Digital Pulse Processing
in Nuclear physics
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Digitizers (flash ADC) vs Oscilloscopes

e The principle of operation of a waveform digitizer is the same as the
digital oscilloscope: when the trigger occurs, a certain number of
samples is saved into one memory buffer (acquisition window

ethory Buffer
e However, there are important differences: i
e no dead-time between triggers (Multi Event Memory) 2{2}
e multi-board synchronization for system scalability =Ll
e high bandwidth data readout links ﬁ S

e on-line data processing (FPGA or DSP)
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Benefits of the digital approach

e One single board can do the job of several analog modules

o Full information preserved: A/D conversion as early as possible, data
redauction as late as possible

e Reduction in size, cabling, power consumption and cost per channel
e High reliability and reproducibility

e Flexibility (different digital algorithms can be designed and loaded at
any time into the same hardware)
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NSCL DDAS (5 chassis)
More than 500 channels
K. Starosta et al.
ow S.N. Liddick)




Evolution of DAQ
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Digitization

Analog: Digital:
Continuous function V of Discrete function V, of discrete
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Periodic (Uniform) Sampling

1)Sampling is a continuous to discrete-time conversion

_________

_______________

________________

Most common sampling is periodic

x[n] = x(nT,)

—oo<n< -+

Ts is the sampling period in second

Ccustomary in DSP
(): for continuous variables
[ ]: for discrete variables

fs = 1/Ts is the sampling frequency in Hz

Sampling frequency in radian-per-second Q.=2n=fs rad/sec



Sampling Theorem: Aliasing Error

Continuous, sinusoidal signal frequency f sampled at frequency f; (fs < 1)
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Aliasing misrepresents the frequency as a lower frequency f < 0.5f;

the aliasing error: If f.<f, another frequency component with the same set of
samples as the original signal appears in the sampled signals. Thus, the frequency
component can be mistaken for the lower frequency component.



Sampling theorem

A continuous-time signal x(t) with frequencies no higher than f,,..(Hz) can be
reconstructed exactly from its sample x[n]=x(nT,), if samples are taken at a rate
1=1/T, that 1s greater than 2f,_ .

* Consider a band-limited signal x(t) with Fourier Transform X(w)
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Yo reconstruct the original signal x(t), we can use an ideal lowpass filter(LPF)

on the sampled spectrum
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If f.< 2f ., sampling is irreversible due to aliasing error.

reconstructing the original signal x(t) is only possible if the shaded
parts do not overlap. This means that fs must be more than TWICE that

Of fBW(=fmax)-

fs=2fgy is generally known as the Nyquist Frequency  BZEHSSRE
The minimum sampling rate that must be exceeded is known as the

Nvaquist Rate

Note:
in practice the sampling frequency is usually >5x the signal bandwidth

Semiconductor(Ge,Si+CSP) : f,>60 MHz(energy)
Plastic scintillator(PMT) : f,>500MHz(timing)



Anti-aliasing Filter

The bandwidth of any real life analog signal is infinite.

fBW_) 00

X(w)

After sampling with £:

Sample signal
spectrum

After reconstruction:

Reconstructed spectrum
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l o r—
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i lower frequencies

X,(w) Lost tail results in loss
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Use low-pass filter to restrict bandwidth of input signal to satisfy Nyquist
criterion, fs > fgyw. Then reconstruction can be done without distortion or
corruption to lower frequencies
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Typical ADC configuration: The input signal is first amplified or attenuated
in order to have an optimal match with the input range of the AD converter.
A proper antialiasing filter is then applied before the sampling.
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Output Amplitude
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FLASH ADC
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[ Uses the 2N resistors to form a ladder
voltage divider, which divides the
reference voltage into 2N equal intervals.

[ Use sthe2N-! comparators to determine
in which of these 2N voltage intervals the
input voltage V; lies.

[ ] The Combinational logic then
translates the information provided by the
output of the comparators

[ ] This ADC does not require a clocks so
the conversion time is essentially set by
the settling time of the comparators and
the propagation time of the combinational
logic.

Very Fast (Fastest)



Quantization
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Quantization error
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The total noise on the digitized signal g = /05 + O'f

When faced with the decision of how many bits are needed in a system, ask two questions:

(1) How much noise is already present in the analog signal?
(2) How much noise can be tolerated in the digital signal?
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An analog signal that varies less than =12 LSB can become stuck on the same
quantization level during digitization. Dithering is a common technique for
improving the digitization of slowly varying signals.
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Sampling ADCs

* Bit resolution: 8-14 S Ky e e
* Integral non-linearity 1 _L/—'/
The maximum deviation from this ideal linear behavior. f,’

A typical absolute value is 0.2—1 LSB. . LN .
* Dynamic range: ~2V T
. Digitized speed: 40MSPS-1GSPS el L
Analog nput
i e o e
Range (V) |FPGA Rate (MHz) | (bits) (MS/ch)
s1125/65 01 SndleEnded |00 g/ 0.5/4
720 a1 epica SnoEnded g s [ |12sno © tradeoff: speed/resolution
721 +05 EP1C4 g;fi';iggfd 500 MS/s 250 8 2
731 05 EP1C4 gi’;fge'g’t‘gfd 05-1GS/s | 250/500 (8 2-4
740  +1/+5 EP3C16 Single Ended | 65 MS/s 30 12 0.19/1.5 Higher sampling rate
751 +05 Ep3c1e roended 1o Gsss 500 10 e -> lower resolution
761 +05 EP3C16 g;filfeiggfd 4GS/s Tdb 10 7.2/57.6
742?@  +05 EP3C16 Single Ended | 5 GS/s Thd 12 0.128

Typical values for high-speed ADCs are 12 bits below the “physical” number of bits.
ENOB(Effective number of bits )= 10~11 bits for 12-bit ADC.



Digital signal processing

Digitizer

Detector Waveform
Energy
Y ADC — Charge
Count
t I Time

Digitization  Algorithms

The aim of the Digital Pulse Processing is to make a “all in digital” version of
analog modules such as Shaping Amplifiers, Discriminators, QDCs, Peak
Sensing ADCs, TDCs, Scalers, Coincidence Units, etc.

Algorithms: Trigger filter, energy filter, time filter etc.



Field-Programmable Gate Array (FPGA)

*FPGASs are an array of programmable logic cells interconnected by a network
of wires and configurable switches.

*A FPGA has a large number of these cells available to form multipliers, adders,
accumulators and so forth in complex digital circuits.

*FPGASs can be infinitely reprogrammed in-circuit in only a small fraction of a
second.
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Implement your design using VHDL or Verilog

VHDL description

architecture MLU DATAFLOW of MLU is

signal A1:STD_LOGIC;
signal B1:STD_LOGIC;
signal Y1:STD_LOGIC;
signal MUX_0, MUX_1, MUX_2, MUX_3: STD_LOGIC;

begin
Al<=A when (NEG_A='0) else
not A;
Bl1<=B when (NEG_B='0") else

not B;
Y<=Y1when (NEG_Y='0") else

not Y1;

MUX 0<=Al and B1;
MUX 1<=AlorBl;
MUX 2<=Alxor Bl;
MUX_3<=Al xnor BI;

with (L1 & LO) select
Y1<=MUX_0when "00",
MUX_1 when "01",
MUX_2 when "10",
MUX_3 when others;

end MLU_DATAFLOW;
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Inside the FPGA

- -

Control Unit

Peak Detector (State Machine)

Histogram Memory




Digital Filters

shaper — modification of signal shape(time domain)
Filter — modification of signal bandwidth(frequency domain)

Shaper=Filter
* Analog filters

- Electronic components are cheap.

- Large dynamic range in amplitude and frequency.

- Real-time.

- Low stability of resistors, capacitors and inductors due to temperature.
- Difficult to get the components accuracy as calculated by the formula.

* Digital filters:

- Better performance than analog filters

- Digital filters are programmable.

- The characteristics of DSP filters are predictable.

- Unlike analog filters, the performance of digital filters is not dependent on the environment,
such as temperature or voltage

- In general, complex digital filters can be implemented at lower cost than complex analog
filters.



The Moving Average as a Filter

The moving average is often used for smoothing data in the presence of noise. It is
actually one of the most common filters in signal processineg.

The moving average of length N can be defined as  y[n] = % Z x[n + i,

' ' : : : : :
a. Original signal i i b. 11 point moving average
: | | | : ] |
| 1 1 1 I
| 1 1 1 1
| 1 1 | |
|

Amplitude
Amplitude

1
\ t t t t -1 t t t t
0 100 200 300 400 500 0 100 200 300 400 500
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The filter is usually implemented recursively, in a very efficient way.

yln] = x[n — N + 1]J/N + ... + x[n]/N
yvin+1]=x[n—N+2]/N + ... + x[n + 1]/N,

yln + 1] = y[n] + (x[n + 1] — x[n — N + 1])/N.

This recursive implementation will be much faster than convolution. Each new value of y can
be computed with only two additions, instead of the N additions that would be necessary for a

straightforward implementation of the definition.



Trapezoidal Filter -Energy

Preamp Output (mV)

4 | | | |
m 'o'."'-.."o ...d.:\a.'ﬁ-'h-'.a" —
27 Length i
0 . Gap _
Length
RV NIRRT Gt i
-4 T T T |
20 22 24 26 28 30
Time ( us)
Digital (Trapezoidal)
Analog (RC-(CR)®)
Analog (RC-CR)
.g;
§ Pulse Duration
g (FWHM)
e

0.0E+00

1.0E-06  2.0E-06 3.0E-06 4.0E-06 50E-06 6.0E-06 7.0E-06  8.0E-06
Time (sec)

V==, WV, + D WV,

i(before) i(after)

Moving average =~ Moving average

the digital shaper has less pile-up (even
with the same FWHM duration).

the pile-up timing for the digital system is
very clear: due to the pulse symmetry, there
is no pile-up after a fixed time.



Trapezoidal Filter Algorithm
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O ADC output
<& Filter Output
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Preamplifier decay time and Baseline

With a RC-type preamplifier, the slope of the preamplifier is rarely zero.
Every step decays exponentially back to the DC level of the preamplifier.

33X103— - s *

O ADC Output
< Filter Output|

ADC units

28 T T I T
85 90 95us
Time

Figure 6.4: A y-ray event displayed over a longer time period to show baseline noise and the effect of

preamplifier decay time.

o. : Statistical fluctuation in
s 0 0? = 02 + o2

0. : Fluctuation in the baseline



Baseline Correction

The baseline offset can be corrected by calculating the average baseline at the start of

the trace (e.g. over first 100 samples) and subtracting that average from the raw signal:
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Pole-Zero Correction

Using the decay constant 1, the baselines can be mapped back to the DC level.
This allows precise determination of energy, even if the pulse sits on the falling slope of a

previous pulse.

Offset due to decay time:
App1 = z[k] — z[k — 1]e V7

' k] =x'[k— 1] + z[k] — z[k — l]e_l/T

o[k = @' [k — 1] + 2[k] — alk — 1)(1 — )

T

Trapezodial Filter

Skl = Slk—1]+2'[k] —2'[k— L] +2'[k—2+L—G] —2'[k— L — G]



Exponential pulses with different rise time and the corresponding trapezoidal pulse shapes
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The digital spectroscopy can offer similar or even better energy resolution especially for very
high count rates, compare to conventual techniques.
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Trigger Filter

* trigger data acquisition
* determine the time window of wave caputure
- time window before/after trigger

Self-trigger for oscilloscopes:
the trigger 1s generated as soon as the input signal crosses that threshold.
- False triggers from base-line fluctuation or pile-up can cause loss of important events

The digital filters are able to reject the noise, cancel the baseline and to do shape and
timing analysis for this purpose.

Missed Pulse

Bad Trigger

Input Signal

Trigger f f R

Trigger f T




e Slow filter: Energy determination — filter amplitude

e Fastfilter: Time determination — leading edge trigger
Trigger to select events of interest (e.g. Pile-up rejection)
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Trigger Modes(CAEN)
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Fig. 4.1: Schematic chain of the trigger architecture of a DPP system

* Each channel has a digital discriminator that generates a Trigger Request (TR); the
TRs of all channels are combined in the mother board (Mask + AND, OR, Majority) in
order to generate a Trigger



Digital timing measurements

Trigger filter(default): leading edge discrimination with interrelation

CFD filter:

Trace[k]: sample of trigger filter
D: time delay
- . _ F: fraction
CFTrace[k] = » {F * Trace[k — i] — Trace[k — i — D]}.

pr L:The running averaging of length
for noise reduction

f(x) = k- f(x) — f(x — At)

| fi=ok-fi—fi-n
Analog approach .

Digital approach

Signal

A4

Input Signa
Altenuated
\/ Delayed & Inverted
\/ — CFD Signal

Time



dCFD timing (f=0.2)
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Total error on digital Constant Fraction timing (f =0.2) performed by
various digital sampling systems



Fast timing with Digital CFD
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Fig. 8. Histograms of measured time difference AT between the two rising
edges of a double pulse using P500.
" — = Pixie-4, Mode D (909 ps)
LY — .. with E, RT cut (395 ps)
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Mode D I\ — ... with E cut (244 ps)
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Fig. 11. Histograms of measured time difference AT between two

coincident “’Co pulses acquired with a pair of LaBr; crystals and fast PMTs.

http://www.xia.com/Papers/P500 TNS.pdf



ADC units

Pile-up Rejection
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Full digital acquisition chain

Digitizer
Detector :Vaveform
nergy
L “- D o
Count
Time

L

Digitization Algorithms

The aim of the Digital Pulse Processing is to make a “all in digital” version of analog
modules such as Shaping Amplifiers, Discriminators, QDCs, Peak Sensing ADCs, TDCs,
Scalers, Coincidence Units, etc.

waveform :  500Hz of lus long traces(12bit) at 100MSPS,
Data stream: ~100kB/second/channel=360MB/hour/channel!

LIST- A LIST-B

Tia | E1a »T18 | E1B

1[2] 3 4] 516 78] Toa<«E2a T2s | E28

CHANNELA =y 17 V V VV LIST Ton T Eon T2 | Ex
V M - Tan «—Ea4a Tas | E4B

Tsa | Esa —»Ts8 | EsB

cHANNELE 12 34 |8 67(8| 9 |0 Tea Tes | Esa
Y “ ” I I ”“ V vV T7A \Eji‘\ T | Em

. Taa«|_Esa s T8 | EsB
timestamp Tos Eob
»T108 | E108

Digital system is implicitly synchronized. Any correlation can be measured
with precision only given by the accuracy of the clock



RN Pulse Shape Discrimination: Block Diagram o
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PSD
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E Si1 (MeV)

Pulse Shape Discrimination in Silicon

:

1800

1600

1400

- -

g 8 B

2 8 &
lil]‘ll]llll'lllll']"l]lllIllllll'[lli

D
o
L=

400

200

30 40 50 60 70 80 90
rise time (ns)

OO

:""fl-‘jro.n't‘ injection -

100

E Si1 (MeV)

2000

1800

1600

Rear injection

llllllIIlllIllllll'llllllllIlllllllllll

"

020 40 60 80 100 120 140 160 180 200 220

rise time (ns)




Nuclear molecules ?

N Te=""Sn+«
108% @ 109Xe110
‘|;0 ms
:“Te 1051(;?13 '%Te

-) d

e

I

N

N=Z" N=50 “Superallowed” alpha decay

Macfariane and Siivola, PRL 14.114.1965



Recoil Implant Decay Event
E..>9.2MeV E.. < 9.2MeV
1 |

t=0 At~ms

Recoil Implant

E,. > 9.2MeV

Consecutive Decay Events

E.., < 9.2MeV

| 1

!
t=0

At,~ms At,~ns

~ A A A A A

0 100 200 300

\. Time (25 ns/bin) J
Recorded Trace

[

o 100 200 3oj

\_ Time (25 ns/bin)

single

double




T T

£10 Tome 220
S O
= 3 Z Y
13ms "y 3910 keV § i
109 b, =31% €3
O
Xe Qg i1
50 100 150E 200 2?(0 V300 350
E, = 4063 keV nergy (keV)

E, =150 keV

0.62us

e,

E. = 4711 (4)(10) keV

% E,= 172 keV

E. = 4880(12)(10) keV

1015n51



To DSP or not to DSP?

Use DSP for ...
resolution & throughput optimisation
variable detector pulse shapes

Use analogue signal processing for ...
fast shaping
systems not sensitive to, or with fixed, detector pulse shapes
high density (low area, low power) applications

Expect ...
ADCs with higher precision, speed & density
lower power & cost

more powerful FPGAs
an expanding range of applications



