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Outline
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Very recently, the non-equilibrium effective field theory (EFT) of fluctuating 
hydrodynamics has been formulated based on the principle of symmetry.

This talk: the application of non-equilibrium EFT to relativistic hydrodynamics 

  Stress-energy tensor correlator for a neutral fluid. 

  The modification of conductivity, bulk viscosity due to chiral magnetic effect 
(CME) and fluctuations. 

Outlook: e.g. implementation of hydro. EFT on quantum computer. 

Sogabe-Yamamoto- YY,  to appear.

Glorioso-Crossley-Liu, JHEP 17’;

Chris Lau-Hong Liu-YY, in preparation



Hydrodynamic fluctuations 
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From https://ccse.lbl.gov/Research/MuMSS/index.html



Physical consequence of hydro. fluctuations
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controlling non-equilibrium fluctuation of energy density, momentum density 
etc => important near the phase boundary

inducing finite frequency and momentum correction to transport coefficients 
(back-reaction)=> describing the evolution of medium properties as a 
function of scale. 

Setting the scale(s) for hydrodynamization/thermalization => deserves 
further attention when studying initial stages and/or small colliding systems.  



Approaches to fluctuating hydro.
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Stochastic approach: adding noise to hydro. eqns

Deterministic approach: formulating and solving a set of deterministic equations, 
which couple fluctuations with hydro modes.

∂t ⃗u = − ( ⃗u ⋅ ⃗∂ ) ⃗u − ν∇2 ⃗u + ⃗F ⟨F(t, ⃗x )F(t′ , ⃗x ′ )⟩ ∼ 2Tηδ(t − t′ )δ( ⃗x − ⃗x ′ )
Landau-L i f sh i t z ; Kapusta -
Mueller-Stephanov; ..

EFT approaches: based on action principle

∂μ [Tμν
ave(ϵ, n, uμ) + ΔTμν(2pt,3pt, …)] = 0

E.o.Ms for 2pt, 3pt,…
Kawasaki, Ann. Phys. ’70;  Andreev, JTEP, ‘1971; …

Z = ∫ Dψhydro eiIhydro[ψhydro]

Akamatsu-Mazeliauskas-Teaney, PRC 16’ & 18’;  
Stephanov-YY PRD 18’; Mauricio-Schaefer PRC 19;  
Xin An-Basar-Stephanov -H.-U. Yee, PRC19’&20’& 
2009.10742; 

Kovtun-Moore-Romatschke, JHEP 14’; 
Glorioso-Crossley-Liu, JHEP 17’; Haehl-
Loganayagam-Rangamani, 1803.11155, …



Fluctuating hydro. and dynamical modeling for BES
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Broad view: we are entering the quantitative era of BES dynamics. (see other 
talks in this seminar series)

Why study EFT approach?

for more detail, “The BEST framework for the search of the QCD critical 
point and the chiral magnetic effect”, in preparation, BEST collaboration,

Simulation of Hydro+, from Rajagopal-Ridgway-Weller-YY, 
PRD 20’; see also Lipei Du-Heinz-Rajagopal-YY, PRC 20’

Stochastic simulation by Nahrgang-Bluhm-Schaefer-
Bass, PRD 19’; see also  Singh-Shen-Jeon-Gale, to 
appear



Motivation for studying EFT approach:
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A systematic treatment which makes theoretical structures transparent.

With this new formulation, a number of novel phenomena have been 
uncovered, even in problems that have been studied extensively before.

A new framework for the future (personal view):

   suitable for implementation on quantum computing.

  the formalism can be extended in a way which does not depend on any 
long wavelength expansion. (a basis for studying QGP in non-hydrodynamic 
yet non-perturbative regime)

Xinyi Chen Li-Delacrétaz-Hartnoll PRL 18’; 
Delacrétaz-Glorioso PRL 20’;

mesoscopic Hydro. QGP gas

kτ−1
R



EFT action for fuctuating hydro. 
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Z = ∫ Dψmic eiI[ψmic] Z = ∫ Dψhydro eiIhydro[ψhydro]

Hydro EFT: action describing long wavelength and long time limit of many-body 
systems. 

Saddle point=> Hydro. E. o. M ; path-integral: accounts for fluct. 

In reality, the procedure of integrating out fast modes can not be done directly. 
Instead, one can construct the EFT action consistent with symmetries and 
constraints of the system. 

We shall use the recent “top-down” formulation. Glorioso-Crossley-Liu, JHEP 17’;

integrating out fast modes



The double life in non-equilibrium systems: Schwinger-Keldysh formalism
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Consider the density matrix of a non-equilibrium system

                                  ρ(tf ) = U(tf , ti)ρIU+(tf , ti)

ϕr ≡
1
2 (ϕ1 + ϕ2) , ϕa ≡ ϕ1 − ϕ2

The path integral representation is naturally formulated on the Schwinger-
Keldysh contour

Introducing r and a-variable, representing (average) observables and noise 
respectively.

ϕ1

ϕ2



EFT Action for a neutral fluid. 
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EFT action is organized by the double expansion in gradient and a-variable X. 
Here  is the r-variable. βμ = βuμ

ℒHydro = (ϵuμuν + pΔμν − β−1Hμναλ(∂αβλ)) ∇ν Xμ

Hμναβ = η (ΔμαΔνβ + . . . ) + ζ ( . . . )

X (a-variable) is conjugate to force acting on r-variables, i.e. noise in the 
stochastic formulation.

δXIHydro → ∂μTμν
hydro = Fν(X)

The action at second order in X is fixed by the viscous part of  via local 

KMS  symmetry (defining local equilibrium through symmetry). 

Tμν
hydro.

Z2

Glorioso-Crossley-Liu, JHEP 17’ 

+iβ−1 Hμναβ ∇α Xβ ∇μXν + higher order in X or grad.

In contrast to stochastic approach, X is viewed as dynamical variables whose 
evolution is coupled with hydro. modes. 

δβIHydro → E.o.M for X



Stress-energy tensor correlator
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Describing the fluctuation, propagation and dissipation of stress-energy tensor 
disturbance. 

 The analytic structure reflects the properties of medium excitations. 

 Related to E.o.S, transport coefficients in long wavelength, long time limit.

For QGP, their behaviors are only known in limiting cases so far:

in high frequency limit can be computed perturbatively,  

its form in low frequency limit is universally fixed by (deterministic) hydro.

The study of the effects of hydro. fluctuations to stress-energy correlator has a 
long history, no complete answer is known to date.

Our goal: a complete one-loop analysis of stress-energy correlator for general 
 based on hydro. EFT ω, k

Gμν;αβ
R (ω, k) ∼ ⟨Tμν

r Tαβ
a ⟩



Correlators and tree level results
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We put five independent  into two categories. (setting momentum 
along z-direction).

Gμναβ
R

⟨T0z
r T0z

a ⟩ =
w (c2

s k2 − iνLωk2)
ω2 − c2

s + iνLωk2
⟨T0x

r T0x
a ⟩ =

−ηk2

−iω + νTk2

⟨Txy
r Txy

a ⟩ ⟨Θ̃r Θ̃a⟩ ⟨T00
r Θ̃a⟩

Category A: no poles in hydro regime but related to viscosity.

e.g. :   ,  lim
ω, ⃗k →0

⟨Txy
r Txy

a ⟩/ω = η lim
ω, ⃗k →0

⟨Θ̃rΘ̃a⟩/ω = ζ

Category B: has poles in hydro regime.

Θ̃ = ∑
i

Tii − 3c2
s T00



Set-up for loop calculation
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Dynamical fields: X and the fluctuations of energy-momentum density. 

∂t ⃗u = − ( ⃗u ⋅ ⃗∂ ) ⃗u − ν(T + δT )∇2 ⃗u + (a-field)

ideal vertices example of viscous vertices 

Propagators:

λ0 = −
δT00

r

csw0
, λi =

δT0i
r

w0
.

Gra ∼ ⟨λμ Xν⟩ Grr ∼ ⟨λμ λν⟩

Cubic action:  ⇒ ideal vertices+viscous verticesℒ = λλX + λXX

Connection to stochastic approach 

Gra
TT ∼

1
ω + iνT k2

Gra
L ∼

1
ω2 − c2

s k + iνL ω k2

(can be related to  )Gra

NB:  can de computed explicitly from the variation of hydro. action. 
(not obvious how to do so in “bottom-up” MSR approach. )

Tμν
r , Tμν

a

νT =
η
w

, νL =
(4/3)η + ζ

w
.



Characteristic feature of one-loop computations 
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∼ e−iΩA(p+)Δt

∼ e−iΩB(p−)Δt

I(ω, ⃗k ) ∝ ∑
A,B=±,T

∫ ⃗p
(vertices)2 1

ω − ΩA(p+) − ΩB(p−)

Hydro. modes A,B=±, T

Sound: Ω±(k) = ± cs k − iνLk2 ,

Shear: ΩT(k) = − iνTk2 ,
Disturbance Response

⃗p ± = ± ⃗p +
⃗k

2

⃗k

IAB(ω, ⃗k ) ∼ (V*)2
AB (p*AB)3 τ*AB

Here, the typical momentum of “fluctuation modes”  and typical propagation 
time of “mode pair”  depends on the combination   and . 

p*
τ* (A, B) (ω, k)

Propagation time of the “mode pair”

➡



Characteristic scale
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p* and  can be estimated by looking for poles in complex p plane:τ*

∫ ⃗p

1

ω + 2iνT(p2 + k2

4 )
→

∫ ⃗p

1

ω − cs(p+ − p−) + iνL(p2 + k2

4 )
→

p*ss ∼
ω

2νL
∼ p*TT csk < ω

p*ss ∼
csk
2νL

≫ p*TT csk > ω

p*TT ∼
ω

2νT
k <

ω
ν

p*TT ∼ k k >
ω
ν

Shear-shear and sound-sound are more important than other combinations.

When  , the main contribution comes from “sound-sound” . csk > ω

T-T:

s-s:

A k a m a t s u -
Mazeliauskas-
Teaney, PRC 16,



Results for correlators in category A.
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⟨Txy
r Txy

a ⟩ ⟨Θ̃r Θ̃a⟩ ⟨T00
r Θ̃a⟩

Category A: related to viscosity but do not have poles in hydro regime:

Θ̃ = ∑
i

Tii − 3c2
s T00

(⟨Txy
r Txy

a ⟩)tree = P − iηω

Consider tensor correlator as an example. 

When : “sound-sound” pair dominates over “shear-shear” pair.csk > ω

lim
csk≫ω

ImΔGxyxy
R (ω, k)/ω =

−T

231 2π

csk
νL

1
νL

Zero k: both “sound-sound” and “T-T” contribution are important. 

ImΔGxyxy
R (ω,0)/ω =

−T

60π 2 ( ω
νL

1
νL

+
ω

2νT

7
2νT ) Kovtun-Yaffe, 2003; Kovtun-

Moore-Romatschke, 2011

N.B.: for shear-shear pair, one will obtain  which is 
parametrically smaller in large k regime.

Gxyxy
R ∼ Tωk /νT

（e.g Foster et al, PRA 1977; see also Jain-
Kovtun-Ritz-Shukla）
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（Foster et al, PRA 1977）

lim
k≫ ω

ν

Im Gxyxy
R ∼ k

lim
csk>ω

ImGxyxy
R ∼

csk
νL

The renormalization of shear viscosity at finite k



Results for sound and shear channel
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Focus on the self energy 

−ηk2

−iω + νTk2
→

−η(1 + δR(ω, k))k2

ω + i(νT k2 + Σar(ω, k))

(Gra)−1(ω, k) − Σar(ω, k) = 0 ➡ “dressed” sound/shear modes

⟨T0x
r T0x

a ⟩ =
−ηk2

−iω + νTk2

At loop, both the dispersion of hydro. modes and the corresponding residues 
are modified. 

⟨T0z
r T0z

a ⟩ =
w (c2

s k2 − iνLωk2)
ω2 − c2

s + iνLωk2



The role of viscous vertices in Σar
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For sound-sound contribution to , the loop with viscous vertices must be 
included for completeness. 

Generically: gradient expansion organizes the hierarchy among one-point 
functions, but not necessarily that of two-point functions.

For example:  consider two “composite operators”.

Σar

⟨O1(x)⟩ ≫ ⟨O2(x)⟩

⟨O(x) O1(0)⟩ ∼ ⟨O(x)O2(0)⟩

O1(x) = (λ∂X)(x) O2(x) = (ν∂λ∂X)(x)⟩

For one point function:

For correlation, it could happen



More details
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⟨(λλ)(K)(λ∂X)(−K)⟩ ∼ ∫ ⃗p
[ ⃗p +G+(p+)G−(p+) + ⃗p −G−(p+)G+(p−)]

∼ ∫ ⃗p
( ⃗p + + ⃗p −) G+(p)G−(−p) ∼ kp3

* τ*

In this case

⟨(λλ)(K)(ν∂λ∂X)(−K)⟩ ∼ ∫ ⃗p
[ν ⃗p 2

+G+(p+)G−(p+) + ν ⃗p 2
−G−(p+)G+(p−)]

∼ ∫ ⃗p
( ⃗p + − ⃗p −) G+(p)G−(−p) ∼ (νp2

*) p3
*τ*

⃗p ± = ± ⃗p +
⃗k

2

ideal-ideal vertice

ideal-viscous vertice

⟨O(x) O1(0)⟩ ∼ kp3
* τ* ∼ ⟨O(x)O2(0)⟩ ∼ (νp2

*) p3
*τ*

NB: νp2
* = csk



KMS symmetry saves the day
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Viscous vertices are many ( ), and depend on  etc. 

However, since KMS symmetry imposing strong constraint on propagators and 
vertices , it turns out that only two independent vertices contribute. 

   the final contribution to self-energies is proportional to 

> 10 η′ , ζ′ , ηp′ ′ , ζp′ ′ 

p′ ′ (β)
w0

η , (c2
s (β))′ × ζ



Dressed hydro. modes (in 3d)
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Sound dispersion :

δω± = ± csk −
k2

4 2πs
(0.073 − 0.332)

csk
ν3

L
− 0.311

csk
2ν3

T

ωsh = − i(νT + Δν)k2 Δν = −
1

4 2π

8c2
s

77sνL

csk
νL

(1 − c1)

F r o m v i s c o u s v e r t i c e s 

(conformal fluid)c1 =
β2

0 p′ ′ 

2w0
= 5/2

From Ideal vertices

The dispersion of shear modes:

−i νk2 +
k2

4 2πs
(0.073 + 0.332)

csk
ν3

L
− 0.311

csk
2ν3

T

From viscous vertices 

From Ideal vertices



Discussion and implication
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Parametrically behavior of fluctuation correction
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Δη
η

∼
(νp2

*)−1

ν
× (

pd
*

s
)

Ratio between life time of “fluctuation mode-
pair” and micro. m.f.t . (Recall )ν ∝ τmft

Ratio between phase space volume of 
“fluctuation modes” and micro. d.o.f.

νT =
η
w

, νL =
(4/3)η + ζ

w
.

The fluctuation contribution: 

   be suppressed by the density of microscopic modes.

   be enhanced if viscosity is small. 



Implication for dynamical modelling for BES
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On stochastic approach: fluctuation back-reacts on stochastic eqn.

∂tvx = − (νk2 + Σar(t, k)) vx + F , ⟨F(t, ⃗k )F(t′ , ⃗k ′ )⟩ ∼ 2(η + δη(t, k))δ(t − t′ )

On deterministic approach: self-energies are expected to lead to “collision 
kernel” in  “kinetic eqn” for two-point fluctuations.

    Recall Kadanoff-Baym eqn. for scalar theories:

∂tGrr(t, x, p) + p
∂
∂x

G(t, x, p) = − (Σar − Σra)Grr − Σaa(Gra − Gra)

collision integral

c.f. Mueller-Son, PLB 04’

Self-energies computed here can serve as input for the future development 
of hydro-kinetic equation. 



Analytic structure at finite k (preliminary)
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without hydro. fluct. from kinetic theory
with hydro. fluct.

csk−csk

−k k

quasi-particle cut

1/τR
νk2

sound

csk−csk

−k k

quasi-particle cut

“phonon” cut

“dressed  sound”

Hydro. flucts. leads to rich non-analytic structure in correlators; we show samples of 
them above.

A step forward towards understanding non-hydro. yet non-perturbative 
regime of QGP.



Hydro. fluctuation and hydrodynamization 
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2nd order hydro:  

Physical interpretation of  :  hydrodynamization time

⟨Txy
r Txy

a ⟩ = P − iηω + ητπω2 −
κ
2

(ω2 − k2)

τπ

Txy − Txy
vis ∼ e−τπt

Kurkela-Wiedemann, EPJC 17’

see also Ghiglieri-Moore-Teaney, PRL 18’

Kubo formula for 2nd hydro. is divergent !

ητπ = lim
ω,k→0

(∂2
ω − ∂2

k) Gxy;xy
ra (ω, k)

Interpretation: hydro. fluctuation sets the scale of hydrodynamization.

    ➡.     Txy − Txy
vis ∼ e−τπt t−1/2

Another thought:  as well as other second hydro. coefficient might be 
viewed as transport coefficient defined at non-hydro scale. 

τπ

ΔGxyxy ∼ ω3/2, ω k

Decay of fluctuations modes

Moore-Sohrabi, PRL 11’



Hydrodynamic fluctuation and chiral 
magnetic effect

28

Sogabe, postdoc@IMP



Set-up 
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For a chiral fluid (consisting massless fermions): chiral anomaly induced a 
number of interesting transport phenomenon, such as chiral magnetic effect 
(CME). 

CME couples vector charge density with axial charge density, and induces new 
types of collective modes.

Based on hydro. EFT including anomaly effects, we study the contribution of 
fluctuations to conductivity. 

⃗j = CanomμA
⃗B

Glorios-Hong Liu-S. Rajagopal, JHEP 18’



Negative magento-resistivity
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Consider the conductivity in a chiral medium in the presence of a magnetic 
field.

Finite and negative one-loop correction:

measurement of 
conduct i v i t y in  
Weyl semimetal, 
from1412.6543 

σij = σLB̂iB̂j + σT(δij − B̂iB̂j)

CME togeher with the relaxation of axial density leads to 
negative magneto-resitvity , i.e., a positive contribution to 
longitudinal conductivity (tree level results).

σL = σ0 +
C2

anomB2

χ2
Γ−1

A

(ΔσL)loop ∼ − C2
anomB2 ΓA

D

Non-linearity from CME
Emergent scale due to the competition 
between diffusion and axial relaxation



The correction to conductivity and bulk viscosity at zero axial damping
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The collective modes: chiral magnetic wave

Non-linearity due to advection:  ⟨(nBvi)(t, x)(nBvi)(0)⟩

ωCMW( ⃗k ) = ± vBB̂ ⋅ k − iDk2

Similar for bulk viscosity

(Δσ)loop ∼ −
χ

32(D + νT)w0π
(

vB

D + νT
)

Emergent scale due to the competition 
between diffusion and CMW

applicable when νB /(D + νT) ≪ l−1
mfp

(Δζ)loop ∝ −
c2χ2

D
(
vB

D
) ( )δp = cδn2

Extension to the critical point (preliminary):

Δσ ∼ ξ Δσ ∼ (
νT

νB
)( )ξ−1 ≫

vB

νT
( )ξ−1 ≪

vB

νT

vB =
CB
χ0

Even a weak magnetic field could lead to dramatic changes in transport 
coefficients through hydro. fluctuations ! 



Summary and outlook
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Summary and outlook 
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Hydrodynamic fluctuations lead to rich physics.

The newly-developed EFT approach is a powerful tool for studying 
fluctuations dynamics. 

First complete analysis of stress-energy tensor correlator.

Hydrodynamic fluctuations and chiral anomaly. 

Outlook: first-order transition, hydrodynamization, non-hydro. yet non-
perturbative regime of QGP. (QGP mesoscopy).  



Perspective on quantum computing
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Simulating stochastic hydro. proves to be numerically demanding. Taking 
advantage of quantum computer?

Hydro EFT might be a useful starting point:

Ihydro → 𝒯 exp(iHhydrot)

A recent breakthrough: the quantum computing algorithm for non-linear, non-
Hermitian “Hamiltonian”. Lloyd et al, 2011.06571

A small step forward: understanding this algorithm in a simple (Bjorken 
expanding) fluid model. 

Bao Xiangrun (undergrad. of Peking U.), 
Huichao Song, YY, in progress

Many exciting physics ahead. Stay tuned!



Back-up
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