
Chapter 2

Statistics and the Treatment of 
Experimental Data



Many of the process involved with detection of  particles are statistical in nature.

• The understanding and interpretation of all experimental data depend on 
statistical and probabilistic concepts.

statistics plays an essential part in all the sciences.

• For the experimentalist, it is also a design and planning tool.

before performing any measurement, one must consider the tolerances 
required of  the apparatus, the measuring times involved, etc., as a function 
of the desired  precision on the result. Such an analysis is essential in order 
to determine its feasibility in material, time and cost.



Characterization of data

A collection of N independent measurements of the same physical quantity:

Data Reduction - Counter



Histogram
• define bins for the possible values of a variable

• plot the number of entries in each bin
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Discrete distributions
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Continuous distributions

The probability of finding x between certain limits,  P(x1< x <x2). 

x1 x2

Characteristics of Probability Distributions

The probability to measure a value x 

in the interval [x, x+dx] is given by 

probability density function f(x) (p.d.f) 



Expectation(mean) values

Variance:

Standard deviation:

Measure for dispersion/spread of a distribution is given 
by variance around a single mean µ

方差

标准偏差

Discrete

Continuous

Report result:



Example: Uniform distribution: U(a,b)

Silicon Strip Detectors:

Resolution of one strip cluster:

1 2 3 4 5 6 7 8 9 10



Some common probability distributions

1. The experiment has two possible outcomes, sucess(s) and faliure(f).

2. The probability that any given observation results in an outcome of 

type s or f is constant, independent of the number of observations.

Consider N independent experiments (Bernoulli trials):



Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

probability of success on any given trial is p.

Probability of r successes in n trails (in order),  is

regardless of the order, 

the expectation value and variance

The Binomial Distribution 二项式分布



• The distribution is not symmetric.

• The peak or maximum of the distribution does not correspond to the mean. 

• Binomial distribution is the most general model and is widely applicable 

to all constant-p processes.



Example – Detector Design

• Particle goes through a detector layer.
– “success” measuring signal (p),
– “failure” no meas. (1-p)

efficiency

• How many layer do I need to have high overall track finding efficiency ?
(3 points without magnetic field, with B field at least 4)

• Assume efficiency: p = 95%
– 3 layers: P(3;3,0.95) = 0.857
– 4 layers: P(3;4,0.95) + P(4;4,0.95) = 0.986
– 5 layers: P(3;5,0.95) + P(4;5,0.95) + P(5;5,0.95) = 0.999

• Redundancy is very important when building detectors, assume always 
worst case

- efficiency



The Poisson Distribution

The Poisson distribution occurs as the limiting the binomial distribution 

when the probability p ® 0 (unknown) and the number of trials N ®¥ , 

such that the constant average rate µ = Np, remains finite. 

The probability of observing r events in this limit then reduces to

The Poisson distribution depends on only one parameter:µ, so that 
knowledge of N and p is not always necessary.
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The standard deviation

This is the origin of the formula nn ±

Examples:
- number of a specific type of events in a particle-particle scattering, when 

the total number of events is large and this specific process is very rare: 
e.g. Higgs decay

泊松分布



An example of radioactive decay. 
Decay of 25 mg of an element, with the lifetime of 1012 years . 

N= 1020 atoms (very large), T1/2=5x1019 seconds.

The probability of a given nucleus to decay , l=ln2/T1/2= 2x10-20/sec (very small).

Np = 2 (finite!)

As µ becomes large, the distribution becomes more and more symmetric 
and approaches a Gaussian form(µ≧20).

• The distribution is not symmetric.
• The peak or maximum of the distribution does not correspond to the mean. 

" = 0.1 " = 0.5 " = 5 " = 10

"< 1: most probable result is 0



Example: synthesis of superheavy element: Z=113

Very low probability p( s~50 fb), large N
-> very small mean Np.
Very large probability of no-events.

JPSP 81 (2012) 103201

Np=3/553= 0.0054/day

Total



• Irvine-Michigan-Brookhaven experiment looking for neutrinos 23/2/1987, 
about which time supernova 1987a exploded.

• Table of distributions of number of events observed in 10s time intervals:

Example: Neutrinos from Supernovae

Something special
happened!

What is the mean number?
= 0.777;

excluding “9”: 
= 0.774;



Poisson Probability Distribution
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number of cosmic rays in a 15 sec. interval

num
ber ofoccurrences 

poisson with µ=5.4

Counting the numbers of cosmic rays that pass through a detector in a 15 sec interval

counts occurren-
ces

0 0

1 2

2 9

3 11

4 8

5 10

6 17

7 6

Data is compared with a poisson using the measured average number of cosmic
rays passing through the detector in eighty one 15 sec. intervals (µ=5.4)

Error bars are (usually) calculated using Öni (ni=number in a bin) 

Assume we have N total counts and the probability to fall in bin i is pi. 
For a given bin we have a binomial distribution (you’re either in or out).

The expected average number in a given bin is: Npi and the variance is Npi(1-pi)=ni(1-pi)

If we have a lot of bins then the probability of a event falling into a bin is small so (1-pi) »1

8 8

9 6

10 3

11 0

12 0

13 1

About 1012 or 1013 total particles hitting the upper atmosphere per second.
A 1 cm2 detector geometrically subtends p ≃ 10−18 of the Earth’s surface area 

选读



Distribution of time intervals

rdtdp = r: the average rate of occurence.

For the finite time interval T, the average number of events occurring will be rT

Assume an event has occurred at time t=0 (select a random point in time). 

t=0 t t+dt

Poisson random process: random process charaterized by a constant 
probability of occurence per unit time regardless of past behavior



P(0): The probability that no event will recorded over an interval of length t for 
which the average number of recorded events should be rt

The most probable interval is zero.

The average interval length 

From any random point in time



Events recorded by a digital scaler : a data buffer by producing an output pulse 
only when N input pulses have been accumulated.

t
t t+dt

1 2 3 ... N-1 N

Two independent processes: A time interval of length t must be observed over 
which exactly N-1 events are presented to the scaler, and an additional event 
must occur in the increment dt following this time interval

“scale-down” high counting rates by a factor, N.





http://www.publish.csiro.au/PH/pdf/PH800753

It is conventional to assume that high energy cosmic rays are detected in the vicinity 
of the Earth at random times. Any deviations of massive particle primaries from 
random arrival distributions are expected only due to the lack of isotropy in the source 
distribution of particles such as might cause a time correlation on a diurnal basis. 

A Study of the Randomness of Cosmic Ray Arrival Times



Null Experiments
Setting Confidence Limits When No Counts Are Observed

• Many experiments in physics test the validity of certain theoretical 
conservation laws by searching for the presence of specific reactions
or decays forbidden by these laws. For example, lifetime of proton

• If no one or more events are observed within T, the theoretical law is 
disproven. However, if no events are observed, the converse cannot be said 
to be true. Instead a limit on the life-time of the reaction or decay is set.

For the process has some mean reaction rate r for N nuclei, the probability 
for observing no counts in a time period T is

T: nomalization factor

This can also be interpreted as the probability distribution for r when no 
counts are observed in a period T.



This probability is known as the confidence level(CL) for the interval 
between 0 to r0

To make a strong statement we can choose a high confidence level (CL), 
for example, 90%.

For N nuclei

For each nucleus

Mean lifetime

r ≤ r0 is with CL confidence level. (upper limit)

The probability that r is less r0 is



Proton decay measurement at the Super-Kamiokande

Super-Kamiokande uses 50,000 tons of pure water and it contains 

7x1033 protons. Super-Kamiokande has started measurement since 1996 

and is running more than 10 year, however, we have not observed any 

evidence of proton decay yet. From this result, proton lifetime is estimated 

to be more than 1034 years( at 90%CL) (age of the universe ~1010 years).

http://www-sk.icrr.u-tokyo.ac.jp/sk/sk/pdecay-e.html
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The Gaussian or Normal Distribution

In general, probability density function

µ =  average of the distribution

s2 = µ
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The Gaussian distribution plays a central role in all of statistics and is the 
most ubiquitous distribution in all the science. 

Measurements errors, and in particular, instrumental errors are generally 
discribed by this probability distribution.





The full width at half maximum (FWHM)

ss 35.22ln22 ==FWHM

The area contained between the limits  µ±1s , µ±2s and µ±3s in a 

Gaussian distribution.

The presentation of a result as x±s signifies, in fact, that the true 

value has 68% probability of lying between the limits x-s and x+s



Gaussian and CLT

• Consider the sum of X of N independent variables xi, with i = 1,2,3... , 
each taken from a different distribution with mean μi and variance σi²

• Then the distribution for ! = ∑$% has the following properties: 
– its expectation value is & = ∑&%
– its variance is σ2 = ∑)*+
– it becomes Gaussian distributed for , → ∞

Central Limit Theorem (CLT):

This is highly relevant for experimental resolutions (see later lecture), 
because many different sources for errors in measurements are 
mostly independent



Energy straggling: The energy loss distribution

• For relatively thick absorbers:

• The distribution for thin absorbers:

E=NdE, dE ®0,N ®¥

Energy loss distributions for 12GeV protons 
passing through several silicon thicknesses. 

Ø few collisions, some with high
energy transfer(!-electrons).

Ø Energy loss distributions shows 
large fluctuation towards high 
losses: Landau distributions

Ø Many collisions, the total energy 
loss follows directly from the
Central Limit Theorem and
approches the Gaussian form



Best illustration of the CLT.
a) Take 12 numbers (ri) from your computer’s random number generator
b) add them together 
c) Subtract 6
d) get a number that is from a gaussian pdf !

Computer’s random number generator gives numbers distributed 
uniformly in the interval [0,1].
A uniform pdf in the interval [0,1] has µ=1/2 and s2=1/12

0-6 +6

Thus the sum of 12 uniform 
random numbers minus 6 is 
distributed as if it came from a 
gaussian pdf with µ=0 and s=1.

E

A) 5000 random 
numbers

B) 5000 pairs (r1+ r2)
of random numbers

C) 5000 triplets (r1+ r2+ r3)
of random numbers

D) 5000 12-plets (r1+ ++r12)
of random numbers. 

E) 5000 12-plets 
(r1+ ++r12-6) of 
random numbers. 

Gaussian 
µ=0 and s=1

In this case, 12 is close to ¥.



Repeated measurements will give a normal distribution about the mean



Statistical Errors

Measurement Errors (Uncentainties)

Differences in results are randomly varying, giving statistical uncertainties , 
There is the law of large numbers applies and helps to increase precision !

Statistical error is usually assumed to be from a Gaussian distribution.
With the assumption of Gaussian statistics we can say (calculate) something about 
how well our experiment agrees with other experiments and/or theories.

Expect ~ 68% chance that the true value is between x - s and x + s .

The error in the mean sm:
If we repeat a measurement n times and each measurement has uncertainty 
s，then 0®=

nm
ss We will see it later



Systematic Errors

A systematic error denotes the uncertainty in estimating effects caused by 
systematic mistakes and caused by neglecting systematic mistakes. 
Systematic mistakes are eg. wrong method, faulty instruments, wrong formulae ..

Comments on systematic uncertainties: 

Øsys. errors do NOT decrease with 1/√n

Østatistical and systematic errors are in general independent.

Øneed to quote errors separately in the results.

Because of systematic errors, an experimental result can be precise, but not accurate!



Propagation of errors

When !" is enough to use linear approximation to f[x] near $̅,

Experiment observable x :        
Derived quantity              : 

?

Δ&2Δ&1
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Vx  and Vy.  Furthermore, we again assume that the uncertainties are small enough to approximate variations in f #x, y' as
linear with respect to variation of these variables, such that
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ccccccccccc
�x

�+x � xrr/ � � f
ccccccccccc
� y

�+y � yrr/
where the partial derivatives are evaluated at +xrr, yrr/.  If we perform many measurements, the variance of f  becomes
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Expanding this expression
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and identifying its terms, we find
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are the sample variances for each variable and
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is their covariance.

This analysis can readily be generalized to an arbitrary number of variables.  Let x  �xP, P  1, m� represent the set
of variables, such that
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where
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is the covariance matrix and xP,i  is the ith  measurement of xP.  Note that the diagonal elements of the covariance matrix,
VP,P  VP2, are simply variances for each variable.

ErrorPropagation.nb 2

Experiment observables: Derived quantity 

协方差



Covariance and correlation
Define covariance of x and y ,cov[x,y] as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., 

→rxy =0 x and  y, ‘uncorrelated’

,   then

For f(x,y,z), there are three covariances: cov(x,y), cov(x,z), cov(y,z).

If x, y, correlated linealy, then |rxy|=1

协方差

ρ ranges between +1 and -1

关联



Correlation

https://en.wikipedia.org/wiki/G_factor_(psychometrics)
http://www.psych.utoronto.ca/users/reingold/courses/intelligence/cache/1198gottfred.html

ρ=+1 if and only if Y =aX+b with a>0,
ρ=−1 if and only if Y =aX+b with a<0. 



From John R. Taylor, An introduction to error analysis 2nd edition

!

!

!



Propagation of errors

If x1, x2, . . . , xn are independent quantities having errors sx1, sx2, .sxn

Error estimates for a function of many correlated variables
f(x1, x2,…xn), need to take correlation into account:



Propagation of Uncertainty (neglecting correlations)

Errors add in
“quadrature”

Relative Errors
add in “quadrature”



Only one measurement, estimate uncertainty?

(Poisson distribution)



Uncertainty of Mean of N measurements

N independent measurements of the same physical quantity:

The uncertainty in the mean is smaller than the uncertainty in a single
observation by a factor of





! = 100

• Do not confuse %'̅ with % !
- % is related to the width of the pdf that measurements
come from. -resolution

- % does not get smaller as we combine measurements.

(̅ = 10
% = 1

! = 400

Example: x follows gaussian distribution:

(̅ = 10
% = 1



Combination of independent Measurements with unequal errors

Idea: give more weight to those measurements with small values of sxi
and less weight to measurements for which this estimated error is large.

N independent measurements with different uncertainty.

• Let each individual measurement xi be given a weighting factor ai and the 

best value     computed from the linear combination



The weighted mean

The error on the weighted mean

The weighting factor ai should be chosen in order to minimize the expected 
error in    .



4.5 Examples of Applications 97 

4.5 Examples of Applications 

4.5.1 Mean and Error from a Series of Measurements 

Example 4.1 Consider the simple experiment proposed in Sect. 4.3.2 to measure the 
length of an object. The following results are from such a measurement: 

17.62 
17.61 
17.61 

17.62 
17.62 
17.615 

17.615 
17.625 
17.61 

17.62 
17.62 
17.605 

17.61 
17.62 
17.61 

What is the best estimate for the length of this object? 

Since the errors in the measurement are instrumental, the measurements are Gaus-
sian distributed. From (4.49), the best estimate for the mean value is then 

x=17.61533 

while (4.52) gives the standard deviation 

& = 5.855 X 10- 3 . 

This can now be used to calculate the standard error of the mean (4.50), 

a(x) = &/05 = 0.0015. 

The best value for the length of the object is thus 

X= 17.616±0.002. 

Note that the uncertainty on the mean is given by the standard error of the mean and 
not the standard deviation! 

4.5.2 Combining Data with Different Errors 

Example 4.2 It is necessary to use the lifetime of the muon in a calculation. However, 
in searching through the literature, 7 values are found from different experiments: 

2.198±0.001 ú ë =
2.197 ± 0.005 ú ë =
2.1948±0.0010 ú ë =

2.203 ± 0.004 ú ë =
2.198±0.002 ú ë =

What is the best value to use? 

2.202 ± 0.003 ú ë =
2.1966 ± 0.0020 ú ë =

One way to solve this problem is to take the measurement with the smallest error; 
however, there is no reason for ignoring the results of the other measurements. Indeed, 
even though the other experiments are less precise, they still contain valid information 
on the lifetime of the muon. To take into account all available information we must 
take the weighted mean. This then yields then mean value 

T = 2.19696 

with an error 98 4. Statistics and the Treatment of Experimental Data 

a(r) = 0.00061. 

Note that this value is smaller than the error on any of the individual measurements. 
The best value for the lifetime is thus 

r= 2.1970 ± 0.0006 ú ë = . 

4.5.3 Determination of Count Rates and Their Errors 

Example 4.3 Consider the following series of measurements of the counts per minute 
from a detector viewing a 22Na source, 

2201 2145 2222 2160 2300 

What is the decay rate and its uncertainty? 

Since radioactive decay is described by a Poisson distribution, we use the estimators 
for this distribution to find 

f1 = x = 2205.6 and 

a(f1) = ú == V OO ú R K S = = 21 . 

The count rate is thus 

Count Rate = (2206 ± 21) counts/min. 

It is interesting to see what would happen if instead of counting five one-minute pe-
riods we had counted the total 5 minutes without stopping. We would have then ob-
served a total of 11 028 counts. This constitutes a sample of n = 1. The mean count rate 
for 5 minutes is thus 11208 and the error on this, a = V 11208 = 106. To find the 
counts per minute, we divide by 5 (see the next section) to obtain 2206 ± 21, which is 
identical to what was found before. Note that the error taken was the square root of the 
count rate in 5 minutes. A common error to be avoided is to first calculate the rate per 
minute and then take the square root of this number. 

4.5.4 Null Experiments. Setting Confidence Limits When No Counts Are Observed 

Many experiments in physics test the validity of certain theoretical conservation laws by 
searching for the presence of specific reactions or decays forbidden by these laws. In 
such measurements, an observation is made for a certain amount of time T. Obviously, 
if one or more events are observed, the theoretical law is disproven. However, if no 
events are observed, the converse cannot be said to be true. Instead a limit on the life-
time of the reaction or decay is set. 

Let us assume therefore that the process has some mean reaction rate A.. Then the 
probability for observing no counts in a time period Tis 

P(O I},,) = exp (-)" n . (4.57) 



Optimization of counting experiments  
ns=Ns/ts: counting rate due to source and background 
nb=Nb/tb: counting rate due to background
n0=ns-nb: counting rate due to source alone
t=ts+tb
• For a given t=ts+tb, uncertanty of n0 can be minimized by optimally 

choosing the fraction of t allocated to ts(or tb)
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For low level measurement  nb~ns, i.e. ns/nb~1

n0 is proportion to detection efficiency e

)//(1min0 bn nv eµ
It's vital to use a detector with high detection efficiency 
and low background for low level measurement



x1,y1,z1 x2,y2,z2

Upstream detectors
(position, time)

Downstream detectors
(Position, energy)

Background run:

Experiment with target out to 
estimate the reactions in detectors 
and target frame

Target frame

x3,y3,z3



Example: In-beam gamma spectroscopy

DALI
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Doppler broadening due to 
finite opening angle of detector 

Doppler broadening due to slowing 
down of projectile in target 

Limits on achievable energy resolution
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• 'T is determined by detector’s ability to reconstruct first J-
ray interaction point

• 'E�is determined by target thickness

• '(�is determined by detector

• Old new paradigm for fast beam experiments with 

non-4S J-ray detectors:

Experimenter trades energy resolution ('T��versus efficiency

For RIA, build large-coverage detector with sufficient spatial and 

energy resolution

Doppler broadening due to slowing down of 
projectile in target

E
J
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Segmented Ge Detectors vs NaI(Tl)
NaI(Tl) Segmented Ge

Resolution 
comparison:
Total
'E in target
Opening angle
Intrinsic

Resolution 
comparison:
Total
'E in target
Opening angle
Intrinsic

Final energy resolution is of the order of 1% with target of order few 100 mg/cm2 

o detector should have similar or better resolution
o Energy resolution of ~1% or better
o Angular resolution of ~ 10 mrad

Segmented Ge Detectors vs NaI(Tl)
NaI(Tl) Segmented Ge

Resolution 
comparison:
Total
'E in target
Opening angle
Intrinsic

Resolution 
comparison:
Total
'E in target
Opening angle
Intrinsic

Final energy resolution is of the order of 1% with target of order few 100 mg/cm2 

o detector should have similar or better resolution
o Energy resolution of ~1% or better
o Angular resolution of ~ 10 mrad



A very common task is to determine the underlying distribution for a 
measurement. ie. find one (or more) parameters of a pdf f(x;a) from a set of 
measurements {x1, x2 , … … , xn} -> “estimation” 

Parameter estimation .

Exponential pdf,

Experimental data,

Example: Radioactive decay

Task:       determine t

Most commonly used methods are: 

Ø Maximum Likelihood Method(MLM) 
Ø Least Squares Method (LSM)



Maximum Likelihood Method

If hypothesis f(x,!) and parameter are correct, then we expect a high probability 
for these measured data sets.

MLH: a general method for estimating parameters of interest from data

• Statement of the maximum likelihood method
- we have made N measurements of x {x1,x2, … xn}.
- we know the probability distribution function that describe x: f(x;!).
- we want to determine the parameter !.

• How do we use 
- The probability of measuring x1 is f(x1;!)$%.
- The probability of measuring x2 is f(x2;!)$%.
- The probability of measuring xn is f(xn;!)$%.

• If the measurements are independent, the probability of getting the 
measurements is

We can drop the dxn term as it is only a proportionality constant

Likelihood function



• pick the ! that maximizes L:

• Both L and lnL have maximum at the same location.
- maximize lnL rather than L itshelf because lnL converts the product 

into a summation.

- new maximization condition:

• ! could be an array of parameters (e.g. slope and intercept) or just a single 
variable.

• equations to determine ! range from simple linear equations to coupled non-
linear equations



Error on Estimate 

• Taylor expand ln L(!) around ! = ! ∗

L($) is Gaussian distributed!



example:  parameter of exponential pdf
Consider exponential pdf,

Suppose we have data,

The likelihood function is

The value of t for which L(t) is maximum also gives 
the maximum value of its logarithm :

Find its maximum by setting →

Monte Carlo test:  
generate 50  values
using t = 1:

We find the ML estimate:

!"# =
&̂2
(



• Assume we can measure all times up to limit T

• !(#; %) need to be renormalized:



Extended Maximum Likelihood
• Consider n observations of a random variable x distributed

according to a p.d.f. f(x;!), with unknown parameters ! = (!1, … !#). 
Data sample : x1,x2, … , xn.

• Often number of observed events n is itself a Poisson random 
variable with mean value $.

This is called extended Likelihood function. Now the sample size n 
defined to be part of the result of the experiment. 

e.g. angles of the outgoing particles, depend on parameters such as particle masses 
and coupling constants. The number of observed events would fluctuate if one were to 
repeat the experiment many times, each time with the same integrated luminosity, and 
not with the same number of events. $ = &(#, ))+,
Adding $ as measurement to LH improves resolution on ! (on mass)

If $ is independent of !, it is the same as normal LH.
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Multinomial Distribution

• Generalization of binomial distribution to m possible discrete outcomes for 
each event: 
– N is total number of trials，probability for “outcome k”: pk

– Probability to obtaining (n1,n2,…nm) outcomes is given by:

- Throwing a dice 10 times; 
getting 2 * ”1” , 1 * “3” , 1 * “4” , 2 * “5” , 4 * “6”

1, 2, 3, 4 … m

p4

n3

Example:

- Consider the three possible outcomes: i, j and everything else. 



Binned Maximum Likelihood (I) 

• Consider ntot observations of a random variable x distributed
according to a p.d.f. f(x;!) for which we would like to estimate the 
unknown parameter ! = (!1, !2, … !%). 

• For very large data samples, the log-likelihood function becomes 
difficult to compute. In such cases, one usually makes a histogram, 
yielding a certain number of entries n = (n1, n2... , nN) in N bins.  

• Compute the number of expected entries in a bin

1, 2, 3, 4 … N

n2

• Uncertainties are slightly larger than in unbinned fit 
• limit of very small bins 

f(x;!)&'())



binned

⟹

unbinned



Binned Maximum Likelihood (II) 

• One may regard the total number of entries as random variable from 
a Poisson distribution with mean !"#".

Where

equivalent to treating the number of entries in each bin as an independent 
Poisson random variable ni with mean value $i. 

• This is extended LH for binned case. If there is any relation between 
uncertainties on get smaller, otherwise stay the same.
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The method of least squares

The probability of a particular yi, for a given xi is

Often minimize c2 numerically (e.g. program MINUIT).

Maximize ln #(%) means minimizing

• Measurements yi (eg. differential cross section) with errors σi at lots of known points xi . 

• A theory gives y=f(x; %) depending on (unknown) parameter %
• Want to extract a from the data. 

• If errors on data points Gaussian:



Some Remarks on c2

• By definion of expect ~1 per data point.

• More precisely, expect c2 ~1 per number of degree of freedom (ndf)
Nndf= N data points – N fit parameters

e.g. if we fitted  a Gaussian, there were 3 parameters

• c2 / ndf provides a figure of merit for how well theory describes data
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Simplest Example: Straight Line Fit

For simplicity, suppose line must go through origin:     
y=f(x)=mx
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Time distribution of first decay events

C.B.Hinke et al., Nature 486, 341–345 (2012)

In total, 259 100Sn nuclei (those indicated 
in the figure) were unambiguously 
identified.

100In

100Sn
Total

A maximum-likelihood analysis with a maximum of three decay events during the 
correlation time was used to analyse these decay chains. The half-life of 100Sn 
was deduced to be 1.16 6 0.20 s in the MLH analysis using established values for 
the lifetimes of the daughter nuclei.



The Chi-Square(c2) Distribution

k:  number of degrees of freedom

ndf/df/dof

G(k/2):  gamma function

c2 -distribution plays an important role in the comparison of measurements 

with theoretical distributions.

• Important in connection with least-square method.

• If x1, x2, … xn are independent, Gaussian distributed variables, with 

mean μ and variance σ, then is distributed

according to !"-distribution.
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Very low probabilities (say less than 0.05) indicate abnormal large fluctuations 
in data, whereas very high probabilities(greater than 0.95) indicate abnormally 

small fluctuations.

A perfect fit to the distribution for large samples would yield a probability of 0.5

Chi-Square(c2)  Test - Goodness of Data
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The chi-square pdf has an expectation value equal to the number of degrees 
of freedom, so if !"/$%& ≈ (, the fit is 'good'.

*=n.d.f

• μ = k
• σ2 = 2 * k



For example, if for identical, consecutive measurements one gets the following 
counts in a scaler:

Degrees of freedom 6-1=5

The data are clustered around the mean much closer than one would expect, 
suspicious !

https://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html

https://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html


G. Cowan

The significance of an observed signal
Suppose we observe n events; these can consist of:

Nb events from known processes (background)
Ns events from a new process (signal)

If Ns, Nb are Poisson random variables with means !", !#, then N = Ns + Nb
is also Poisson, mean = !"+!# :

Nb

Ns

Sometimes b known, other times it is in some way uncertain.

Goals:  
(i)  convince people that !" ≠ 0 (discovery);
(ii) measure or place limits on !", taking into consideration the uncertainty in !#.



G. Cowan 2011 CERN Summer Student Lectures on Statistics / 
Lecture 3

Suppose Nb = 0.5, and we observe N = 5.  

Should we claim evidence for a new discovery?  

Give α-value for hypothesis s = 0:

α

Nb

Ns
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Significance from α-value

E.g. Z = 5 (a ‘5 sigma effect’) means p = 2.9 × 10-7

5s

α

Nb

Ns

Nb Ns

s
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G. Cowan

LHC’s 750 GeV bump


