: synthesis of superheavy element: Z=113

Table I. Summary of beamtime used.

. Beam
Beamtime Irradiation time dose/sum Number of
Jul. 23, 2004 o F76113 (days) (x10'9) observed event:
! 11.68 + 0.04 MeV (PSD) Apr 2’ 2005 year month/day
e 0344 ms 2003 9/5-12/29 57.9 1.24/1.24 0
a o 11 2004  7/8-8/2 21.9 0.51/1.75 1
g;g ;;00 (PSD + SSD) ilégz +0.04 MeV (PSD) 2005 1/20-1/23 3.0 0.07/1.82 0
a, S g 2005  3/20-4/22 27.1 0.71/2.53 1
10.03 £ 0.07 MeV a, 278113
114+ 8.89 (PSD + SSD) 11.31 +0.07 MeV a, 2005  5/19=5/21 2.0 0.05/2.58 0
0_4 2668 7.16 ms - (3)48§ ;:0.43 (PSD + SSD) (1)1(“83% :rtn(S).OG MeV (PSD) 2005 8/7-8/25 16.1 045/303 0
9.08 £+ 0.04 MeV (PSD) 274
ity ¢ %3 /) 32 MeV (escape) o, Re 2005  9/7-10/20 39.0 1.17/4.20 0
v e gt 000 MEV (PSD) 2005 11/25-12/15 19.5 0.63/4.83 0
ZEGB A S
204 MeV(PSD) 270 ; .
1008 O 0.04 MeV (PSD) o Mt 2006  3/14=5/15 54.2 1.37/6.20 0
S.F. 131s 10.26 0.07 MeV 2008 1/9=3/31 709 2.28/8.48 0
262D 2.67 +7.64 (PSD + SSD) , :
266, 444 ms -
P o Bh 2010  9/7-10/18 30.9 0.52/9.00 0
- 0.787 s 2.;2 +0.06 MeV (PSD) 2011 1/22-5/22 89.8 2.01/11.01 0
S O . S
.y 2011 12/2-12/19 14.4 0.33/11.34 0
OLs o cosmeveso)  [Aug. 12,2012 2012 1/15-2/9 25.0 0.56/11.90 0
o : 2012 3/13-4/17 33.7 0.79/12.69 0
%6 4 56+ 0.06 MeV (PSD) 2012 6/12-7/2 15.7 0.25/12.94 0
; 3785 2012 7/14-8/18 32.0 0.57/13.51 1
lSdM
Total Total 553 13.51 3
JPSP 81 (2012) 103201
Poisson random variable (x) 0
Very low probability p( c~50 fb), large N Average rate of success | 0.0054
-> very small mean Np. Np=3/553= 0.0054/day
Very large probability of no-events. Poisson Probability: P(X =0) | 0.99461

Cumulative Probability: P(X > 0) 0.00539




Example: Neutrinos from Supernovae

* Irvine-Michigan-Brookhaven experiment looking for neutrinos 23/2/1987,
about which time supernova 1987a exploded.

 Table of distributions of number of events observed in 10s time intervals:

No. of events 0 1 2|1 3|1 4| 5|16 |7 8 9
No. of intervals 1042 | 860|307 |78 |15(3 |0 |O 0 1
Prediction 1064 | 823 | 318 (82 |16| 2 | 0.3 | 0.03 | 0.003 |0.0003
T e
. Xpectation
What is the mean number? L v
u =0.777; 10° 1..1
i 1 . Something special
excluding “9”: . —L happened!
—_— . n
pu =0.774; : N\
1}
10-1 ] | ] |




R Poisson Probability Distribution

About 102 or 1013 total particles hitting the upper atmosphere per second.
A 1 cm? detector geometrically subtends p =~ 10718 of the Earth’s surface area

Counting the numbers of cosmic rays that pass through a detector in a 15 sec interval

Data is compared with a poisson using the measured average number of cosmic
rays passing through the detector in eighty one 15 sec. intervals (u=5.4)

counts occurren- 2 2
ces 3 - . .
T | poisson with u=5.4
0 0 @ 151
1 2 S |
o L
2 9 g 10t
Q
3 11 =
) L
4 8 3 5t
3
5 10 Z
6 17 2 S 6 8 10 1
7 6 number of cosmic rays in a 15 sec. interval
8 8 Error bars are (usually) calculated using ¥n; (n=number in a bin)
9 6
10 3 Assume we have N total counts and the probability to fall in bin i is p;.
11 0 For a given bin we have a binomial distribution (you’re either in or out).
12 0 : : . : .
The expected average number in a given bin is: Np; and the variance is Np,(1-p;)=n,(1-p,)
13 1

If we have a lot of bins then the probability of a event falling into a bin is small so (1-p;) =1



Distribution of time intervals

Poisson random process: random process charaterized by a constant
probability of occurence per unit time regardless of past behavior

dp =rdt r:the average rate of occurence.

For the finite time interval T, the average number of events occurring will be r'T

Intervals between Successive Events

Assume an event has occurred at time t=0 (select a random point in time).

S 1 N |
—P‘ interval ‘4—
=0 t ttdt

probability of next probability of probability
event taking place in = no events during X of an event
dr after delay of ¢ time from 0 to ¢ during dt
1,(t)dt = P(0) X r dt



P(0): The probability that no event will recorded over an interval of length t for
which the average number of recorded events should be 77

0,—rt
- (rt)°e”” r From any random point in time
P(0) o
PO)=e™"

I, (t)

Li(Hdt = re” " dt

rlef— — —— e — =

|
I
|
The most probable interval is zero. r

j t1,(¢t) dt J tre” " di
= “0

0

F 1,() dt o
0

T =

1
The average interval length - v



Intervals Between Scaled Events

Events recorded by a digital scaler : a data buffer by producing an output pulse
only when N input pulses have been accumulated.

“scale-down” high counting rates by a factor, N.

. 12 3 ... N-1 N -
time N
— e iy ||
—P| mlerval 7 |4—'
t ttdt

Two independent processes: A time interval of length t must be observed over
which exactly N-1 events are presented to the scaler, and an additional event

must occur 1n the increment dt following this time interval

In(f) dt = P(N — 1)r dt

B L th(t)dt N
(rr N‘“le"f’t t_: —_

IN(f) dt = (N_1)| r dt J;:OIN(I) dt r

1.,(t) is the interval distribution for N-scaled intervals.



the most probable interval is evaluated by setting

N-1
dl
0 _,

dt t most probable y

Iy

X
r

rt/N

Figure 3.15 Graphical representation of the scaled interval distribution Iy(z). (a) Four
distributions for scaling factors of 1, 2, 3 and 4. (b) Interval distributions for N =1
through N = 10 normalized to the same average interval N/r.



A Study of the Randomness of Cosmic Ray Arrival Times

It is conventional to assume that high energy cosmic rays are detected in the vicinity
of the Earth at random times. Any deviations of massive particle primaries from
random arrival distributions are expected only due to the lack of isotropy in the source
distribution of particles such as might cause a time correlation on a diurnal basis.

Mivon p’y COINCIDENCE GATE
/’ ! LD ASB
Z ] A | I

Statistics for 1 Pulse Intervals Statistics for 5 Pulse Intervals

350- Mean interval for 1 counts: 0.321 s % Mean interval for 5 counts: 1.602 s

>~ 300
o

Interval Frequecy

S 150+

Interval Length (s) Interval Length (s)

http://www.publish.csiro.au/PH/pdf/PH800753



Null Experiments
Setting Confidence Limits When No Counts Are Observed

« Many experiments in physics test the validity of certain theoretical
conservation laws by searching for the presence of specific reactions
or decays forbidden by these laws. For example, lifetime of proton

* |f no one or more events are observed within T, the theoretical law is
disproven. However, if no events are observed, the converse cannot be said
to be true. Instead a limit on the life-time of the reaction or decay is set.

For the process has some mean reaction rate r for N nuclei, the probability
for observing no counts in a time period T is

(rt)Oe-*rl
0!

P(0[r) = exp(—T) P(0) =

This can also be interpreted as the probability distribution for r when no
counts are observed in a period T.

f(r) — Texp(—TT) /x f(r)dr =1 T. nomalization factor
0



The probability that r is less ryis

P(r<mry) = / T exp(—rT)dr
0
=1 —exp(—roT)

This probability is known as the confidence level(CL) for the interval
between 0O to ro CL = P(r < TO) =1 — exp(—frOT)

1
ro = —Tln(l — CL) For N nuclei
1
Ty = —ﬁln(l —CL) For each nucleus

r < ry is with CL confidence level. (upper limit)

T = 1 > N1 Mean lifetime
T In(1 - CL)

To make a strong statement we can choose a high confidence level (CL),
for example, 90%.



Proton decay measurement at the Super-Kamiokande

Super-Kamiokande uses 50,000 tons of pure water and it contains

7x1033 protons. Super-Kamiokande has started measurement since 1996
and is running more than 10 year, however, we have not observed any
evidence of proton decay yet. From this result, proton lifetime is estimated

to be more than 1034 years( at 90%CL) (age of the universe ~10'° years).

- NT _7X 1033 x 10
"=Tlm(1=cL) =~ 2303

years

Positron




B

3 Example 4.4 A 50 g sample of 82Ge is observed for 100 days for neutrinoless double

beta decay, a reaction normally forbidden by lepton conservation. However, current
theories suggest that this might occur. The apparatus has a detection efficiency of 20%.
No events with the correct signature for this decay are observed. Set an upper limit on
the lifetime for this decay mode.

Choosing a confidence limit of 90%, (4.59) yields

A<ip= ——-—1—ln(1—0.9) =0.115day !,

100 x0.2

where we have corrected for the 20% efficiency of the detector. This limit must now be
translated into a lifetime per nucleus. For 50 g, the total number of nuclei is

N=£a—x50=3.67x1023,

82

which implies a limit on the decay rate per nucleus of

0.115
T 3.67x10%

=3.13x10 ¥ day .

The lifetime is just the inverse of A which yields

7>8.75x10*' years  90% CL ,

where we have converted the units to years. Thus, neutrinoless double beta decay may
exist but it 1s certainlv a rare nrocess!



The Gaussian or Normal Distribution

The Gaussian distribution plays a central role in all of statistics and is the
most ubiquitous distribution in all the science.

Measurements errors, and in particular, instrumental errors are generally

discribed by this probability distribution.

0.08

0.06

P =——exp(- )

V 272':“ 2 H 0.02

u = average of the distribution

Pix)

c’=pu
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In general, probability density function

20 25 30 35
(x=o0) X (x+o)

_ 1 C(x-p)’
f(X)—GmeXp( S )

hln.¢
40
X

When p is large, the Poisson distribution P (v) is well approximated by the
Gauss function with the same mean and standard deviation



T Gewp
G(x,u,c)—\/ﬁo_exp{— 552 }

which by make a suitable coordinate transformation, x — Ox + UL, gives the
Normal distribution

1 2\ -
N(x) _ exp {_x_ } Mean_ Zero

......................... vor o\ 2 ) [Rms =
Blnomlal Noxo Np=2 P0|sson
Gau55|an

N_y N —
CLT
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The full width at half maximum (FWHM)

FWHM =20+2In2 =2.350
5 A
. R 02 2 "3 '30

The area contained between the limits pt1c, u+2cand u+3cina
Gaussian distribution.

The presentation of a result as x = o signifies, in fact, that the true

value has 68% probability of lying between the limits x-c and x+c



Gaussian and CLT
Central Limit Theorem (CLT):

« Consider the sum of X of N independent variables x;, withi =1,2,3... ,
each taken from a different distribution with mean y; and variance o

« Then the distribution for X = ) x; has the following properties:
— its expectation value is u = ), u;

_ |tS Varlance |S 0-2 —_ 2 O-LZ 5000 throws of two dice (simulated)
— it becomes Gaussian distributed for n —» oo g — ]
For CLT to be valid:

Number of occu
o 200 400 600 800

u and o of pdf must be finite.

No one term 1n sum should dominate the sum.

2 3 4 5 6 7 8 9 10 1 12
Sum of two dice

This is highly relevant for experimental resolutions (see later lecture),
because many different sources for errors in measurements are
mostly independent



Energy straggling: The energy loss distribution

« The distribution for thin absorbers: Energy loss distributions for 12GeV protons

passing through several silicon thicknesses.
6-electron

» few collisions, some with high
energy transfer(-electrons).

—56um

——224um ||
55.6 um

—112um |]

» Energy loss distributions shows
large fluctuation towards high
losses: Landau distributions

Normalized Entries

.
te
e
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’ 1% e )
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0 20 0 40 50 60
nergy Lgss [KeV]

N
AE:Z,-:O i \N:YaumRer of collisions

« For relatively thick absorbers:

€ N \\

/] <

» Many collisions, the total energy
loss follows directly from the
Central Limit Theorem and
approches the Gaussian form

E=NSE, 6E —0,N —w



Best illustration of the CLT.

a) Take 12 numbers (r,) from your computer’ s random number generator

b) add them together
c) Subtract 6

d) get a number that is from a gaussian pdf!

Computer’ s random number generator gives numbers distributed

uniformly in the interval [0,1].

A uniform pdf'in the interval [0,1] has u=1/2 and ¢%=1/12

A) 5000 random

Thus the sum of 12 uniform
random numbers minus 6 is
distributed as if it came from a
gaussian pdf with u=0 and c=1.

In this case, 12 is close to .

B) 5000 pairs (r4+ r»)
numbers of random numbers

300 B

1000 —

200 o
500
100

0
0 1 0 { 2

C) 5000 triplets (ry+ ry+ r;) D) 9000 12-plets (r1+ ++rq,)

of random numbers of random numbers.

105 | E) 5000 12-plets

Eg (ri+ ++r12-6) of

500 — random numbers.

™~ Gaussian
u=0 and o=1

0 3 6 9 12
6 0  +6
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Repeated measurements will give a normal distribution about the mean
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Measurement Errors (Uncentainties)

Statistical Errors

Differences in results are randomly varying, giving statistical uncertainties ,
There is the law of large numbers applies and helps to increase precision !

Statistical error is usually assumed to be from a Gaussian distribution.
With the assumption of Gaussian statistics we can say (calculate) something about
how well our experiment agrees with other experiments and/or theories.

Expect ~ 68% chance that the true value is between X -cand X + ¢ .

The error in the mean s,

If we repeat a measurement n times and each measurement has uncertainty

s, then o =2 50 We will see it later

" n



Systematic Errors

A systematic error denotes the uncertainty in estimating effects caused by
systematic mistakes and caused by neglecting systematic mistakes.

Systematic mistakes are eg. wrong method, faulty instruments, wrong formulae ..

Because of systematic errors, an experimental result can be precise, but not accurate!

Comments on systematic uncertainties:
»>sys. errors do NOT decrease with 1/4n

»statistical and systematic errors are in general independent. | accurate but not precise

»need to quote errors separately in the results.

x=10.2 = 0.2 (statistical) = 0.3 (systematic) &= 0.3 (theory) [units] | precise but not accurate

Often errors are NOT symmetric.
Need to quote both errors:

value = x.

0 - T low




Propagation of errors

Experiment observable x : T £ 05

Derived quantity f(z) : f(Z) £ o¢(?)
AL
L 1 L
Gamma, . AL,At — ATOF — AE, E, + AEn
Start neutron Stop
When ¢, is enough to use linear approximation to f[x] near x,
-0
f-Frlw-a)
v N , ) y=f(x)
1 o\ 2 1 of _
TGN 12— f) =g [%(mi _m)]
=1 1=1
+ o "1'.____________
of 1 N N Y=+ Oy LIIRRIIIEZAT df
2 _ 2 . Pl dx ¥
i ((9:13) N—l;(mz 7) E ( >
o
of X+ oy
7 = (5g) %




Experiment observables: Derived quantity

T:T Lo,
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Covariance and correlation
e EA 7S
Define covariance of x and y ,cov[x,y] as
covz,y| = Elzy| — papy = E[(z — pa)(y — py)]
For f(x,y,z), there are three covariances: cov(x,y), cov(x,z), cov(y,z).

Correlation coefficient (dimensionless) defined as

cov|z, y|

Py = p ranges between +1 and -1
Oz O'y

If X, y, independent, i.e., f(z,y) = fo(x)fy(y) = then
Elry] = //:cy f(z,y) dedy = papy

—0y =0 xand v, ‘uncorrelated’

If x, y, correlated linealy, then |p,,|=1



p=+1 if and only if Y =aX+b with a>0,
Correlation p=—1 if and only if Y =aX+b with a<0.

p =000 p=010 p = 0.50

ol e,
y ’ " ﬂ’."‘)’.l..

p= —0.70 p= =090 p =099
. 2, b . :fb.. T'::é.
B 1Y PR .'.",' 'S e
" Fu ’;&‘ AL+ ..:' /%}'L": . ":v- 4
. 3 ol o ‘t,{gﬁa{_ e

https://en.wikipedia.org/wiki/G_factor_ (psychometrics) X
http://www.psych.utoronto.ca/users/reingold/courses/intelligence/cache/1198gottfred.html



As an example, consider the exam and homework scores shown in Figure 9.1.
These scores are given in Table 9.3. A simple calculation (Problem 9.12) shows that

100 + . .
Table 9.3. Students’ scores. I .
Student i 1 2 3 4 5 6 7 8 9 10 50F
Homework x; 90 60 45 100 15 23 52 30 71 88
Exam y, 90 71 65 100 45 60 75 85 100 80

0 50 100

Homework score x —

the correlation coefficient for these 10 pairs of scores is p= 0.8. The professor
concludes that this value is “reasonably close” to 1 and so can announce to next
year’s class that, because homework and exam scores show good correlation, it is
important to do the homework.

If our professor had found a correlation coefficient p close to zero, he would
have been in the embarrassing position of having shown that homework scores have
no bearing on exam scores. If p had turned out to be close to —1, then he would
have made the even more embarrassing discovery that homework and exam scores
show a negative correlation; that is, that students who do a good job on homework
tend to do poorly on the exam.

From John R. Taylor, An introduction to error analysis 2™ edition



Propagation of errors

Error estimates for a function of many correlated variables
f(x4, Xo,...X,), Need to take correlation into account:

O'f,=i g O'f+i:i g -cov(x;,x ;)

i1 \ OX; i1 =i\ Ox; Ox ]

I'\H_ _F,/'I \H._ . . _F,/
'\‘]I/" "q-\/—’
Normal errors (for

, Additional terms accounting
uncorrelated variables).

for correlations

If x, X,, ..., x,are independent quantities having errors G, Gy,, .G,

of \’ of \’ of \’
2 | L 2 —J 2 2
Uf_(aml)am—i_(aa:g) 0x2+...—|—(amn Oz,




Propagation of Uncertainty (neglecting correlations)

_ 2 _
f—:c—l—y—>af—0$—|—ay Errors add in
f=xz—y— o'fc = 02 + o2 “‘quadrature”
Of \2 Oz \9 Oy \2

f=zxy— = (—)“ 4

( f ) ( L ) ( Yy ) Relative Errors

Of \2 Oz \2 Oy \2 addin “quadrature”
f=aly— ()= () + ()



Only one measurement, estimate uncertainty?

There is only one measurement. strictly speaking you are out of luck.
However. one can posit that it must be the mean. and 6?>= mean (Poisson distribution)
One further assumes that the distribution 1s symmetric: 7 + o

[ i i g S - r—— — — — ———

2 3

Figure 3.13 A graphical display of error bars associated with experimental data.



Uncertainty of Mean of N measurements

N independent measurements of the same physical quantity:
xl,xz,x3,...,xi,...,xN O-.'EZO-CEI :01:2...:0:1:71

The uncertainty in the mean is smaller than the uncertainty in a single
observation by a factor of 1/,/N



Example 4.3 Consider the following series of measurements of the counts per minute
from a detector viewing a *’Na source,

2201 2145 2222 2160 2300

What is the decay rate and its uncertainty?

Since radioactive decay is described by a Poisson distribution, we use the estimators
for this distribution to find

fa=Xx=2205.6 and

X _ 2205.6 _a1.

o) = n 5

The count rate is thus

Count Rate = (2206 + 21) counts/min.

hit h1

hi hi

100 Entries 10000 1 Entries 5
Mean 2205 Mean 2219
Std Dev 46.89 Std Dev  29.54

80 0.8

60

0.6

40

0.4

20 0.2

I||||I|||II||||||I||

Illlllllllllllllllll

1wl Bootiies e A
Moo 2050 2100 2150 2200 2250 2300 2350 2400 B0 2050 2100 2150 2200 2250 2300 2350 2400




Do not confuse o7 with ¢ !

- o is related to the width of the pdf that measurements

come from. -resolution

- 0 does not get smaller as we combine measurements.

Example: x follows gaussian distribution:

G(z,z,0) = ! e P Oz = J/\/N

10

(o2}
[ | [ || T | T | M1 || T

\ 2o
hgaus
Entries 100
Mean 9.976
X = 10 L N = 100 Std Dev |0.9978
o=1 Z+ oy = 10.00 + 0.10
§ o+o, =0.88+0.11

oO

2 4 6 8 10 12 14 16 18 20

hgaus
C Entries 400
- Mean 10.02
30— N _ 400 Std Dev 1.101
- _ [
25— T+ oz =9.96+0.05
- o+o, =1.03+0.04
20—
15—
10—
5
oE A
0 12 14 16 18 20




Combination of independent Measurements with unequal errors

N independent measurements with different uncertainty.

|dea: give more weight to those measurements with small values of o,

and less weight to measurements for which this estimated error is large.

« Let each individual measurement x; be given a weighting factor a; and the

best valuez computed from the linear combination




The weighting factor ¢; should be chosen in order to minimize the expected
errorinz .

S 1/02 z; [0} The weighted mean

2 1 .
Oz = Z 5 The error on the weighted mean



Example 4.2 It is necessary to use the lifetime of the muon in a calculation. However,
in searching through the literature, 7 values are found from different experiments:

2.198+0.001 ps 2.203+0.004 ps 2.202 +0.003 ps
2.197+0.005 ps 2.198 +0.002 us 2.1966 + 0.0020 ps
2.1948 + 0.0010 ps

What is the best value to use?

One way to solve this problem is to take the measurement with the smallest error;

however, there is no reason for ignoring the results of the other measurements. Indeed,

even though the other experiments are less precise, they still contain valid information
on the lifetime of the muon. To take into account all available information we must
take the weighted mean. This then yields then mean value

7=2.19696

with an error

o(t) = 0.00061.

Note that this value is smaller than the error on any of the individual measurements.
The best value for the lifetime is thus

7=2.1970+0.0006 ps .



Optimization of counting experiments

n,=N,/t;: counting rate due to source and background
n,=N,/t,: counting rate due to background

Ny=ns-N,: counting rate due to source alone

t=t +t,

« For a given t=t,+t,, uncertanty of ny can be minimized by optimally
choosing the fraction of t allocated to t (or t,)

o, =+ oyt =N/t =Jn/t

o, =t +n,/t, =\n [t +n,[(t-t,)

oo
2 =0 ¢/t =+n/n,
ats opt

mm:(\/g_\/g)\/; " 7



For low level measurement n,~ng, i.e. ng/n,~1

Ng is proportion to detection efficiency ¢

1 /\/7 It's vital to use a detector with high detection efficiency
Vigmin € 1AE /Iy ) and low background for low level measurement
1 1

For a given v, omin

ZLmin =
(\/ns o \/nb ) vno min



Background run:

x1,y1,z1
I Experiment with target out to
\\H\ estimate the reactions in detectors
— 5_\’H__..\g— and target frame

Upstream detectors
(position, time)

Downstream detectors
(Position, energy)

Y.L.YE et al. PHYSICAL REVIEW C 71, 014604 (2005)

100000

10000

1000

FIG. 4. (Color online) Angular distribution
of the ®He particles for target-in (solid line) and
target-out (dotted line) runs, detected by the 0°
telescope. The inset is a linear display of the
counts at very small angles.

04 06 08

counts

100

10 — target-in
»»»»» target-out
| |
| 1 1 1 A 1 1 ! n !]' n
0 1 2 3 4 5 6 7 8



Example: In-beam gamma spectroscopy

DALI
RIPS beam line (RIKEN)
Target
mg;gfn? ;g;?gar Plastic Scintillator
(TOFpeam) IE Ejectile PID
r 3 EEFF g\
Momentum | THEEH
b

Slit (4%)

s |
1“’ Beam N m I . __l 15| 23F DALI2
J, I |’] _ =

_~
(180 mg/cm?)
40Ar (63 AMeV) / y-ray detector
PPAC

# of Nal(Tl) detectors 160
Angular resolution 8 deg.
Efficiency @ 1MeV 21%
E resol. (8=0.3) @1 MeV 8%

Coverage (8) 30~160 deg.



-

Doppler correction of y-rays from fast RI Beam (5-0.3)

g-ray source is moving with g~ 0.3

» Doppler shifted = need to be corrected for

Detector o lab
EP™ = E™v(1 — Bcosf)
7

%

Beam particle - v

> — o

H N 2

Scattered particle \I::l\

Target e

g

=

o

~—~~ o
=
o
X
N
>
(©@)]
| -
o
(e
L

“Mg(p.p’) B~03

._|||||||||||||||||||||||||||||_,

300 — (a) Laboratory flame—]

-
-

200

100

_'E:!
IIIIJJIII.I.I|IIJ

300 (b) Projectile flame —

200

100 f

lJIII.I.III.lJJI

0 500 1000 1500 2000 2500 3000

E, [keV]

H.Hasegawa, Master's thesis,

Rikkvo Univ._. 2003



Doppler broadening due to Doppler broadening due to slowing

finite opening angle of detector down of projectile in target
Defectar l Detector
________ “toft tof2
p=?
proj 1 — ﬂz
" 1—fcosb

o (i o )

* A0 is determined by detector’s ability to reconstruct first y-
ray interaction point

* AP is determined by target thickness
* AE 1s determined by detector

e Old new paradigm for fast beam experiments with

non-4n y-ray detectors:
Experimenter trades energy resolution (A0) versus efficiency




Energy resolution %

Energy resolution in y ray measurement

---- design of the array

Dependent on angular resolution / target thickness / detector resolution

E;roj — ,},6 _B coselab ﬁv;ab

AES™ ] Bsin6™ Z(ABIabj ﬂ}'z(B—COSe'ab) ] ApB ’ AE®® '
E™ 1- Beos®™ 1-BcosO"™ B E™

Detector arrangement or Beam velocity or  Intrinsic resolution
Angular resolution Target thickness

mklvTTIrth]rT‘rv‘lrv‘:nyv]tv,Y]rvvvltv-
‘5: DALI A = 2031 DALI2 A - B
10 — P —
- e el mm—
5
ot s DS s B
0 50 100 18 O 50 100 150
Oy, (deg.) Opp (deg)




Segmented Ge Detectors vs Nal(T1)

Seegmented Ge
o IN%I(TI) < 2'0 D I gl ] I I
8 _ 1.6 -
® 6-_ o . 1.2-/\
® — -
N 4- / A \ 4 0.84 / \\
= . .
< "\[ '\—"' / N '.' \
24/ \ 0.4/ o \-
0 . =5

T — T T 0.0
0 30 60 90 120 150 180

0 30 60 90 120 150 180

6 (deg)

Resolution
comparison:
Total

AE in target
Opening angle

Final energy resolution is of the order of 1% with target of order few 100 mg/cm?
— detector should have similar or better resolution

— Energy resolution of ~1% or better
— Angular resolution of ~ 10 mrad




Parameter estimation

A very common task is to determine the underlying distribution for a
measurement. ie. find one (or more) parameters of a pdf f(x;a) from a set of
measurements {x,, X,, ... ..., X} -> “estimation”

Example: Radioactive decay *

f®

_ 1 —t/ 075 |

Exponential pdf, f(¢;7) = —e /7
T
05 F

Experimental data, ¢, ... ¢,

025 |

Task: determine T

T T T T,
0 1 2

Most commonly used methods are:

» Maximum Likelihood Method(MLM)
» Least Squares Method (LSM)



Maximum Likelihood Method
MLH: a general method for estimating parameters of interest from data

o Statement of the maximum likelihood method
- we have made N measurements of x {X{,X,, ... X.}.

- we know the probability distribution function that describe x: f(x;8).
- we want to determine the parameter 6.

 How do we use
- The probability of measuring x, is f(x4;0)dx.
- The probability of measuring x, is f(x,;0)dx.
- The probability of measuring x,, is f(x,;0)dx.

» |If the measurements are independent, the probability of getting the
measurements is
L) = f(z1;0)dz - f(z2;0)dz--- f(20;0)dz = f(21;0) - f(22;0) - f (zn;0) dz"
We can drop the dx" term as it is only a proportionality constant
L(O) = ][ f (z:;6) Likelihood function
1=1

If hypothesis f(x,0) and parameter are correct, then we expect a high probability
for these measured data sets.



« pick the 6 that maximizes L.:
oL .
00 9:9*“'0

 Both L and InL have maximum at the same location.
- maximize InL rather than L itshelf because InL converts the product

into a summation. 0.20
" 0.10 }

InL =37 In f (i, 6) L g
. » —0.10 f
- new maximization condition: r
—-020 F
dln L n 9] 9 —030F
nll g Oilmi0)) 040 |

89 0=0" 1=1 89 0=06* _0.50 .A-..LLAA.l.nl.lnnnn

-1 -050 o a 050 1

« 0 could be an array of parameters (e.g. slope and intercept) or just a single

variable.
« equations to determine 8 range from simple linear equations to coupled non-

linear equations



Error on Estimate

e Taylor expand In L(6) around 6 = 8~

Oln L 16*°InL 9
InL(0) =InL (6" 0—0")+ — 0— 0"
nL(6) =L (07) + 00 9:9*( )+ 2 062 9:0*( '
1621nL 2
InL(0) ~InL (0" — 60— 0"

1 2L L (0—6°)? L(«) is Gaussian distributed!
L(0) =~ const x e> o> "=* , e
o) o - H0)

V2o

i _
o(0)" = —(Fk, )

InL(#) ~InL(6%)+ (6 —6)"

2 45 4 4945 0 05 1 15 2

a



example: parameter of exponential pdf

Consider exponential pdf, f(¢;7) = le—t/T :
-

Suppose we have data, ¢q,... ¢, s |

The likelihood function is L(r) = [] —e~4/"

T~ 05
=1

The value of t for which L(t) is maximum also gives 93 |
the maximum value of its logarithm : o il

NL(E) =Y Infltsr) =3 (ml_@) ,
=1

i=1 T T

ainL .1 & 2
Find its maximum by setting n(%(r) =0, — T=~— d oty d?=

Monte Carlo test:
generate 50 values
using t=1:

We find the ML estimate: T = 1.062
o+ = 0.150



Assume we can measure all times up to limit T

f(t; T) need to be renormalized:




P

Extended Maximum Likelihood

 Consider n observations of a random variable x distributed
according to a p.d.f. f(x;0), with unknown parameters 8 = (6, ... 8,,).
Data sample : x4,x,, ..., X,,.

 Often number of observed events n is itself a Poisson random
variable with mean value v.

Hz/f(a:z-;O)

1=1

L(v,0) = —"Hf zi; 6

This is called extended Likelihood function. Now the sample size n
defined to be part of the result of the experiment.

In L(v,0) = ) + Zln f(z;,0)] + const

e.g. angles of the outgoing particles, depend on parameters such as particle masses
and coupling constants. The number of observed events would fluctuate if one were to
repeat the experiment many times, each time with the same integrated luminosity, and
not with the same number of events. v = a(m, c)Le

Adding v as measurement to LH improves resolution on 8 (on mass)

If v is independent of 6, it is the same as normal LH.



Multinomial Distribution

Generalization of binomial distribution to m possible discrete outcomes for
each event:

— N is total number of trials, probability for “outcome k”: py 150
— Probability to obtaining (n4,n,,...n,,) outcomes is given by:

N! D) Mo

ny'ng!l.. .nm!pl Py ---Pm

f(nh---7nrn;N7p17"”pm) -

Example:

- Throwing a dice 10 times;
getting2 *"1” ,1*3" ,1*%4” | 2* 5" /4 *"6"

- Consider the three possible outcomes: i, j and everything else.

N—ni—nj

N! o
-p;'p;’ (1 —pi — pj)

n"n,;N, iyPi) =
f(ni, njs N, pis pj) ni!n;!(N — n; — n;)!



Binned Maximum Likelihood (I)

Uncertainties are slightly larger than in unbinned fit L&
limit of very small bins 0 e

Consider n,,; observations of a random variable x distributed
according to a p.d.f. f(x;0) for which we would like to estimate the
unknown parameter 8 = (6,,6,, ... 0,,).

For very large data samples, the log-likelihood function becomes
difficult to compute. In such cases, one usually makes a histogram,
yielding a certain number of entries n = (n4, n,... , ny) in N bins.

max
T

Compute the number of expected entries in a bin  ,(9) = n, / f(z;0)dz

min
i

n ' 7, ni 7, ny

tOt . 1 f\(

,f]'oint (n; V) — | | ( ) ... ( ) ‘50
ny:...ny- Ntot Ntot

N
In(L(A)) = Y n;Inw;(6) + const
i=1 50




f®

0.75

05

0.25

unbinned

N(z)

25

20

15

10

At =05 binned
' — data
"\ - - - ML fit to histogram
\
\\ A
- 7 = 1.067
8 o =0.171
I‘\g—
Y 1 2 3 4




L

Binned Maximum Likelihood (II)

« One may regard the total number of entries as random variable from
a Poisson distribution with mean v;,;.

o ny ny
Mot ! ( V1 ) ( VN )
Nt | Ml oy \ Vot Vot

N N
Where Viot = v; and ngoy = E n;
i=1 =1

fjoint. (Il; V) —

max

N an T
fjoint(n; V) = H 'n,z' eV Vi (Vtots ) = Vtot /mmin f(z;0)dx
i—1 1

equivalent to treating the number of entries in each bin as an independent
Poisson random variable n; with mean value v;,.

N
In L(Vsot, 0) = —viot + Y _ ni Invi(vtor, 0)
i—1

« This is extended LH for binned case. If there is any relation between
uncertainties on get smaller, otherwise stay the same.



The method of least squares
* Measurements y; (eg. differential cross section) with errors g; at lots of known points x;
* A theory gives y=f(x; 8) depending on (unknown) parameter 9
» Want to extract a from the data.

* If errors on data points Gaussian:

The probability of a particular y;, for a given x;1s
1 2T

P (y;;0) = o~ Wi~ f(zii0)]" /207
( o\ 2T
15 |
1 yz:—f(w.,;;()) 2
In L(0) = ) Z [ - — Zlna,“/Qﬂ- |

Maximize In L(6) means minimizing

05 r

LA L2} o

1

Often minimize »?> numerically (e.g. program MINUIT).



Some Remarks on Xz

* By definion of ,- :Z(y,- —fz(xl-)) expect ~1 per data point.

i O,

1

» More precisely, expect y? ~1 per number of degree of freedom (ndf)
Nndf= N data points — N fit parameters

e.g. if we fitted a Gaussian, there were 3 parameters

* ¥ / ndf provides a figure of merit for how well theory describes data



Simplest Example: Straight Line Fit

For simplicity, suppose line must go through origin:

y=t(x)=mx 2
Zzzz(yi_”;xi) - 6:
i op i

l

. : 5¢
Minimise with respect to m.... [

dy Y, —mx,
dm 22—2)@.( o ):O 3|

Z”

z/ .




Example of y2 vs ML fit

e Example with many low statistics bins

Events / (4)

true distribution

/ P v2 fit

a 8 & 8

N
Lol o
_‘I_+I||3IIIIIIIII|IIII|IIIIIIIIIIIIIIIIIII'

15

10

unbin

lllllllllllIllllllllllllll

llllllllllll

0

ned ML fit

10 20 30 40 50 60 70 80 9 100



Maximum Likelihood or y2 — What should you use?

o v2fit is fastest, easiest
- Works fine at high statistics
- Gives absolute goodness-of-fit indication
- Make (incorrect) Gaussian error assumption on low statistics bins
- Has bias proportional to 1/N
- Misses information with feature size < bin size

e Full Maximum Likelihood estimators most robust
- No Gaussian assumption made at low statistics
- No information lost due to binning
- Gives best error of all methods (especially at low statistics)

- No intrinsic goodness-of-fit measure, i.e. no way to tell if ‘best’ is actually
‘pretty bad’

- Has bias proportional to 1/N
- Can be computationally expensive for large N



£

C.B.Hinke et al., Nature 486, 341-345 (2012)
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O M N @ O - N QL

e

a4

14 T T M T v 1] ¥ 1 & 1 ¥ 1]
: 109 ]
3 12 4
o i 4
3 £
- - -
__ 10¢ 8
E )
94 (o}
= (7]
- =
2 0 o
3 o
: % 1 O T T T T T T Y T ¥ T b T % T
96 0 500 1,000 1,500 2,000 2,500 3,000 3,500
Time (ms)
In total, 259 199Sn nuclei (those indicated _ S _
identified.

A maximume-likelihood analysis with a maximum of three decay events during the
correlation time was used to analyse these decay chains. The half-life of 100Sn
was deduced to be 1.16 6 0.20 s in the MLH analysis using established values for
the lifetimes of the daughter nuclei.



The Chi-Square(y?) Distribution

« Important in connection with least-square method.
« If x4, X,, ... X,, @are independent, Gaussian distributed variables, with

mean p and variance o, then x* = > " [(z; — 1;)/0?] is distributed

according to y?-distribution. filx) v

h k=1

0.5 — h=9

2 k/2—1 ,—x2/2 1

(ko) = (x*/2)"" e/ 0 — k=3

| 2I'(k/2) , — k=6

031 — k=9

k: number of degrees of freedom

ndf/df/dof 0.21
I'(k/2): gamma function 0.11
0.0

0 1 2 3 4 5 6 7T 8°
v? -distribution plays an important role in the comparison of measurements
with theoretical distributions.



Chi-Square(y?) Test - Goodness of Data

0.14

o = v o Tl o ] Zzzzn:(xi_ﬂi)z

0.1}

0.08¢ /

ou:k
\ ‘ e02=2%k

P(r*2 =] P(x)dy’ =a

P(x*)

0.06¢

004}
0.02F

lﬁ»:-“.‘--
0 /'7.".'.‘3 i A A A
8 10 12 14 16 18 2

o 2 4
x X

2 :
Z0.95 Z0.05

Very low probabilities (say less than 0.05) indicate abnormal large fluctuations
in data, whereas very high probabilities(greater than 0.95) indicate abnormally
small fluctuations.

——

|
|
|
|
|
|
|
|
|
|
|
A
6

A perfect fit to the distribution for large samples would yield a probability of 0.5

The chi-square pdf has an expectation value equal to the number of degrees
of freedom, so if y?/ndf ~ 1, the fitis 'good'.



For example, if for identical, consecutive measurements one gets the following

counts in a scaler:
242,241,249,246,236,250

N =l;N,-=l<242+241+---+250)=—1— X 1464

ki 6 6

=244
& —

(N,—N)? 1
2 o —_— pr— — ¢ nay —
X = 2y S = [ (242—240) e+ (250~ 244)7]
=51;~E=0. 58 Degrees of freedom 6-1=5
Given X?=0.58 and d=5

Calculate

The chance probability, Q), is: 0.9889

https://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html

The data are clustered around the mean much closer than one would expect,
suspicious !


https://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html

The significance of an observed signal
Suppose we observe n events; these can consist of:

Ny, events from known processes (background)
Ns events from a new process (signal)

If N5, N, are Poisson random variables with means u., u;, then N= Ng + N,
is also Poisson, mean = u.+u, : 40

@ e D"p+D*p |

30 | J| —  Signal + bg. fit

Entries per 10 MeV

(/—Ls + Mb)N . 7 : ----  Bg. only fit
PN s, pp) = ~————e ) I
106 fplel Ly
0 QUL Gyt
Sometimes b known, other times it is in some way uncertain. M(D*p) [GeV ]

Goals:
(/) convince people that u, # 0 (discovery);
(if) measure or place limits on ., taking into consideration the uncertainty in y,.



signal + background

I
background
° D*-p + D**.—) Wb+ Mg
— signal + bg. fit | ' 0 Hy+Hs)
---  Bg. only fit i PC(& !-lb)

Entries per 10 MeV

number of events

‘ .Y o =backg. SL
3.4 3.6 B = signal 1- CL
M(D*p) [GeV ] 1-p =signal CL or power of the test

(s + o)™

- (p’s +N’b)
€
N!

P(N;ps, pp) =

Suppose N, = 0.5, and we observe N = 5.
Should we claim evidence for a new discovery?
Give a-value for hypothesis s = 0:

a -value P(N > 5;b=0.5,s =0)

= 1.7x107% # P(s = 0)!



Significance from a-value

Entries per 10 MeV

 In a given amount of data we expect: o) Y A iy
— Nyzbackground events ol
— Statistical error on background = VN, ree
— Systematic error on background = oy, / WXJOY
— Add errors in quadrature to get 6oy Y
« Observe N(>N,) events in data. Could be: " 5o N

— random fluctuation in N+ 6,,,background events
— NNz background events & Ng signal events

* Significance § = N¢/6,,r

2.8-107 5o discovery

1.3-1072 30 strong evidence

=
IA IA A

2.3.1072 25 weak evidence




Events / 2 GeV

Events - Fitted bkg

Discovery channel H -> vy y

10000 — -
C Selected diphoton sample ]
i e Data2011+2012 = H -
8000 - Sig+Bkg Fit (m_=126.8 GeV) ] > Y + Y
. T Bkg (4th order polynomial) B
6000 [— ATLAS Preliminary -]
- H—)"n — . . .
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Simple topology: two high-E+
(>40,30 GeV) isolated photons

Observed local significance of the excess: 7.4c (4.10 expected for SM Higgs)

Best mass fit: 126.8 + 0.2 (stat) £ 0.7 (syst) GeV —»Systematics fully dominated by y-energy scale

Best fit of signal strength @ this mass = p=1 65+° 34 = 1.65 £ 0.24 (stat) +0-25

[consistent across various categories]

-0.18

(syst)



LHC’s 750 GeV bump

e 2015 data (1/s=13 TeV, 3.2 fb 1) had an excess at my,,~750 GeV/c?.
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o 2016 data in agreement With 2015+2016 combined
. . with expected background
* CMS had similar excess with local ~ 30 P g data, largest local

within 1o significance in 700-800 GeV
was 2.30 for 710 GeV.



