### Probing of the QCD phase boundary within heavy ion collision

Krzysztof Redlich Uni. Wroclaw, Poland



Phys. Rev. C103 (2021)

#### Direct link between ALICE data and fluctuations in LQCD

Can the thermal nature and composition of the collision fireball in HIC be verified ?

HIC  $\Leftrightarrow$  LQCD



Excellent data of LHC experiments on  $p_T$ -distributions and particle pseudo-rapidity densities

#### The strategy:

Compare directly measured fluctuations and correlations of conserved charges, (B,Q,S) în HIC at the LHC and LQCD results

$$\chi_{ijk}^{BQS} = \frac{\partial^{(i+j+k)} P(T,\mu)}{\partial \mu_B^i \mu_B^i \mu_B^i} |_{\mu=0} = < B^i Q^j S^k > +..$$

F. Karsch and K. R, Phys. Lett. B 695, 136 (2011) A. Bazavov et al.,
Phys. Rev. Lett. 109, 192302 (2012):
P. Braun-Munzinger, A. Kalweit, J. Stachel & K.R.,
Phys.Lett.B 747, 292 (2015)

P. Braun-Munzinger, et al. Nucl.Phys. A956, 805 (2016)

### Consider 2<sup>nd</sup> order fluctuations and correlations of conserved charges to be compared with LQCD

Excellent probe of:

- QCD  $\chi$ -criticality
- A. Asakawa at. al.
- F.Karsch,S. Ejiri et. al.,
  - M. Stephanov et al.,

K. Rajagopal,

E. Shuryak

B. Frimann et al.

- EQS in HIC
- F. Karsch &
- S. Mukherjee et al.,
- C. Ratti et al.
- P. Braun-Munzinger et al., V. Koch et al.

They are quantified by susceptibilities: If  $P(T, \mu_B, \mu_O, \mu_S)$  denotes pressure, then

$$\frac{\chi_N}{T^2} = \frac{\partial^2(P)}{\partial(\mu_N)^2} \qquad \qquad \frac{\chi_{NM}}{T^2} = \frac{\partial^2(P)}{\partial\mu_N\partial\mu_M}$$

 $N = N_a - N_{-a}, N, M = (B, S, Q), \mu = \mu / T, P = P / T^4$ 

Susceptibility  $\chi_N$  is connected with variance  $\sigma_N^2$ 

$$\frac{\chi_N}{T^2} = \frac{1}{VT^3} (\langle N^2 \rangle - \langle N \rangle^2) \qquad \qquad \frac{\chi_{NM}}{T^2} = \frac{1}{VT^3} \langle NM \rangle$$

If P(N) probability distribution of N then  $< N^n >= \sum N^n P(N)$ In experiment  $\sigma_N^2$  are measured from the event by event net

charge distributions

## **Consider special case: the Skellam distribution**

- Charge  $P(N_q)$  and anti-charge  $P(N_{\overline{q}})$  Poisson distributed, then for  $N = N_q N_{\overline{q}}$
- P(N) is the Skellam distribution

$$P(N) = \left(\frac{\langle N_q \rangle}{\langle N_{-q} \rangle}\right)^{N/2} I_N(2\sqrt{\langle N_q N_{-q} \rangle}) \exp[-(\langle N_q \rangle + \langle N_{-q} \rangle)]$$

Then, the susceptibility

$$\frac{\chi_N}{T^2} = \frac{1}{VT^3} (\langle N_q \rangle + \langle N_{-q} \rangle)$$

expressed by yields of particles and antiparticles carrying the conserved charge  $q = \pm 1$ 

$$< N_q >= \sum_i < N_q^i > \qquad < N_{\overline{q}} >= \sum_i < N_{\overline{q}}^i >$$



### Variance $\sigma_{\Delta p}^2$ in AA central collisions at RHIC



### Variance $\sigma_{\Delta p}^2$ in AA central collisions at RHIC



# Constructing net charge fluctuations and correlation from ALICE data

$$\frac{\chi_Q}{T^2} \approx \frac{1}{VT^3} (\langle N_q \rangle + \langle N_{-q} \rangle)$$

P. Braun-Munzinger, A. Kalweit, J. Stachel, & K.R. Phys. Lett. B747, 292 (2015)

Net baryon number susceptibility

$$\frac{\chi_B}{T^2} \approx \frac{1}{VT^3} \left( \left\langle p \right\rangle + \left\langle N \right\rangle + \left\langle \Lambda + \Sigma_0 \right\rangle + \left\langle \Sigma^+ \right\rangle + \left\langle \Sigma^- \right\rangle + \left\langle \Xi^- \right\rangle + \left\langle \Xi^0 \right\rangle + \left\langle \Omega^- \right\rangle + \overline{par} \right) \right)$$

### Net strangeness

$$\begin{split} \frac{\chi_{s}}{T^{2}} &\approx \frac{1}{VT^{3}} \left( \left\langle K^{+} \right\rangle + \left\langle K^{0}_{s} \right\rangle + \left\langle \Lambda + \Sigma_{0} \right\rangle + \left\langle \Sigma^{+} \right\rangle + \left\langle \Sigma^{-} \right\rangle + 4 \left\langle \Xi^{-} \right\rangle + 4 \left\langle \Xi^{0} \right\rangle + 9 \left\langle \Omega^{-} \right\rangle + \overline{par} \\ &- \left( \Gamma_{\varphi \to K^{+}} + \Gamma_{\varphi \to K^{-}} + \Gamma_{\varphi \to K^{0}_{s}} + \Gamma_{\varphi \to K^{0}_{L}} \right) \left\langle \varphi \right\rangle \; ) \end{split}$$

• Charge-strangeness correlation  $\frac{\chi_{QS}}{T^{2}} \approx \frac{1}{VT^{3}} \left( \left\langle K^{+} \right\rangle + 2 \left\langle \Xi^{-} \right\rangle + 3 \left\langle \Omega^{-} \right\rangle + \overline{par} \right. \\ \left. - \left( \Gamma_{\varphi \to K^{+}} + \Gamma_{\varphi \to K^{-}} \right) \left\langle \varphi \right\rangle - \left( \Gamma_{K_{0}^{*} \to K^{+}} + \Gamma_{K_{0}^{*} \to K^{-}} \right) \left\langle K_{0}^{*} \right\rangle \right)$ 

## 2<sup>nd</sup> order fluctuations in LQCD

 2<sup>nd</sup> order cumulants of strangeness and net-baryon number fluctuations and charge-strangeness correlation calculated on the lattice and extrapolated to the continuum limit. (see also see also: J. Goswami, et al., 2011.02812 [hep-lat])



obtained from ALICE data agree with LQCD result?

$$\frac{\chi_N}{T^2} = \frac{1}{VT^3} (\langle N_q \rangle + \langle N_{-q} \rangle)$$

### Direct comparison of Heavy ion data at LHC with LQCD



 $V_{T_f} = 3800 \pm 500 \ fm^3$ 

 $T_f = 154 \pm 6$  MeV Evidence for thermalization and saturation of the 2<sup>nd</sup> order fluctuations near the QCD phase boundary

### **Constraining chemical freezeout temperature at the LHC**



### Modelling QCD thermodynamic potential in hadronic phase

Pressure of an interacting,  $a+b \Leftrightarrow a+b$ , hadron gas in equilibrium

 $P(T) \approx P_a^{id} + P_b^{id} + \frac{P_{ab}^{\text{int}}}{P_{ab}}$ 

The leading order interactions, determined by the two-body scattering phase shift, which is equivalent to the second virial coefficient

R. Dashen, S. K. Ma and H. J. Bernstein, Phys. Rev. 187, 345 (1969)
R.Venugopalan, and M. Prakash, Nucl. Phys. A 546 (1992) 718.
W. Weinhold,, and B. Friman, Phys. Lett. B 433, 236 (1998).
Pok Man Lo, Eur. Phys.J. C77 (2017) no.8, 533

Effective weight function

Scattering phase shift

- Interactions driven by narrow resonance of mass  $M_R$   $B(M) = \delta (M^2 - M_R^2) \implies P^{\text{int}} = P^{id}(T, M_R) \implies HRG$ For finite and small width of resonance, B(M) => Breit-Wigner form
- For non-resonance interactions or for broad resonances  $P_{ab}^{int}(T)$  should be linked to the phase shifts

#### S-MATRIX APPROACH and Hadron Resonance Gas



- Consider interacting pions and kaons gas in thermal equilibrium at temperature T
- Due to *K*π scattering resonances are formed
  - I = 1/2, s -wave :  $\kappa(800)$ ,  $K0^*(1430)$  [*JP* = 0+ ]
  - I =1/2, p -wave : K\*(892), K\*(1410), K\*(1680) [JP =1-]
  - I = 3/2 purely repulsive interactions
- In the S-matrix approach the thermodynamic pressure in the low density approximation

$$P(T) \approx P_{\pi}^{id} + P_{K}^{id} + P_{\pi K}^{int}$$

#### Experimental phase shift in the P-wave channel



B. Friman, P. M. Lo, M. Marczenko, K. Redlich and C. Sasaki, Phys. Rev. D 92, no. 7, 074003 (2015)

For narrow resonances

$$B(M) = 2\frac{d}{dM}\delta_{M}$$

well described by Breit-Wigner form

$$B(M) \approx M \frac{2M\Gamma_{BW}}{(M^2 - M_R^2) + M^2\Gamma_{BW}^2}$$

for 
$$\Gamma_{BW} \rightarrow 0$$
  
 $B(M) = \delta (M^2 - M_0^2)$ 

and consequently interacting part of pressure contributes as an ideal gas Of resonances

$$P_{\pi K}^{\rm int}(T) \approx P_{K^*}^{id}(T)$$

# Non-resonance contribution- negative phase shift in S-wave channel



### Quark-Hadron duality near the QCD phase boundary

0.3

The HRG is a 1<sup>st</sup> order approximation of the QCD EQS in confined phase

$$P(T,\vec{\mu}) \approx \sum_{H} P_{H}^{id} + \sum_{R} P_{R}^{i}$$

$$P_{R}^{i} = \pm \frac{Tg_{i}}{2\pi^{2}} \int p^{2} dp \int dM \ln(1 \pm e^{-\beta(E_{i} - \vec{q}_{i} \cdot \vec{\mu}_{i})}) F_{R}^{BW}(M)$$



HotOCD



- Hadron Resonace Gas thermodynamic potential provides an excellent approximation of the QCD equation of states in confined phase
- Good description of net-baryon number fluctuations and in further sectors of hadronic quantum number on correlations and fluctuations

### Thermal origin of particle yields and production at $T_c$

Apply the Hadron Resonance Gas (HRG) partition function as an excellent approximation of QCD statistical operator in the hadronic phase,

- A. Andronic, P. Braun-Munzinger,
- J. Stachel & K.R., Nature 561 (2018)

$$P^{regular}(T, \vec{\mu}) \approx \sum_{H} P_{H}^{id} + \sum_{R} P_{R}^{i}$$

$$\frac{\langle N_i \rangle}{V} = n_i^{th}(T, \vec{\mu}) + \sum_K \Gamma_{K \to i} n_i^{\text{Res.}}(T, \vec{\mu})$$



## Probing non-strange baryon sector in $\pi N$ - system



### S-matrix Phenomenological consequences: proton production

see: A. Andronic, P. Braun-Munzinger, B. Friman, Pok Man Lo, J. Stachel & K.R. Phys.Lett. B792 (2019) 304



### S-matrix corrections to HRG and particle yields at LHC



The S-matrix corrections due to pion-nucleon scattering in HRG provide still better description of LHC data, solving the problem of too large yield of protons and antiprotons

#### However:

A. Andronic, P. Braun-Munzinger, J. Stachel & K.R

### Particle yields linked to $dN_{ch} / d\eta$ : from pp, pA to AA

 Increase of strangeness production with increasing multiplicity until saturation, as well as,

its dependence on strange quantum number of hadrons can be linked to "canonical suppression effect"

i.e.

constraints imposed on thermal <sup>m</sup> particle yields due to exact strangeness conservation. This requires canonical ensemble formulation of conservation laws

S. Hamieh, A. Tounsi & K.R. Phys. Lett. B486 (2000), Eur.Phys.J. C24 (2002) , J. Cleymans, H. Oeschler & K.R. Phys. Rev. C59 (1999) 1663 Smooth evolution of particle yields as function of charged particle multiplicity, and strangeness suppression



#### Strangeness canonical suppression with yields of charged particles

If the number of s-particles is small then strangeness conservation must be exact

$$Z^{GC}(\mu) = Tr[e^{-\beta(H-\mu S)}] \Longrightarrow Z^{C}_{S} = Tr[e^{-\beta H}\delta_{S}]$$

$$Z^{GC}(\lambda) = \sum_{S=-\infty}^{\infty} \lambda^{S} Z_{S}^{C} \implies Z_{S}^{C} \cong \int d\varphi e^{i\phi S} e^{\operatorname{Ln}(Z^{GC}(\mu \to i\varphi))}$$

• This implies strangeness suppression effect

$$< N_{s} >^{C}_{A} \approx V_{A} n^{GC} \bullet \quad \frac{I_{s}(2V_{C}n^{th}_{s=1}(T))}{I_{0}(2V_{C}n^{th}_{s=1}(T))}$$

where volume parameters  $V_{A(C)} \sim dN_{ch} / d\eta$ 

 $V_{C}$  - full phase-space volume where S is exactly conserved  $V_{A}$  - effective fireball volume in the acceptance

The suppression factor  $I_s(x)/I_0(x) \le 1$ decreases with decreasing x, and increasing strange s-quantum number of hadron. J. Cleymans, Pok Man Lo, N. Sharma & K.R. Phys. Rev. C103 014904 (2021)



#### Canonical suppression in baryonic sector in pp and pA collisions

Baryon canonical suppression effect  $< N_b >^C_A \approx V_A n^{GC} \cdot \frac{I_b (2V_C^B n_{s=1}^{th}(T))}{I_0 (2V_C^B n_{s=1}^{th}(T))}$  $\times (R_N)^b$ 

Where T, and  $V_A$  as obtained from strangeness The only fitted parameter is:  $V_C^B = 4/3\pi R^3$ 



J. Cleymans, Pok Man Lo, N. Sharma & K.R. too appear (2021)



The S-matrix correction factor  $R_N$  of nucleons due to dressing by mesons is also needed for Deuteron as  $R_N^2$  and for <sup>3</sup>He as  $R_N^3$  to describe yields data in pp and pA collisions at the LHC as obtained by ALICE coll.

#### Canonical suppression in baryonic sector in pp and pA collisions



J. Cleymans, Pok Man Lo, N. Sharma & K.R.

Vol.(fm<sup>3</sup>)

p (× 10)

d (× 1e3)

<sup>³</sup>He (× 1e5)

(a)

(b)

(c)

50

 $\pi$  (× 3)

### **Probing chiral criticality with charge fluctuations**

Due to expected O(4) scaling of QCD free energy:

$$F = F_{R}(T, \mu_{q}, \mu_{I}) + b^{-1}F_{S}(b^{(2-\alpha)^{-1}}t(\mu), b^{\beta\delta/\nu}h) \qquad t(\mu) = \frac{T - T_{c}^{o}}{T_{c}^{o}} + \kappa(\frac{\mu}{T})^{2}$$

 Direct delineation of chiral symmetry restoration via higher order fluctuations of conserved charges. Consider e.g. net baryon number suscep.

$$\chi_{B}^{(n)} = \frac{\partial^{n} (P/T^{4})}{\partial (\mu_{B}/T)^{n}} = \chi_{R}^{(n)} + \chi_{S}^{(n)} \text{ with } \begin{cases} \chi_{s}^{(n)}|_{\mu=0} \approx h^{(2-\alpha-n/2)/\beta\delta} f^{(n)}(z) \\ \chi_{s}^{(n)}|_{\mu\neq0} \approx h^{(2-\alpha-n)/\beta\delta} f^{(n)}(z) \end{cases}$$

- At  $\mu = 0$  only  $\chi_B^{(n)}$  with  $n \ge 6$  receive contribution from  $\chi_S^{(n)}$
- At  $\mu \neq 0$  only  $\chi_B^{(n)}$  with  $n \geq 3$  receive contribution from  $\chi_S^{(n)}$

At LHC the 6<sup>th</sup> order cumulant should carry direct information on chiral symmetry restoration due to remnant of O(4) criticality

### Modelling $P^{s-gular}(T, \mu_B)$ in the O(4)/Z(2) universality class

Gabor Almasi, Bengt Friman & K.R., Phys. Rev. D96 (2017) no.1, 014027

$$\mathcal{L} = \bar{q} \left( i\gamma^{\mu} D_{\mu} - g \left( \sigma + i\gamma_{5} \vec{\tau} \vec{\pi} \right) - g_{\omega} \gamma^{\mu} \omega_{\mu} \right) q + \frac{1}{2} \left( \partial_{\mu} \sigma \right)^{2} + \frac{1}{2} \left( \partial_{\mu} \vec{\pi} \right)^{2} - U_{m}(\sigma, \vec{\pi}) - \mathcal{U}(\Phi, \bar{\Phi}; T) - \frac{1}{2} m_{\omega}^{2} \omega^{2} + \frac{1}{4} F_{\mu\nu} F^{\mu\nu},$$

Effective potential is obtained by solving *the exact flow equation* (Wetterich eq.) with the approximations resulting in the O(4)/Z(2) <u>critical exponents</u>

## Higher order cumulants in effective chiral model within FRG approach, belongs to the O(4)/Z(2) universality class

B. Friman, V. Skokov &K.R. Phys. Rev. C83 (2011) 054904

G. Almasi, B. Friman &K.R. Phys. Rev. D96 (2017) no.1, 014027



Deviations of cumulant ratios from Skellam distribution are increasing with the order of the cumulants and can be used to identify the chiral QCD phase boundary in HIC

### Higher order cumulants - energy dependence



However, to make final conclusions the influence of non-critical fluctuations must be analyzed:

See e.g. P. Braun-Munzinger, A. Rustamov and J. Stachel Nucl. Phys. A 960, 114 (2017), A. Bzdak, V. Koch, V. Skokov, Eur.Phys.J. C77 (2017) 288.

M. Kitazawa et al. (2015,16,17)

- Strong non-monotonic variation of higher order cumulants at lower  $\sqrt{s}$
- Equality of different ratios excellent probes of equilibrium evolution in HIC
- Is the Skellam distribution appropriate as the noncritical baseline for baryon number fluctuations?
- What is the influence of exact baryon number conservation in full phase space on fluctuation observables in the acceptance window?

#### Fluctuation of the net-baryon number in the acceptance window

• Calculate probability distribution in the acceptance  $P_A(B_A)$  from B-can. Ensemble

$$\mathbf{Z}_{B}^{C} = Tr[e^{-\beta H}\delta_{B}] = \sum_{N_{B},N_{\overline{B}}} \frac{z_{B}^{N_{B}}}{N_{B}^{!}} \frac{z_{\overline{B}}^{N_{\overline{B}}}}{N_{\overline{B}}^{!}} \delta(N_{B} - N_{\overline{B}} - B)$$

Resulting in: mean number of  $\pm B$  baryons

$$N_{\pm B} = z \frac{I_{B\mp 1}(2z)}{I_B(2z)}$$
 and  $N_{\pm B}^A = \alpha_{\pm B} z \frac{I_{B\mp 1}(2z)}{I_B(2z)}$ 

• probability to find net baryon  $B_A$  in acceptance

$$P_{A}(B_{A}) = I_{B}(2z)(\alpha_{B} / \alpha_{\overline{B}})^{B_{A}/2}((1 - \alpha_{B}) / (1 - \alpha_{\overline{B}}))^{(B - B_{A})/2}$$
$$\times I_{B_{A}}(2z\sqrt{\alpha_{B}\alpha_{\overline{B}}})I_{B - B_{A}}(2z\sqrt{(1 - \alpha_{B})(1 - \alpha_{\overline{B}})})$$

Moments of the net baryon number in acceptance

$$\mu_n = \left\langle (N_B^A - N_{\overline{B}}^A)^n \right\rangle = \sum_{B_A} (B_A)^n P_A(B_A)$$

Full phase space  

$$N_{B}, N_{\overline{B}} \Rightarrow B = N_{B} - N_{\overline{B}}$$

$$Z_{B}, Z_{\overline{B}} \Rightarrow Z = \sqrt{Z_{B}Z_{\overline{B}}}$$

$$z_{\pm B} = \int d^{3}x \int \frac{d^{3}p}{(2\pi)^{3}} e^{-\beta(E\mp q\overline{\mu_{q}})}$$

$$\chi_{B}^{(n)} = 0 \text{ for } n > 1$$

$$Acceptance subspace$$

$$N_{B}^{A}, N_{\overline{B}}^{A} \Rightarrow B_{A} = N_{B}^{A} - N_{\overline{B}}^{A}$$

$$Z_{B}^{A}, Z_{\overline{B}}^{A} \Rightarrow B_{A} = N_{B}^{A} - N_{\overline{B}}^{A}$$

due to exact baryon number conservation

- A.Bzdak, V. Koch and V. Skokov,
- Phys. Rev. C87, 014901 (2013)
- P. Braun-Munzinger, B. Friman, A. Rustamov,
- J. Stachel & K.R. Nucl. Phys. A (2021)

#### 2007.02463 [nucl-th]

 The corresponding cumulants are Bell-polynomials in the moments

$$\chi_{B_A}^{(n)} = \sum_{k=1}^n (-1)^{k-1} (k-1)^! B_{n,k}(\mu_1, ..., \mu_{n-k+1})$$

### **Non-critical baseline for net-proton fluctuations**



Fixing the model parameters:  $N_B, N_{\overline{B}}$  in full phase space and  $\alpha_p = N_p^A / N_B$ ,  $\alpha_{\overline{p}} = N_{\overline{p}}^A / N_{\overline{B}}$ from data at different  $\sqrt{s_{NN}}$ , as well as the number of baryon-anti-baryon pairs  $\mathcal{Z}$  in the thermal system in full phase space from  $N_B = z \frac{I_{B-1}(2z)}{I_B(2z)}$ 

the cumulants of any order can be calculated

- The cumulants up to  $n \le 3$ order follow the SATR data
- Kurtosis data exhibit interesting deviations!

#### CONCLUSIONS:

- QCD thermodynamic potential is encoded in nuclear collision data
- S-matrix (Hadron Resonance Gas) thermodynamic potential provides an excellent approximation of the QCD equation of states in confined phase
- Hadrons are produced at QCD phase boundary with yields and 2<sup>nd</sup> order fluctuations and correlations of conserved charges which are consistent with LQCD predictions
- The exact conservation of net strange and baryon number is essential to quantify the particle yields and their observed scaling with charged particle multiplicities
- To establish a noncritical background for the net proton (baryon) number fluctuations in the acceptance, the canonical formulation of the conservation law has to be accounted for in a full phase space