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Changes of physical 
degrees of freedom

— PHENOMENOLOGY —
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Deconfinement
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 HRG Lattice

Polyakov loop — renormalization? interpretation?

Thermodynamics

pQCD
Talk@QM14

Deconfined where a hadronic description breaks down. 
Deconfined where a pQCD description works.
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Phase Diagram = Two Hagedorn Transition Lines

Z = N

Z
dm ⇢(m) e�m/T

⇢(m) = em/TH

Tc = TH

Z = N

Z
dm ⇢B(m) e�(m�µB)/T

⇢B(m) = emB/TB

Tc = (1� µB/mB)TB

Mesonic Hagedorn Transition

Baryonic Hagedorn Transition

Andronic et al. (2009)
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Inverse Magnetic Catalysis (IMC)

Figure 2: Our simulation points on 243 × 6
lattices (blue crosses) and the lines of constant
magnetic field (red dashed lines).

We measure our observables along a grid of points

in the T − Nb plane, as depicted in figure 2. The simu-

lation points are denoted by the blue crosses, while the

eB = const. curves are shown by the red dashed lines.

To perform the interpolation of the measurements along

these lines in a systematic and effective way, we fit a two-

dimensional spline function to the data points. A similar

approach is described in [56] for the fitting of the gradient

of a two-dimensional function. In figure 3 we show the ob-

servables as functions of T and Nb for our Nt = 6 lattices.

We obtain reliable results with good fit qualities; χ2/dof.

being in the range 1.2− 1.8.

We perform simulations over the same physical temperature and magnetic field range for two

smaller lattice spacings at Nt = 8 and Nt = 10, with very similar χ2/dof. values for the spline fits as

above. We use these three lattice spacings (around Tc(0) they correspond roughly to a = 0.2, 0.15 and

0.12 fm) to extrapolate our results to the continuum limit.

Figure 3: The renormalized up quark condensate (upper left panel), its susceptibility (upper right panel), and
the strange susceptibility (lower panel) as functions of T and Nb on our Nt = 6 lattices (note that viewpoints
are different in order to better show the interesting structures in the particular observables). Measurements are
denoted by the blue points, while the red surface is the spline fit to the data. The corresponding fit qualities
are χ2/dof. ≈ 1.8, 1.5 and 1.2, respectively.

– 9 –

Bali et al. (2011)

T

hq̄qi
Very different from BCS theory

Something missing 
       — deconfinement?

Fodor et al. (2011)
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Inverse Magnetic Catalysis (IMC)

Fukushima-Hidaka (2016)

E/N ⇠ 1GeV

Phenomenological 
  freezeout condition

E : internal energy

N : particles + antiparticles

Ideal Hadron Resonance Gas (IHRG) surprisingly good!
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Controversy on rotational deconfinement
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Figure 5: The coefficient B2 in Eq. (16) versus the ratio Ns/Nt for several lattice sizes with OBC.
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Figure 6: The Polyakov loop |hL(x, y = 0)i| as a function of coordinate x for OBC and ⌦I = 0 MeV (a), ⌦I = 24 MeV (b).
The results were obtained on the lattice 8 ⇥ 24 ⇥ 492 for two temperatures: T/Tc(0) = 0.76 in the confinement phase and
T/Tc(0) = 1.21 in the deconfinement phase.

value of the ⌦:

Tc(⌦)

Tc(0)
= 1 + C2⌦

2
. (15)

Our results indicate that the C2 > 0, which leads to the conclusion: With OBC the critical temperature of the

confinement/deconfinement phase transition grows with increasing angular velocity.

• In order to study the dependence of our results on the Nz lattice size we calculated the critical temperature on
the lattices 8⇥Nz ⇥252

, Nz = 20, 24, 30. The results obtained on these lattices agree within the uncertainty (see
Fig. 4(a)). In order to study discretization effects, we conducted our study on the lattices 8⇥24⇥252

, 10⇥30⇥
312

, 12 ⇥ 30 ⇥ 372 where the physical sizes are kept fixed. As can be seen from Fig. 4(a), the ratio Tc(⌦I)/Tc(0)
shows almost no dependence on the lattice spacing a. Next we proceeded to the dependence of the results on
size in the transverse directions Ns. To do this we fixed the Nt and Nz sizes and varied the Ns. It is seen from
Fig. 4(a) that our data are split into lines with different slopes. The dependence of these slopes (different C2

constants) on the lattice sizes Ns is quite significant.

Braguta et al. (2021)

Imaginary rotation enhances the Polyakov loop

Rotation induces more confinement!?

— pure gluonic theory on lattice
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Controversy on rotational deconfinement
Chiral sector has been well understood: rotation ~ density

6

as a continuous variable. Also we assume a su�ciently
large integer N . Then, we can approximate the `-sum in
F⌦ by an integration as

N�nX

`=�n
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(32)

For our parameter choiceN ⇠ O(104) is large enough and
the above approximation is justified. Then the rotational
contribution to the gap equation (21) is reduced to

F⌦ = Fµ(µ = µN )�
eB

2⇡

1X

n=0

↵n

s

1�
m2

n

µ
2
N

✓(µN �mn) .

(33)
It is obvious that a density-like e↵ect induced by rotation
is certainly contained in the first term Fµ. The second is
a negative term that makes a di↵erence from the finite-
density case. This extra term plays a role to weaken
chiral restoration by rotation as compared to that by
high density. Therefore, the suppression of the dynam-
ical mass in the rotating frame occurs more gradually
than that with the finite chemical potential. Moreover,
Eq. (33) implies F⌦ < Fµ for a fixed µN , and thus, chiral
restoration by rotation would need larger µN than that
by finite density (see Fig. 1).

(III) For T = 0 and large eB we can analytically in-
vestigate the eB-dependence of ⌦c. In our analysis we
adopted the näıve cuto↵ regularization with Eq. (20), but
the regularization scheme should be irrelevant for a large
system with S � 1/eB. If we utilized the proper time
regularization for F0, the gap equation with rotation and
strong magnetic field would be [? ]
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(34)

where �E is the Euler-Mascheroni constant, �(z) denotes
the gamma function, and ⇤PT stands for the cuto↵ pa-
rameter in the proper-time regularization. In this gap
equation (34), the terms in the third line result from the
n = 0 mode in Eq. (33). We can find ⌦c from the above
gap equation with m ! 0 substituted, and the analytical
result is

⌦c(eB) =

p
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p
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
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FIG. 4. 3D plot for the dynamical mass as a function of ⌦
and eB at strong coupling. For large ⌦, chiral symmetry is
restored by eB, which manifests the inverse magnetic catalysis
or the rotational magnetic inhibition.

where Gc = 4⇡/⇤2
PT is the critical coupling for ⌦ =

p
eB = 0 that is found in the proper-time regularization.

In the second line in Eq. (35), we utilized the parameters
of Eqs. (26), (29) and (28). On the other hand, we can
numerically evaluate ⌦c as a function of eB as displayed
in Fig. 3. From the linearity in Fig. 3 the numerical fit
leads to

⌦c(eB) '
1.58⇥ 10�6

p
eB

exp

✓
�
0.609⇤2

eB

◆
. (36)

This fitting result ensures that Eq. (32) is a good approx-
imation for the parameters in Eq. (28).

B. Dynamical mass at strong coupling (G > Gc)

We shall next focus on a following strong region:

G = 1.11Gc . (37)

We note that dynamically determined m with the above
strong-coupling is about 30 times larger than mdyn at
weak coupling. We show the numerical results in Fig. 4.
Below are several remarks on the results.

(I) For small angular velocity, the dynamical mass is
almost independent of ⌦ and eB. With increasing ⌦ the
dynamical mass is eventually suppressed by larger mag-
netic field, i.e. a counterpart of the finite-density inverse
magnetic catalysis is manifested. We would call this de-
creasing behavior of the mass for larger magnetic field
the “rotational magnetic inhibition” in this paper. In
Fig. 4 we see that the dynamical mass starts to drop
around µN = ⌦N ⇠

p
eB. The same is true for the

finite-density inverse magnetic catalysis observed around
µ ⇠

p
eB [? ].

Chen et al. (2015)
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FIG. 3: The phase diagram on T -! plane (see text).

(rather than the fermion-anti-fermion) superconducting
pairing phenomenon in the presence of rotation. In the
QCD context, this is the color superconductivity at high
density and low temperature (see e.g. [37] for a recent
review). Quite di↵erent from the chiral condensate, the
diquark pairing state has the spatial angular momentum
(for the relative orbital motion) L = 0 while the total
spin S = 0 (i.e. antisymmetric combination of the two
individual quark spins), again with the total angular mo-
mentum J = 0 for the pair. We use the same NJL model
and for simplicity we focus on the low-temperature high-
density region where the chiral symmetry is already re-
stored. Assuming a mean-field 2SC diquark condensate
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(9)

In the above the mean-field quasiparticle dispersion ✏±n
and ✏�±

n is given by ✏±n = (
p
k2z + k2t +m2±µ)�(n+ 1

2 )!

and ✏�±
n = [(

p
k2z + k2t +m2 ± µ)2 +�2]

1
2 � (n+ 1

2 )!.
The mean-field diquark condensate � at given values of
temperature T , chemical potential µ and rotation !, can
then be determined from the self-consistency equation
through variation of the order parameter: �⌦

��(r) = 0 and
�2⌦

��(r)2 > 0. By numerically solving the equation, we show

in Fig. 4 the � (at radius r = 0.1GeV�1) as a function of

! for several values of T and fixed µ = 400MeV. One can
see that with increasing !, the diquark condensate always
decreases toward zero, through a 1st-order transition at
low T while a smooth crossover at higher T . This result
again confirms the generic rotational suppression e↵ect
on the scalar diquark pairing.

FIG. 4: The mean-field diquark condensate � (at radius r =

0.1GeV
�1

) as a function of ! for several values of T and fixed

value of µ = 400MeV.

Summary and Discussions.— In summary, we have
found a generic rotational suppression e↵ect on the
fermion pairing state with zero angular momentum. This
e↵ect is demonstrated for two well-known pairing phe-
nomena in QCD matter, namely the chiral condensate
and the color superconductivity. The scalar pairing
states in these two examples, while di↵erent in many
aspects, are both found to be reduced with increasing
rotation of the system. In the case of chiral phase transi-
tion, we have identified the phase boundary with a criti-
cal point on the T � ! parameter space.
The rotational e↵ects on pairing phase transitions may

bear interesting implications for a number of physics sys-
tems. The phase diagram of QCD matter on T �! plane
could be quantitatively explored by ab initio lattice sim-
ulations which has recently become feasible [8]. In heavy
ion collisions there is sizable global angular momentum
carried by the hot dense matter (as recently computed
in e.g. [6]): such rotational motion may cause the chiral
restoration to occur at lower temperature as our results
imply, and may bear measurable consequences (e.g. for
dilepton emissions). In the case of neutron stars, the
dense QCD matter is under global rotation which may
reduce the chiral as well as diquark or nucleon-nucleon
pairings and may a↵ect the moment of inertia for such
stars [27, 28]. In the non-relativistic domain, the cold
fermionic gas is an ideal place to study the rotational
suppression e↵ect on the fermion pairing and the very
interesting BCS-BEC crossover phenomenon [38–41]. Fi-
nally, while in this paper we limit ourselves to the study
of slow rotation e↵ects, it is worth commenting that

Jiang-Liao (2016)

Chiral restoration is assisted just like density!
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Controversy on rotational deconfinement
Figure 1: Thermodynamic quantities, the pressure (left), the energy density (middle), and the entropy (right), calculated in the HRG model
with and without imposing the mass cuto↵ m < ⇤ with ⇤ = 1.5 GeV.

that the changes of the chemical freezeout curve are as
small as around 10 MeV.

We quantitatively study the e↵ect of ⇤. In Fig. 1 we
plot the thermodynamic quantities with and without the
cuto↵ from Eq. (14) in the standard non-rotating HRG
model. The left panel shows the pressure p, the middle
shows the energy density ", and the right shows the en-
tropy density s as functions of T . To check the validity
of our simplification with ⇤, we shall compare the critical
temperature Tc read out from a thermodynamic criterion.

The critical temperature without ⇤ is known from the
lattice-QCD simulation as Tc = 154 MeV [40]. We can
find the corresponding critical p/T 4, "/T 4, and s/T

3 at
Tc from the crossing points of the orange dashed curves
and the dotted vertical lines. Then, we can estimate the
⇤ modified Tc from the crossing points of the blue solid
curves and the dotted horizontal lines in Fig. 1. The shifts
in Tc read out from p/T

4, "/T 4, and s/T
3 are 3.0 MeV,

5.6 MeV, and 5.2 MeV, respectively. This is the numerical
confirmation that the ⇤ e↵ects on Tc are less than 10 MeV.
In conclusion, our simplification by ⇤ = 1.5 GeV is qualita-
tively harmless for the study of the phase boundary around
Tc and also at the quantitative level the possible error is
⇠ 5 MeV. We assume that the ⇤ e↵ects are negligible for
finite ! as well.

Now let us discuss the deconfinement phase boundaries
at finite µ and !. For this purpose we should make the
thermodynamic quantities not only with T (as in Fig. 1)
but with some proper combination of T , µ, and !. We
employ the normalization given by the Stefan-Boltzmann
limit of a rotating quark-gluon gas:

pSB ⌘ (N2
c � 1) pg +NcNf (pq + pq̄) , (20)

where the number of colors and flavors are Nc = 3, Nf = 2,
respectively. The gluon pressure reads:

pg = � T
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Here, we note that the possible angular momenta are only
j = `� 1 and j = `+ 1 and there is no contribution from

Figure 2: Deconfinement transition surface as a function of the
baryon chemical potential µ and the angular velocity !.

sz = 0 because gluons are massless gauge bosons. This
is why J

2
`
(krr) + J

2
`+2(krr) appears above. The quark

pressure reads more straightforwardly:
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and the anti-quark pressure, pq̄, takes almost the same
expression with µ ! �µ.

Here our criterion for the deconfinement transition is
prescribed, in a way similar to Ref. [41], as

p

pSB
(Tc, µ, !) = � . (23)

Here, � is a constant, which is chosen to reproduce Tc(µ =
! = 0) = 154 MeV in accordance with the lattice-QCD
results [40]. This condition fixes � = 0.18 in our calcula-
tion. Now we can numerically solve Eq. (23) to identify
Tc = Tc(µ, !) as plotted in Fig. 2.

Now it is evident that Tc is a decreasing function with
increasing ! just like the behavior along the µ direction.
We cannot directly study the chiral properties within the
HRG model, but it is conceivable that the deconfinement

5

Fujimoto-Fukushima-Hidaka (2021)

IHRG predicts that rotation 
 induces NOT confinement

 BUT deconfinemet!

Does not falsify Victor’s lattice 
since the system is not the same.

Physics is position dependent. 
Polyakov loop?

(private comm. with Maxim)

Also moment of inertia estimated 
(consistent with enthalpy)
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Monnai-Schenke-Shen (2019)
NEOS — interpolated between  
                 lattice and IHRG

(HRG is preferable for Cooper-Frye)

6

FIG. 3. (Color online) The comparison of the trajectories for
constant s/nB = 420 (solid line), 144 (long-dashed line), 51
(dash-dotted line), and 30 (short-dashed line) lines between
neos B and neos BS denoted by narrow and thick lines, re-
spectively. The gray area shows the region where µB/T > 3
above Tc.

C. Strangeness neutrality nS = 0 and fixed electric
charge-to-baryon ratio nQ = 0.4nB

Finally, we investigate the case where nS = 0 and
nQ = 0.4nB . This is the setup most relevant to Au+Au
and Pb+Pb collisions. The dimensionless pressure P/T 4

is plotted in Fig. 4 (a). The di↵erence from the previ-
ous case is small in this setup but should be meaningful
for correctly understanding particle-antiparticle ratios of
charged particles.

The electric charge chemical potential shown in Fig. 4
(b) is negative, owing to the interplay of multiple con-
served charges. Since the number of neutrons is larger
than that of protons in heavy nuclei, d quarks are slightly
more abundant than u quarks in the QGP phase and ⇡�

more abundant than ⇡+ in the hadronic phase. While
the overall system is positively charged, a negative elec-
tric chemical potential is needed for describing this situ-
ation. µQ becomes positive for the system of 3He since
Z/A > 1/2. This would have to be taken into account
for the collisions involving such nuclei.

It should be noted that µQ is small and is rather sensi-
tive to the fine structure of the equation of state, includ-
ing higher-order susceptibilities, at large chemical poten-
tials. This implies that improvement in the lattice QCD
calculations, including higher order susceptibilities, will
be important in quantitative analyses.

D. Discussion

We have constructed the nuclear equation of state un-
der several di↵erent conditions. We now study the dif-
ferences between the di↵erent scenarios in more detail.

The sound velocities of the equation of state under

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6

 0

 0.01

 0.02

 0.03

 0.04

 0.05

-µ
Q

 (
G

e
V

)

(b) NEOS BQS s/nB = 420
s/nB = 144

s/nB = 51
s/nB = 30

µB (GeV)T (GeV)

-µ
Q

 (
G

e
V

)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

FIG. 4. (Color online) (a) The dimensionless pressure P/T 4

and (b) the electric charge chemical potential µQ as functions
of T and µB where nS = 0 and nQ = 0.4nB . The solid, long-
dashed, dash-dotted, and short-dashed lines are the trajecto-
ries for constant s/nB = 420, 144, 51, and 30, respectively.

the three di↵erent conditions along two constant s/nB

lines are plotted in Fig. 5. One can see that finite-
density e↵ects are visible comparing the sound velocities
of s/nB = 420 and 30. Around the crossover tempera-
ture, the EoS becomes soft and c2s has a minimum. The
location of the minimum shifts towards lower tempera-
tures as the net baryon density increases. Also, the sound
velocity becomes larger in the QGP phase and smaller in
the hadronic phase at larger chemical potentials. This is
because the net baryon contribution in c2s (13) is positive
for the former phase and negative for the latter phase.
At higher temperatures, it starts to approach the Stefan-
Boltzmann limit c2s = 1/3. For the three presented equa-
tions of state, c2s reaches 94.8 % of the value the Stefan-
Boltzmann limit at T = 0.6 GeV and 97.2 % at T = 0.8
GeV for s/nB = 420.

Comparing neos B to neos BS, the strangeness neu-
trality condition is found to slightly enhance the sound
velocity in the QGP phase. It should be noted that if
one neglected the derivatives involving nS in the calcu-
lation of c2s (13) for neos B, the sound velocity would be

Andronic-Braun-Munzinger-Stachel-Winn (2012)
Repulsive interaction through the excluded volume effects 
Better agreement with lattice

Vovchenko-Gorenstein-Stoecker (2016)
Van der Waals (excluded volume effect + attractive int.)
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Monnai-Schenke-Shen (2019)
NEOS — interpolated between  
                 lattice and IHRG

(HRG is preferable for Cooper-Frye)
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FIG. 3. (Color online) The comparison of the trajectories for
constant s/nB = 420 (solid line), 144 (long-dashed line), 51
(dash-dotted line), and 30 (short-dashed line) lines between
neos B and neos BS denoted by narrow and thick lines, re-
spectively. The gray area shows the region where µB/T > 3
above Tc.

C. Strangeness neutrality nS = 0 and fixed electric
charge-to-baryon ratio nQ = 0.4nB

Finally, we investigate the case where nS = 0 and
nQ = 0.4nB . This is the setup most relevant to Au+Au
and Pb+Pb collisions. The dimensionless pressure P/T 4

is plotted in Fig. 4 (a). The di↵erence from the previ-
ous case is small in this setup but should be meaningful
for correctly understanding particle-antiparticle ratios of
charged particles.

The electric charge chemical potential shown in Fig. 4
(b) is negative, owing to the interplay of multiple con-
served charges. Since the number of neutrons is larger
than that of protons in heavy nuclei, d quarks are slightly
more abundant than u quarks in the QGP phase and ⇡�

more abundant than ⇡+ in the hadronic phase. While
the overall system is positively charged, a negative elec-
tric chemical potential is needed for describing this situ-
ation. µQ becomes positive for the system of 3He since
Z/A > 1/2. This would have to be taken into account
for the collisions involving such nuclei.

It should be noted that µQ is small and is rather sensi-
tive to the fine structure of the equation of state, includ-
ing higher-order susceptibilities, at large chemical poten-
tials. This implies that improvement in the lattice QCD
calculations, including higher order susceptibilities, will
be important in quantitative analyses.

D. Discussion

We have constructed the nuclear equation of state un-
der several di↵erent conditions. We now study the dif-
ferences between the di↵erent scenarios in more detail.

The sound velocities of the equation of state under
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FIG. 4. (Color online) (a) The dimensionless pressure P/T 4

and (b) the electric charge chemical potential µQ as functions
of T and µB where nS = 0 and nQ = 0.4nB . The solid, long-
dashed, dash-dotted, and short-dashed lines are the trajecto-
ries for constant s/nB = 420, 144, 51, and 30, respectively.

the three di↵erent conditions along two constant s/nB

lines are plotted in Fig. 5. One can see that finite-
density e↵ects are visible comparing the sound velocities
of s/nB = 420 and 30. Around the crossover tempera-
ture, the EoS becomes soft and c2s has a minimum. The
location of the minimum shifts towards lower tempera-
tures as the net baryon density increases. Also, the sound
velocity becomes larger in the QGP phase and smaller in
the hadronic phase at larger chemical potentials. This is
because the net baryon contribution in c2s (13) is positive
for the former phase and negative for the latter phase.
At higher temperatures, it starts to approach the Stefan-
Boltzmann limit c2s = 1/3. For the three presented equa-
tions of state, c2s reaches 94.8 % of the value the Stefan-
Boltzmann limit at T = 0.6 GeV and 97.2 % at T = 0.8
GeV for s/nB = 420.

Comparing neos B to neos BS, the strangeness neu-
trality condition is found to slightly enhance the sound
velocity in the QGP phase. It should be noted that if
one neglected the derivatives involving nS in the calcu-
lation of c2s (13) for neos B, the sound velocity would be

Andronic-Braun-Munzinger-Stachel-Winn (2012)
Repulsive interaction through the excluded volume effect 
Better agreement with lattice

Vovchenko-Gorenstein-Stoecker (2016)
Van der Waals (excluded volume effect + attractive int.)

EV enlarges the validity region

Can we expect EV or VDW works at higher density? 
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If P is plotted versus n, the behavior blows up abruptly 
(All the following results are ones with b equilibrium)

Density is saturated, while the pressure increases…
Fujimoto-Fukushima-Hidaka-Iida (in prep)

nB =
@p

@µB
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 then blows up!p(μB) Inevitable from
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Density is saturated, while the pressure increases…
Fujimoto-Fukushima-Hidaka-Iida (in prep)

nB =
@p

@µB
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 then blows up!p(μB) Inevitable from
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Density is saturated, while the pressure increases…
Fujimoto-Fukushima-Hidaka-Iida (in prep)

nB =
@p

@µB

<latexit sha1_base64="2R2nKjPzbjrR1+c2GeAfhENU5G0="></latexit>

 then blows up!p(μB) Inevitable from

Maybe 
not so bad?
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Comparison to Chiral EFT by Drischler et al. (2020)

EoS is not a crazy one up to twice saturation density.

 may look better at high density though  doesn’t.p(ε) p(nB)

Fujimoto-Fukushima-Hidaka-Iida (in prep)
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So far, B > 2 particles were excluded by hand, and 
if included, larger EV fits the EoS better (maybe overfitting)

Quantitatively questionable, but physically reasonable 
— multi-baryon clustering more and more dominant!

Fujimoto-Fukushima-Hidaka-Iida (in prep)
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Fukushima-Kojo-Weise (2020)

Details of baryon interaction is crucial at high density. 
EV (and VDW) is too rigid.

3

FIG. 3. Schematic picture of matter with comparable
strengths of all n-body interactions. Extended wave-functions
are for quarks and antiquarks. For larger n a picture of in-
dividual meson exchanges would become more obscured. At
short distances core interactions are mediated by quark ex-
changes.

in a more conventional sense as conjectured by the no-
tion of quark mobility. Let us consider decreasing the
baryon density and explore how the quark mobility would
change. It appears that quarks (accompanied by anti-
quarks) can still hop from one nucleon to another through
the exchange of mesons. This situation can be intuitively
understood as overlaps of meson clouds as illustrated in
Fig. 2. Such an interpretation of the quark mobility is,
however, too näıve. The equilibrium binding of nuclear
matter at the saturation density is sustained mainly by
mesonic exchanges, but needless to say, nuclear matter
at the saturation density is not quark matter yet. Quark
exchanges inevitably occur together with antiquarks to
form color-singlets, and connected blocks of meson clouds
do not really signify quark liberation.

The question that we would like to address in this work
is the following: there is supposedly another mechanism
of quark deconfinement at lower density than Hard De-
confinement, which we refer to as Soft Deconfinement.
The question is; in other words, when does a picture
of individual meson exchanges between nucleons lose its
meaning? If the system is in the confined hadronic phase
at low density, the exchange of color-singlet mesons char-
acterizes baryon interactions. The contraposition of this
statement is that, if a meson-exchange based description
is blurred, the system should be out of the confined phase.
Interestingly, this argument suggests a possible relation-
ship between Soft Deconfinement and Quarkyonic Mat-
ter. As mentioned before, Quarkyonic Matter has the
potential energy ⇠ O(Nc) and all n-body interactions are
of the same order. This is exactly the situation expected
in an intermediate state between nuclear and quark mat-
ter in the three-window scenario description of neutron
stars [27]. Even in the real world with Nc = 3 we can
still adopt this characterization of Quarkyonic Matter,
namely, matter with comparable strengths of all n-body
interactions among nucleons. From the microscopic point
of view such n-body forces could be mediated by multi-

FIG. 4. Schematic picture of the classical and the quan-
tum percolation between nucleons. Neighboring nucleons are
linked by interactions shown by red bonds. The path con-
nected by interaction bonds does not necessarily guarantee
extending wave-functions at the quantum level. The square
lattice is only for graphical simplicity.

meson exchanges as sketched in Fig. 3. In this way we
may well identify Quarkyonic Matter in the Nc = 3 real
world as multi-body interacting matter, and we could
also adopt this identification for Soft Deconfinement.
The regime of Soft Deconfinement can thus be viewed

as clustering of nucleons connected by strong n-body in-
teractions. Large n would imply large clusters. More
precisely, the clusters should be formulated in terms of
wave-functions of quarks and antiquarks. Mesonic clouds
are to be interpreted as “sea” quarks which do not carry
net baryon charge. The corresponding wave-functions of
quarks and antiquarks are equally distributed in space.
Such a spatial extension of wave-functions is quite

analogous to those of electrons in a tight-binding model.
Here, based on an analogy with condensed matter
physics, we are proposing a novel scenario of deconfine-
ment. In the metallic state conduction electrons are ex-
tended in space, but a larger concentration of impurity
increases the electric resistivity, and eventually the sys-
tem under impurity disturbances behaves as an insula-
tor. Then, the electron wave-functions are localized in
the insulating state, for which the physical mechanism is
known as Anderson localization. As a matter of fact, the
idea of the Anderson localization applies to the perco-
lation problem. We emphasize that connected blocks of
meson clouds in Fig. 2 are percolating classically, but this
classical percolation does not necessarily lead to physical
percolation of wave-functions at the quantum level.
It is easily understood that the critical concentration

for the onset of percolation should be larger for quan-
tum percolation than for classical percolation. The in-
teraction via meson exchanges opens a classical path for
quarks and antiquarks to hop between nucleon sites. To
build a model in the simplest way, let us consider a lat-
tice system as schematically shown in Fig. 4. We simplify
the interaction clouds into bonds connecting neighbor-
ing sites and place static nucleons (which is justified in
the large-Nc limit) on sites. The bonds should be color-
singlets, and this constraint reduces the strength of the
interaction from O(N2

c ) to O(Nc). Furthermore, quarks
and antiquarks are equally distributed, reflecting the na-
ture of sea quarks associated with mesonic clouds.

Many-body interactions open 
connected paths, but it does not 
necessarily mean connected 
wave-functions (Anderson 
localization — insulator).

Quantum Percolation
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Fukushima-Kojo-Weise (2020)
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FIG. 7. Pressure and energy density distributions as functions
of r multiplied by 4⇡r2. To make the comparison easier, the
energy density is rescaled by a factor 0.1.

ergy density by a factor 0.1 to make it comparable to
the pressure. The characteristic feature of the pressure
distribution inside the nucleon is its combination of a
positive core pressure and a negative pressure at the sur-
face [46, 47], adding up to overall zero pressure to main-
tain equilibrium in the nucleon ground state. Such a
pressure profile is verified, at least qualitatively, in deeply
virtual Compton scattering measurements [48].

From these results one can infer the EoS in the core
region of the nucleon, which may serve as a reasonable
approximation for the EoS of quark matter near the clos-
est packed density (19). One might care about di↵erences
between symmetric nuclear matter and neutron matter,
but in such an extremely high-density regime of our in-
terest the physical properties are to be dominated by the
strong interaction and the �-equilibrium condition would
be not essential.

In the present framework we must be careful of the
mass scale in executing this program for the EoS con-
struction. As discussed in the previous work [40, 41],
this chiral soliton model overestimates the baryon mass
which is given by the integration of the energy density.
It is known that this mass discrepancy would be reduced
if the soliton is quantized (i.e., rotated with spin and
isospin). Here, our main purpose is not to study the
chiral soliton model itself but to demonstrate the idea,
so we shall adopt a quick prescription: we rescale the
results simply by the ratio, �, between the physical nu-
cleon mass and the model output. That is, we introduce
a ratio parameter as

� =
(physical mass)

(model mass)
⇡

940MeV

1460MeV
⇡ 0.64 . (22)

Then, we should make the following rescaling:

✏(r) ! �✏(r) , p(r) ! �
�1

p(r) . (23)

The above is the consistent rescaling in such a way not
to modify the form factors. In other words, given the

FIG. 8. EoS of dense quark matter from the Hard Deconfine-
ment scenario (Nucleon EoS) and empirical EoSs from other
approaches.

nucleon form factors A(q2) and D(q2) associated with
the components of the energy-momentum tensor, the
energy density is proportional to the mass, while the
pressure is inversely proportional to the mass (see a
review [49] for explicit expressions). One might have
thought that the model parameters can be readjusted
to fit the baryon mass, but this would significantly af-
fect the charge radius. If the form factors stay intact
leaving the charge radius unchanged, the rescaling pro-
cedure should yield physically more sensible results than
readjusting the model parameters.
Figure 8 presents our results for the equation of state,

p(✏), of dense quark matter in the hard core region of the
nucleon, compared to several proposed EoSs that are con-
sistent with empirical properties of neutron star matter.
We label our results, the rescaled p(r) and ✏(r), as “Nu-
cleon EoS” and mark di↵erent radial coordinate scales
in the nucleon core, r = 0.2 fm to 0.5 fm, with crosses
in Fig. 8. The fast-dropping behavior at r & 0.5 fm re-
flects the negative pressure at the nucleon surface, phys-
ically interpreted as resulting from confining forces and
the inward-bound pressure of the meson cloud.
For the neutron star based equations-of-state in Fig. 8,

�EFT refers to the EoS from the Chiral E↵ective The-
ory [50] and QHC18 from Ref. [27], and SLy4 from
Ref. [51]. DL shows the EoS deduced from the observa-
tion data analyses using the deep learning [52]. The EoS
data labelled by �FRG is taken from Refs. [53, 54]. We
note that the EoS bound from the deeply virtual Comp-
ton scattering on the proton was previously discussed in
a similar way in Ref. [55]. For r < 0.5 fm, remarkable
agreement is seen between our (free) Nucleon EoS and
the sets of dense neutron star matter equations-of-state.
Assuming that the onset of Hard Deconfinement appears
at r-scales in the range r = 0.5�0.4 fm (corresponding to
baryon densities ⇠ 4� 7⇢0 according to Fig. 6), this im-
plies that Hard Deconfinement can occur at significantly
lower density than the limiting estimate (19).

Energy-momentum tensor of proton can be probed by 
the gravitational form factor (at EIC). 
If the hydrodynamical pressure is dominated by the 
nucleon matrix element at high energy density, we can predict:

Calculated in a vectorized Skyrme model

7

FIG. 7. Pressure and energy density distributions as functions
of r multiplied by 4⇡r2. To make the comparison easier, the
energy density is rescaled by a factor 0.1.

ergy density by a factor 0.1 to make it comparable to
the pressure. The characteristic feature of the pressure
distribution inside the nucleon is its combination of a
positive core pressure and a negative pressure at the sur-
face [46, 47], adding up to overall zero pressure to main-
tain equilibrium in the nucleon ground state. Such a
pressure profile is verified, at least qualitatively, in deeply
virtual Compton scattering measurements [48].

From these results one can infer the EoS in the core
region of the nucleon, which may serve as a reasonable
approximation for the EoS of quark matter near the clos-
est packed density (19). One might care about di↵erences
between symmetric nuclear matter and neutron matter,
but in such an extremely high-density regime of our in-
terest the physical properties are to be dominated by the
strong interaction and the �-equilibrium condition would
be not essential.

In the present framework we must be careful of the
mass scale in executing this program for the EoS con-
struction. As discussed in the previous work [40, 41],
this chiral soliton model overestimates the baryon mass
which is given by the integration of the energy density.
It is known that this mass discrepancy would be reduced
if the soliton is quantized (i.e., rotated with spin and
isospin). Here, our main purpose is not to study the
chiral soliton model itself but to demonstrate the idea,
so we shall adopt a quick prescription: we rescale the
results simply by the ratio, �, between the physical nu-
cleon mass and the model output. That is, we introduce
a ratio parameter as

� =
(physical mass)

(model mass)
⇡

940MeV

1460MeV
⇡ 0.64 . (22)

Then, we should make the following rescaling:

✏(r) ! �✏(r) , p(r) ! �
�1

p(r) . (23)

The above is the consistent rescaling in such a way not
to modify the form factors. In other words, given the
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FIG. 8. EoS of dense quark matter from the Hard Deconfine-
ment scenario (Nucleon EoS) and empirical EoSs from other
approaches.

nucleon form factors A(q2) and D(q2) associated with
the components of the energy-momentum tensor, the
energy density is proportional to the mass, while the
pressure is inversely proportional to the mass (see a
review [49] for explicit expressions). One might have
thought that the model parameters can be readjusted
to fit the baryon mass, but this would significantly af-
fect the charge radius. If the form factors stay intact
leaving the charge radius unchanged, the rescaling pro-
cedure should yield physically more sensible results than
readjusting the model parameters.
Figure 8 presents our results for the equation of state,

p(✏), of dense quark matter in the hard core region of the
nucleon, compared to several proposed EoSs that are con-
sistent with empirical properties of neutron star matter.
We label our results, the rescaled p(r) and ✏(r), as “Nu-
cleon EoS” and mark di↵erent radial coordinate scales
in the nucleon core, r = 0.2 fm to 0.5 fm, with crosses
in Fig. 8. The fast-dropping behavior at r & 0.5 fm re-
flects the negative pressure at the nucleon surface, phys-
ically interpreted as resulting from confining forces and
the inward-bound pressure of the meson cloud.
For the neutron star based equations-of-state in Fig. 8,

�EFT refers to the EoS from the Chiral E↵ective The-
ory [50] and QHC18 from Ref. [27], and SLy4 from
Ref. [51]. DL shows the EoS deduced from the observa-
tion data analyses using the deep learning [52]. The EoS
data labelled by �FRG is taken from Refs. [53, 54]. We
note that the EoS bound from the deeply virtual Comp-
ton scattering on the proton was previously discussed in
a similar way in Ref. [55]. For r < 0.5 fm, remarkable
agreement is seen between our (free) Nucleon EoS and
the sets of dense neutron star matter equations-of-state.
Assuming that the onset of Hard Deconfinement appears
at r-scales in the range r = 0.5�0.4 fm (corresponding to
baryon densities ⇠ 4� 7⇢0 according to Fig. 6), this im-
plies that Hard Deconfinement can occur at significantly
lower density than the limiting estimate (19).
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Toward a simple EoS model construction:
* HRG with excluded volume effects may work 
   around twice saturation density.
* VDW (with excluded volume effects and 
   attractive int.) can fit nuclear properties 
   near the saturation density.
* (Soft) deconfinement needs multi-baryon 
   clustering and quantum percolation.

* High density behavior is dominated by the 
   nucleon inner structures (hard deconfinement).
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Approaches from 
perturbative calculations

— THEORY —



March 9, 2021 @ online talk

Perturbation — Current Status

22

At high density perturbation theory works!

4

dimensionless integrals that can yield the double loga-
rithm. [31]

Furthermore, to obtain the double logarithm, we need
the two integration momenta to be well separated to pro-
duce scale-free integrals. Since m4

1 already has the cor-
rect mass dimension for the pressure, we may rewrite the
expanded HTL expression in the form

↵sm
4

1

Z
d4P

P 4

d4Q

Q4
f

✓
P

Q
,⌦i

◆
, (10)

where the function f is dimensionless, and inside the f
function P and Q represent the magnitudes of the Eu-
clidean four-momenta and ⌦i represents the remaining
angles. We have chosen to make the dimensionful de-
nominator P 4Q4, since we wish to extract precisely the
integrals

Z
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P
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Q4
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s +O(ln↵s, 1), (11)

where the new semisoft cuto↵s ⇤P
1,2,⇤

Q
1,2 inside the f

function are defined as before. Analogously to the NNLO
case, the double logarithm in the full expression arises
when the semisoft cuto↵s become replaced by quantities

of O(↵1/2
s µB) and O(µB).

It is now clear that if we consider an expansion of f
about P/Q = 0

f
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Q
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P

Q
+ · · · ,

(12)
the only term that will give a double logarithm will be
the constant term a0. This corresponds precisely to
the P ⌧ Q limit. Similarly, there is a contribution
from P � Q, corresponding to an expansion of f about
Q/P = 0. Correctly accounting for the two integration
regions reveals that the full double logarithm comes from
the average of these contributions.

After extracting the average of the two series coe�-
cients defined above, we are left with a double logarithm
multiplying a (convergent) dimensionless angular integral
given in eq. (3) of the supplementary material, which can
be computed analytically. The result is the coe�cient
c3,2 of the ↵3

s ln
2 ↵s term in eq. (1),

c3,2 ↵
3

s ln
2 ↵s = �

11

48

NcdA
(2⇡)3

↵sm
4

1 ln2 ↵s

=
3(µB/3)4

4⇡2

⇥
�0.266075↵3

s ln
2 ↵s

⇤
, (13)

where the second equality holds for Nc = Nf = 3. We
have additionally verified that by repeating the calcula-
tion with ⇧T = m2

1 and ⇧L = 0 from the outset, the
result for c3,2 remains unchanged, as was the case for the
↵2

s ln↵s term. Eq. (13) is our main result.
In order to elevate our result to the subleading-

logarithm order O(↵3

s ln↵s), more care must be taken.
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FIG. 2. The pressure of cold and dense massless QCD, nor-
malized to the free pressure, as a function of baryon chemical
potential for the renormalization scale choice ⇤̄ = 2µB/3 and
⇤MS = 0.378 GeV.

Single logarithms may appear when only one of the loop
momenta is semisoft while the other one is either soft or
hard: If the other loop momentum is soft, a full HTL re-
summation of that line must be performed and the result
cannot be expanded in powers of ⇧T/L as above. Mean-
while, if the other loop momentum is hard, no kinematic
simplifications can be performed and no restrictions on
topology and the number of fermion lines can be applied
in that part of the diagram. In addition, the expansion
of the soft one-loop diagram of eq. (3) to higher orders
in the soft loop momentum will lead to contributions of
O(↵3

s ln↵s) that go beyond the HTL e↵ective theory.

Conclusions.—In the letter at hand, we have extracted
the leading N3LO correction to the pressure of cold quark
matter using an existing two-loop computation within
the Hard-Thermal-Loop e↵ective theory. We note that
the HTL result was derived in the di↵erent context of
a hot quark-gluon plasma, but it is equally applica-
ble to cold quark matter, as the soft contributions to
the EoS are insensitive to the details of the physics at
the hard scale (T for a hot quark-gluon plasma and
µB for cold quark matter). The hard scale appears
in the calculation only through the asymptotic mass
m2

1 ⇠ ↵s

R
d3pf(p)/|p|, where f is the relevant distri-

bution function.

We note that at higher orders, the semisoft contribu-
tions should continue to give rise to the leading loga-
rithms ↵n+1

s lnn ↵s. Quite strikingly, we find that the
leading-logarithm contributions at NNLO and N3LO are
described by a theory with only two transverse gluons
with a mass m1. This leads us to conjecture that the
leading-logarithm terms even at higher orders can be
computed in this vastly simplified framework.

In Fig. 2, we display the pressure, evaluated with
⇤̄ = 2µB/3 and a two-loop running coupling, which in-
dicates that the partial N3LO term only constitutes a

Gorda-Kurkela-Romatschke-Sappi-Vuorinen (2018)

NNLO was known from 
Freedoman-McLerran (1977)

Convergence is much better

than high-T perturbation.

No oscillatory divergences of 
asymptotic series…
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FIG. 1. Comparison of the EoS in this work (HDLpt) and
other EoSs. The blue and the orange bands represent our
results and the preceding results from Refs. [12, 23], re-
spectively, with ⇤̄ = µ � 4µ. The green band is from the
�EFT [24]. The red band shows the EoS inferred from the
Neural Networks in the machine learning analysis of the neu-
tron star observation [22]. The dashed black line is the APR
EoS extrapolated from the nuclear side [25].

extrapolated EoSs from the nuclear side, the Bayesian
analysis has been recognized as a powerful instrument
for the inference analysis to identify the most likely EoS
based on the observational data [17–19] (see Ref. [20] for
a review). Recently, the Machine Learning technique has
been also advocated as a complementary method to infer
the EoS [21, 22]. It would be of utmost importance to
make a direct comparison of the inferred EoS candidates
and the QCD-based estimates. To this end, we are urged
to reduce uncertainty and widen the validity region of
the pQCD or HDLpt calculations.

In this Letter we will report the first successful at-
tempt to construct a better convergent EoS from the
HDLpt framework incorporating the strange quark mass
e↵ect. From the technical point of view, we adopt the
resummation schemes in the gluon sector as prescribed
in Ref. [4] and in the quark sector as in Ref. [15] with our
own extension to cope with the strange quark mass. Our
expressions are given in the form of exact integrations
without any expansion in terms of the screening mass as
in Ref. [7].

Central results: Since technical details are cumber-
some, we shall first present our central results in Fig. 1
and then proceed to technical details later. Not to
make the comparison on the figure too busy, we chose
only a few representative EoSs from the nuclear side;
namely, the EoS extrapolated from the chiral E↵ective
Field Theory (�EFT) calculation [24] by the green band,
the Neural Network output in the machine learning anal-
ysis [22] by the red band, and the Akmal-Pandharipande-
Ravenhall (APR) EoS [25] shown by the dashed line.

The orange band in the region, " > 103 MeV/fm3, rep-

FIG. 2. Baryon number density as a function of the quark
chemical potential. In the figure pQCD refers to the results
from Refs. [12, 23] and HDLpt to our results.

resents the results from pQCD [12] for which we utilize
the concise formula as given in Ref. [23]. Higher-order
corrections could be added, but the uncertainty band
is not much changed from Ref. [12]. The uncertainty
band width abruptly diverges, from which it has been
said that pQCD is reliable only at extreme high den-
sities far from reality. At a glance, indeed, we should
understand how di�cult it is to make a robust interpo-
lation between the nuclear and the pQCD EoSs. Now, a
surprise comes from a blue narrow band that represents
results from our HDLpt calculations. The uncertainty
band is drastically reduced and the HDLpt EoS appears
to be merged into the nuclear EoSs smoothly in the inter-
mediate density region. It should be noted that the APR
EoS overshoots ours, but this is due to a well-known flaw
in the APR EoS, i.e., superluminal speed of sound which
violates causality.
One may wonder what causes such a drastic di↵er-

ence on Fig. 1. We can qualitatively understand this
from Fig. 2 in which the baryon number density nB as
a function of the quark chemical potential µ is plotted.
Because the HDLpt sums the quark loops up, nB is the
most sensitive quantity a↵ected by the resummation in
the quark sector. It is an interesting and reasonable ob-
servation that nB is suppressed at fixed µ after the re-
summation: thermodynamic quantities are dominated by
quark quasi-particles, and in HDLpt, quark excitations
are more screened by self-energy insertions, as compared
to pQCD treatments. Therefore, on Fig. 1, the corre-
sponding µ for a given " becomes larger, and the corre-
sponding running coupling ↵s(⇤̄ = ⇠µ), where ⇠ = 1, 2, 4,
is smaller. This qualitative argument partially accounts
for the reduction of the uncertainty band, but not fully
yet. If we plot the pressure P and the energy density "
as functions of µ, respectively, the uncertainty bands are
not such narrow as in Fig. 1. Nevertheless, P (") with
⇤̄ = µ and that with ⇤̄ = 4µ happen to stay close, which

Fujimoto-Fukushima (2020)

 is changed as 
, , 

Λ̄
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FIG. 1. Comparison of the EoS in this work (HDLpt) and
other EoSs. The blue and the orange bands represent our
results and the preceding results from Refs. [12, 23], re-
spectively, with ⇤̄ = µ � 4µ. The green band is from the
�EFT [24]. The red band shows the EoS inferred from the
Neural Networks in the machine learning analysis of the neu-
tron star observation [22]. The dashed black line is the APR
EoS extrapolated from the nuclear side [25].

extrapolated EoSs from the nuclear side, the Bayesian
analysis has been recognized as a powerful instrument
for the inference analysis to identify the most likely EoS
based on the observational data [17–19] (see Ref. [20] for
a review). Recently, the Machine Learning technique has
been also advocated as a complementary method to infer
the EoS [21, 22]. It would be of utmost importance to
make a direct comparison of the inferred EoS candidates
and the QCD-based estimates. To this end, we are urged
to reduce uncertainty and widen the validity region of
the pQCD or HDLpt calculations.

In this Letter we will report the first successful at-
tempt to construct a better convergent EoS from the
HDLpt framework incorporating the strange quark mass
e↵ect. From the technical point of view, we adopt the
resummation schemes in the gluon sector as prescribed
in Ref. [4] and in the quark sector as in Ref. [15] with our
own extension to cope with the strange quark mass. Our
expressions are given in the form of exact integrations
without any expansion in terms of the screening mass as
in Ref. [7].

Central results: Since technical details are cumber-
some, we shall first present our central results in Fig. 1
and then proceed to technical details later. Not to
make the comparison on the figure too busy, we chose
only a few representative EoSs from the nuclear side;
namely, the EoS extrapolated from the chiral E↵ective
Field Theory (�EFT) calculation [24] by the green band,
the Neural Network output in the machine learning anal-
ysis [22] by the red band, and the Akmal-Pandharipande-
Ravenhall (APR) EoS [25] shown by the dashed line.

The orange band in the region, " > 103 MeV/fm3, rep-

FIG. 2. Baryon number density as a function of the quark
chemical potential. In the figure pQCD refers to the results
from Refs. [12, 23] and HDLpt to our results.

resents the results from pQCD [12] for which we utilize
the concise formula as given in Ref. [23]. Higher-order
corrections could be added, but the uncertainty band
is not much changed from Ref. [12]. The uncertainty
band width abruptly diverges, from which it has been
said that pQCD is reliable only at extreme high den-
sities far from reality. At a glance, indeed, we should
understand how di�cult it is to make a robust interpo-
lation between the nuclear and the pQCD EoSs. Now, a
surprise comes from a blue narrow band that represents
results from our HDLpt calculations. The uncertainty
band is drastically reduced and the HDLpt EoS appears
to be merged into the nuclear EoSs smoothly in the inter-
mediate density region. It should be noted that the APR
EoS overshoots ours, but this is due to a well-known flaw
in the APR EoS, i.e., superluminal speed of sound which
violates causality.
One may wonder what causes such a drastic di↵er-

ence on Fig. 1. We can qualitatively understand this
from Fig. 2 in which the baryon number density nB as
a function of the quark chemical potential µ is plotted.
Because the HDLpt sums the quark loops up, nB is the
most sensitive quantity a↵ected by the resummation in
the quark sector. It is an interesting and reasonable ob-
servation that nB is suppressed at fixed µ after the re-
summation: thermodynamic quantities are dominated by
quark quasi-particles, and in HDLpt, quark excitations
are more screened by self-energy insertions, as compared
to pQCD treatments. Therefore, on Fig. 1, the corre-
sponding µ for a given " becomes larger, and the corre-
sponding running coupling ↵s(⇤̄ = ⇠µ), where ⇠ = 1, 2, 4,
is smaller. This qualitative argument partially accounts
for the reduction of the uncertainty band, but not fully
yet. If we plot the pressure P and the energy density "
as functions of µ, respectively, the uncertainty bands are
not such narrow as in Fig. 1. Nevertheless, P (") with
⇤̄ = µ and that with ⇤̄ = 4µ happen to stay close, which

Fujimoto-Fukushima (2020)

pQCD does not work?

pQCD works for 
 reasonably!Λ̄ > 2μ

Band is widened 
by a single line of Λ̄ = μ

* Simply the optimal scale should be set to be larger?

* A partial resummation may rescue the situation?
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Baier-Redlich (1999)
Zero temperature limit of HTL resummation (HDL) 

Andersen-Strickland (2002)
HDL EoS to solve dense quark starts

FIG. 2. Leading-order HDLpt result for the pressure of a
degenerate quark-gluon plasma as a function of chemical po-
tential µ. The NLO weak-coupling expansion result is shown
as a grey band. Band corresponds to variation of the renor-
malization scale µ ≤ Λ ≤ 4µ.

Note that the requirement that Λ <
∼ 1.6µ may have

some physical basis since the scale of the coupling con-
stant should be related to the average momentum ex-
change of two quarks on the Fermi surface. At zero tem-
perature the largest momentum exchange possible is 2µ
and the smallest momentum exchange is of the order of
the superconducting gap φ. Therefore, the scale for the
coupling constant should be in the range φ <

∼ Λ < 2µ so
that the choice of Λ ∼ 1.6µ is not unreasonable.

V. MASS-RADIUS RELATIONSHIP

The mass-radius relationship for a non-rotating spher-
ically symmetric star is obtained by solving the Tolman-
Oppenheimer-Volkov (TOV) equations [24] for the mass
M and the pressure (P = −F) as a function of the radial
distance from the center:

dM

dr
= 4πr2Ẽ(r) (27)

dP

dr
= −

G

r2c2

[

Ẽ(r) + P̃(r)
] [

M(r) + 4πr3P̃(r)
]

×

[

1−
2GM(r)

c2r

]−1

, (28)

where G is Newton’s constant, c is the speed of light,
Ẽ = E/c2, and P̃ = P/c2.
In this work we will ignore the presence of the nuclear

phase of matter which is expected to undergo a first-order
phase transition to the quark-matter phase. A more de-
tailed study would include the effects of the nuclear phase

on the mass-radius relationship; however, our goal here
is only to show that both standard perturbation theory
and HDLpt have large theoretical uncertainties related to
the renormalization scale dependence. The most plausi-
ble scenario is that there will not be “naked” quark stars,
but instead there will be neutron stars with a very com-
pact quark-matter core and a thick outer layer of normal
nuclear matter.

FIG. 3. Mass-radius relation for a quark star with
Λ/µ = 1.6 and Λ/µ = 1. The weak-coupling results for the
same choice of renormalization scales are shown as dashed
lines. M! = 1.989 × 1030 kg is the mass of our sun.

In Fig. 3, we show the mass-radius relationship ob-
tained by solving the TOV equations numerically for
Λ/µ = 1.6 and Λ/µ = 1. For comparison, we also
show the QCD weak-coupling expansion results for the
same choice of renormalization scale as dashed lines. As
can be seen from this figure there is a large variation
in the mass-radius relationship as the renormalization
scale is varied over even this rather limited range of
µ ≤ Λ ≤ 1.6µ. Using this range, we find that using
the HDLpt equation of state (26) that Rmax ∼ 3.4− 10.9
km and Mmax ∼ 0.6 − 2.12M". With this same range
we find that using the perturbative equation of state (1)
that Rmax ∼ 2.4− 5.6 km and Mmax ∼ 0.42− 0.95M".

VI. DISCUSSION

In this paper, we have calculated the free energy of cold
dense quark matter to leading order in HDL perturbation
theory (HDLpt). The predictions of HDLpt depend on
a renormalization scale Λ that arises both from running
of the coupling constant and from the renormalization of
the additional ultraviolet divergences that are introduced
by the HDLpt reorganization of perturbation theory. It is

5

They say that uncertainty is large, 
but you see that it is driven by 

 (dotted) line.Λ̄ = μ
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FIG. 1. Comparison of the EoS in this work (HDLpt) and
other EoSs. The blue and the orange bands represent our
results and the preceding results from Refs. [12, 23], re-
spectively, with ⇤̄ = µ � 4µ. The green band is from the
�EFT [24]. The red band shows the EoS inferred from the
Neural Networks in the machine learning analysis of the neu-
tron star observation [22]. The dashed black line is the APR
EoS extrapolated from the nuclear side [25].

extrapolated EoSs from the nuclear side, the Bayesian
analysis has been recognized as a powerful instrument
for the inference analysis to identify the most likely EoS
based on the observational data [17–19] (see Ref. [20] for
a review). Recently, the Machine Learning technique has
been also advocated as a complementary method to infer
the EoS [21, 22]. It would be of utmost importance to
make a direct comparison of the inferred EoS candidates
and the QCD-based estimates. To this end, we are urged
to reduce uncertainty and widen the validity region of
the pQCD or HDLpt calculations.

In this Letter we will report the first successful at-
tempt to construct a better convergent EoS from the
HDLpt framework incorporating the strange quark mass
e↵ect. From the technical point of view, we adopt the
resummation schemes in the gluon sector as prescribed
in Ref. [4] and in the quark sector as in Ref. [15] with our
own extension to cope with the strange quark mass. Our
expressions are given in the form of exact integrations
without any expansion in terms of the screening mass as
in Ref. [7].

Central results: Since technical details are cumber-
some, we shall first present our central results in Fig. 1
and then proceed to technical details later. Not to
make the comparison on the figure too busy, we chose
only a few representative EoSs from the nuclear side;
namely, the EoS extrapolated from the chiral E↵ective
Field Theory (�EFT) calculation [24] by the green band,
the Neural Network output in the machine learning anal-
ysis [22] by the red band, and the Akmal-Pandharipande-
Ravenhall (APR) EoS [25] shown by the dashed line.

The orange band in the region, " > 103 MeV/fm3, rep-

FIG. 2. Baryon number density as a function of the quark
chemical potential. In the figure pQCD refers to the results
from Refs. [12, 23] and HDLpt to our results.

resents the results from pQCD [12] for which we utilize
the concise formula as given in Ref. [23]. Higher-order
corrections could be added, but the uncertainty band
is not much changed from Ref. [12]. The uncertainty
band width abruptly diverges, from which it has been
said that pQCD is reliable only at extreme high den-
sities far from reality. At a glance, indeed, we should
understand how di�cult it is to make a robust interpo-
lation between the nuclear and the pQCD EoSs. Now, a
surprise comes from a blue narrow band that represents
results from our HDLpt calculations. The uncertainty
band is drastically reduced and the HDLpt EoS appears
to be merged into the nuclear EoSs smoothly in the inter-
mediate density region. It should be noted that the APR
EoS overshoots ours, but this is due to a well-known flaw
in the APR EoS, i.e., superluminal speed of sound which
violates causality.
One may wonder what causes such a drastic di↵er-

ence on Fig. 1. We can qualitatively understand this
from Fig. 2 in which the baryon number density nB as
a function of the quark chemical potential µ is plotted.
Because the HDLpt sums the quark loops up, nB is the
most sensitive quantity a↵ected by the resummation in
the quark sector. It is an interesting and reasonable ob-
servation that nB is suppressed at fixed µ after the re-
summation: thermodynamic quantities are dominated by
quark quasi-particles, and in HDLpt, quark excitations
are more screened by self-energy insertions, as compared
to pQCD treatments. Therefore, on Fig. 1, the corre-
sponding µ for a given " becomes larger, and the corre-
sponding running coupling ↵s(⇤̄ = ⇠µ), where ⇠ = 1, 2, 4,
is smaller. This qualitative argument partially accounts
for the reduction of the uncertainty band, but not fully
yet. If we plot the pressure P and the energy density "
as functions of µ, respectively, the uncertainty bands are
not such narrow as in Fig. 1. Nevertheless, P (") with
⇤̄ = µ and that with ⇤̄ = 4µ happen to stay close, which

For a given density the corresponding 
µ is pushed up by the resummationSome (hidden) 

scaling law???
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FIG. 1. Comparison of the EoS in this work (HDLpt) and
other EoSs. The blue and the orange bands represent our
results and the preceding results from Refs. [12, 23], re-
spectively, with ⇤̄ = µ � 4µ. The green band is from the
�EFT [24]. The red band shows the EoS inferred from the
Neural Networks in the machine learning analysis of the neu-
tron star observation [22]. The dashed black line is the APR
EoS extrapolated from the nuclear side [25].

extrapolated EoSs from the nuclear side, the Bayesian
analysis has been recognized as a powerful instrument
for the inference analysis to identify the most likely EoS
based on the observational data [17–19] (see Ref. [20] for
a review). Recently, the Machine Learning technique has
been also advocated as a complementary method to infer
the EoS [21, 22]. It would be of utmost importance to
make a direct comparison of the inferred EoS candidates
and the QCD-based estimates. To this end, we are urged
to reduce uncertainty and widen the validity region of
the pQCD or HDLpt calculations.

In this Letter we will report the first successful at-
tempt to construct a better convergent EoS from the
HDLpt framework incorporating the strange quark mass
e↵ect. From the technical point of view, we adopt the
resummation schemes in the gluon sector as prescribed
in Ref. [4] and in the quark sector as in Ref. [15] with our
own extension to cope with the strange quark mass. Our
expressions are given in the form of exact integrations
without any expansion in terms of the screening mass as
in Ref. [7].

Central results: Since technical details are cumber-
some, we shall first present our central results in Fig. 1
and then proceed to technical details later. Not to
make the comparison on the figure too busy, we chose
only a few representative EoSs from the nuclear side;
namely, the EoS extrapolated from the chiral E↵ective
Field Theory (�EFT) calculation [24] by the green band,
the Neural Network output in the machine learning anal-
ysis [22] by the red band, and the Akmal-Pandharipande-
Ravenhall (APR) EoS [25] shown by the dashed line.

The orange band in the region, " > 103 MeV/fm3, rep-

FIG. 2. Baryon number density as a function of the quark
chemical potential. In the figure pQCD refers to the results
from Refs. [12, 23] and HDLpt to our results.

resents the results from pQCD [12] for which we utilize
the concise formula as given in Ref. [23]. Higher-order
corrections could be added, but the uncertainty band
is not much changed from Ref. [12]. The uncertainty
band width abruptly diverges, from which it has been
said that pQCD is reliable only at extreme high den-
sities far from reality. At a glance, indeed, we should
understand how di�cult it is to make a robust interpo-
lation between the nuclear and the pQCD EoSs. Now, a
surprise comes from a blue narrow band that represents
results from our HDLpt calculations. The uncertainty
band is drastically reduced and the HDLpt EoS appears
to be merged into the nuclear EoSs smoothly in the inter-
mediate density region. It should be noted that the APR
EoS overshoots ours, but this is due to a well-known flaw
in the APR EoS, i.e., superluminal speed of sound which
violates causality.
One may wonder what causes such a drastic di↵er-

ence on Fig. 1. We can qualitatively understand this
from Fig. 2 in which the baryon number density nB as
a function of the quark chemical potential µ is plotted.
Because the HDLpt sums the quark loops up, nB is the
most sensitive quantity a↵ected by the resummation in
the quark sector. It is an interesting and reasonable ob-
servation that nB is suppressed at fixed µ after the re-
summation: thermodynamic quantities are dominated by
quark quasi-particles, and in HDLpt, quark excitations
are more screened by self-energy insertions, as compared
to pQCD treatments. Therefore, on Fig. 1, the corre-
sponding µ for a given " becomes larger, and the corre-
sponding running coupling ↵s(⇤̄ = ⇠µ), where ⇠ = 1, 2, 4,
is smaller. This qualitative argument partially accounts
for the reduction of the uncertainty band, but not fully
yet. If we plot the pressure P and the energy density "
as functions of µ, respectively, the uncertainty bands are
not such narrow as in Fig. 1. Nevertheless, P (") with
⇤̄ = µ and that with ⇤̄ = 4µ happen to stay close, which

Smooth continuation from the nuclear side to the quark 
side could be possible now!

No phase 
transition!?

Crossover 
 around here?
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Is there an order parameter to characterize 
confinement / deconfinement with quarks?

There are many many works by

DeTar, McLerran, Meyer-Ortmanns, Oleszczuk, Polonyi, 
Faber, Borisenko, Zinovjev, …

Nonlocal order parameter?

Maybe no order parameter at all?

(In principle no way to distinguish quarks?)
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Baryons 8+1 (low-lying) Quarks 3color × 3flavor = 9

8 vector mesons 8 gluons

8 pseudo-scalar mesons 8 tetra-quark mesons

qqq
qqq

Condensate
ExcitationFlavor 

Triplet

All the condensates and excitations have correspondence

Heuristic view to understand the duality
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No phase transition from the hadronic to the CSC?
Recent works suggest a new possibility!

Fukushima-Hatsuda (2010)
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Thinking experiment

Quark Vortex

Hadronic Vortex

How can they be connected?

Rotate the bucket filled 
with quarks

Upper part : Hadronic Vortex

Lower part : Quark Vortex

? ? ?



March 9, 2021 @ online talk

Mismatched Circulation?

33

Non-Abelian CFL vortices ~ Hadronic vortices
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We study how vortices in dense superfluid hadronic matter can connect to vortices in superfluid
quark matter, as in rotating neutron stars, focusing on the extent to which quark-hadron continuity
can be maintained. As we show, a singly quantized vortex in three-flavor symmetric hadronic
matter can connect smoothly to a singly quantized non-Abelian vortex in three-flavor symmetric
quark matter in the color-flavor locked (CFL) phase, without the necessity for boojums appearing
at the transition.

I. INTRODUCTION

In a rotating neutron star, the superfluid components –
the nuclear liquid at lower densities and a possible color-
flavor locked (CFL) quark phase [1] at higher densities
in the interior – carry angular momentum in the form
of quantized vortices. How, we ask, are the vortices in
these two phases connected? Can one have continuity
or must there be a discontinuity? How do the possible
connections depend on the particular flavor structure of
the matter? In the ground state of dense matter, the
picture of quark-hadron continuity [2, 3] is that as the
baryon density is increased matter undergoes a smooth
crossover from the hadronic phase to the quark phase. By
studying how such vortices connect we can shed further
light on whether the notion of quark-hadron continuity
can be extended to angular momentum carrying states
of dense hadronic matter.

To summarize the problem in matching hadronic with
CFL vortices we note that superfluid vortices in the BCS-
paired hadronic phase have quantized circulation, CB,
i.e.,

CB =

I

C
~v · d~̀= 2⇡

⌫B

2µB

, (1)

where the contour C of integration encircles the vortex,
µB is the baryon chemical potential, and ⌫B is an integer.
We detail this result further below. (We work in units
~ = c =1.) All but singly quantized vortices (⌫B = ±1)
are unstable. In a BCS-paired CFL quark phase on the
other hand, the simple Abelian vortex [4, 5], the analog
of the hadronic vortex, has circulation [6]

CA =

I

C
~v · d~̀= 2⇡

⌫A

2µq
, (2)

where µq = µB/3 is the quark chemical potential, and
again ⌫A is an integer. Singly quantized U(1)B Abelian
vortices in the quark phase have three times the circula-
tion of singly quantized hadronic vortices.

(a)

Hadronic Vortices

Abelian
Vortex

(b)

Non-Abelian
Vortices

(c)

FIG. 1. Schematic illustrations for connecting vortices: (a) If
angular momentum in the CFL phase is carried by Abelian
CFL vortices then in the crossover to the hadronic phase a
“boojum” (shaded circle) joins three hadronic vortices to a
single Abelian CFL vortex; (b) because Abelian CFL vor-
tices are unstable, three hadronic vortices match onto three
non-Abelian CFL vortices through a modified boojum; or (c)
each hadronic vortex matches onto a single non-Abelian CFL
vortex without the need for a boojum.

Thus if one were to imagine a singly quantized hadronic
vortex turning into a singly quantized Abelian CFL vor-
tex, the baryon velocity would have to jump discontinu-
ously by a factor of three from the hadronic to the quark
phase, eliminating any possibility of quark-hadron conti-
nuity. Indeed, to make the velocity continuous one would
have to join three hadronic vortices to a single Abelian
quark vortex, as illustrated in Fig. 1(a). Such a join is
known as a “boojum” [7].
Single Abelian vortices in the CFL phase, however, are

unstable against separating into three non-Abelian vor-
tices [8–10], each of which has 1/3 the circulation of the
Abelian vortex.1 Thus one might envisage a join with a
continuous baryon velocity, as shown in Fig. 1(b), where a

1
In Ref. [8] these configurations were referred to as “semi-

superfluid strings,” however we will call them “non-Abelian vor-

tices” to emphasize the presence of non-Abelian color magnetic

µB = 3µq
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Abelian vortex.1 Thus one might envisage a join with a
continuous baryon velocity, as shown in Fig. 1(b), where a
boojum connects three hadronic vortices with three non-
Abelian CFL vortices [10, 11]. However, as we discuss in
this paper, one does not have to make a join involving
three vortices in the hadronic phase, but rather one can
make a baryon-velocity conserving join between a single
hadronic vortex and a single non-Abelian vortex in the
CFL phase, as shown in Fig. 1(c), without any need for a
boojum. To the extent that the various flavor quantum
numbers permit a smooth transition from the hadronic
to the CFL quark phase, angular momentum carrying
states remain consistent with quark-hadron continuity.

To spell out this picture in detail, we first discuss more
precisely the nature of quark-hadron continuity between
the hadronic and quark phases. On the deconfined quark
side the (ideal) CFL phase contains u (up), d (down),
and s (strange) quarks, all with the same mass, with a
Fermi sea equally populated with all three flavors and
all three colors of quarks. The corresponding hadronic
phase, three-flavor hyperonic matter, contains all mem-
bers of the light baryon flavor octet – n, p, ⇤, ⌃0, ⌃±,
⌅0, and ⌅� – all of the same mass. In the ground state
at finite density, the particles populate a Fermi sea with
all states of the octet equally present.

Both phases break chiral symmetry [1] and U(1)B, with
the same symmetry breaking pattern [SU(3)L⌦SU(3)R⌦
U(1)B ! SU(3)V]. In both phases BCS pairing leads
to breaking of U(1)B symmetry and superfluidity. The
hadronic dibaryon condensate is a flavor singlet formed
from two paired flavor octets. The CFL phase is usu-
ally described in the unitary gauge, in which the ground
state has a diquark condensate with the same color-flavor
orientation everywhere.2 In the hadronic phase, chiral
symmetry is spontaneously broken by a quark-antiquark
chiral condensate, producing a light octet of pseudoscalar
mesons, i.e., ⇡0, ⇡±, K0, K̄0, K±, and ⌘. The CFL con-
densate spontaneously breaks chiral symmetry, produc-
ing a light octet of pseudoscalar mesons [14–16]. Pre-
vious studies [2, 3, 17, 18] have established the conti-
nuity between the low-energy excitations of such three-
flavor hadronic and three-flavor quark matter.3 The nine
single-quark excitations of di↵erent colors and flavors can
be mapped, in the unitary gauge, onto the baryon octet
plus a baryon singlet which is usually not mentioned in
discussions of the confined phase because it is much heav-
ier than the octet baryons [3].

1
In Ref. [8] these configurations were referred to as “semi-

superfluid strings,” however we will call them “non-Abelian vor-

tices” to emphasize the presence of non-Abelian color magnetic

flux in the core combined with vortex-like global rotation of the

quark condensate.
2
With full three-flavor symmetry, CFL pairing is the most sta-

ble [12, 13].
3
This continuity is an example of the complementarity between

the confined and Higgs phases of a non-Abelian gauge theory

[19].

q

qq q qq q

q
qq
qq

FIG. 2. Schematic illustration of the smooth evolution of

a hadronic vortex into a non-Abelian CFL vortex. In the

hadronic phase, the phase of the condensate corresponding

to paired baryons (six quarks) increases by 2⇡ in winding

around the vortex core. In the CFL phase in the gauge-fixed

picture, one component of the order parameter picks up a

phase 2⇡ in winding, as shown. In the gauge-invariant picture

the phase of the entire six-quark order parameter changes by

2⇡ in winding.

One can further understand quark-hadron continuity
in terms of the anomaly-induced coupling between the
chiral and diquark condensates [20, 21]. The implica-
tions of quark-hadron continuity for the QCD phase di-
agram are reviewed in Ref. [22], and for neutron stars in
Ref. [23].

Figure 2 summarizes our results. In the confined phase
(upper half of the figure) the hadronic vortex carries an-
gular momentum via the circulation of a gauge-invariant
dibaryon condensate which acquires a phase of 2⇡ when
transported around the core. This vortex can be con-
tinuously connected to a non-Abelian CFL vortex [8] in
the CFL quark phase (lower half of the figure) where the
vortex has the same baryon circulation, but it arises in
the unitary gauge from three diquark condensates, one of
which acquires a phase of 2⇡ when transported around
the core. On the other hand, in the gauge-invariant pic-
ture, described in detail in Sec. IIID, the phase increase
is attributed to the entire six quark order parameter.

This paper is organized as follows. In Sec. II we re-
view the generic properties of vortices in a superfluid. In
Sec. III we discuss the vortex configurations that exist
in three-flavor hadronic and quark matter. After dis-
cussions of hadronic vortices in Sec. III A, we describe
two di↵erent vortex configurations that have been con-
structed in three-flavor quark matter, the Abelian CFL
vortices in Sec. III B and the non-Abelian CFL vortices
in Sec. III C. and then we show how the non-Abelian
vortex can be continuously connected with the hadronic
vortex. In Sec. IIID we show how these non-Abelian
vortices can be understood in a gauge-invariant descrip-
tion, and in Sec. III E we explore the consequences of
explicit breaking of the SU(3) flavor symmetry. Finally,
in Sec. IV we discuss the role of color magnetic flux. We
focus throughout on the properties of connecting single
vortices, and leave the discussion of an array of vortices

Alford-Baym-Fukushima-Hatsuda-Tachibana (2018)
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Cherman-Sen-Yaffe (2018)

hW3(C)i/hW0(C)i
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⇠ e
2⇡i
3 ⌫
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Non-abelian vortex solution can 
be written down explicitly.

“Topological” braiding phase 
taking Z3 values discovered!

Wilson line generates 2-form 
Z3 symmetry in quark matter

cf. Hirono-Tanizaki (2018)
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Possible Scenarios
If the braiding phase emerges in the Higgs phase but 
not in the confined phase…. Cherman-Jacobson-Sen-Yaffe (2020)

There must be a phase interface (phases distinguished 
by emergent 2-form symmetry).

If the braiding phase is somehow screened in the Higgs 
phase and does not emerge in the confined phase….

If the braiding phase emerges both in the Higgs phase 
and in the confined phase…
There is no manifest distinction and continuity is not 
falsified yet.
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Fujimoto-Fukushima-Hidaka-Hirono (in prep.)

If the braiding phase emerges both in the Higgs phase 
and in the confined phase…

5

To obtain the superfluid velocity and angular momen-
tum per baryon of the non-Abelian vortex, we rewrite
Eq. (24) as

�(1) = �CFLe
i
3 ⌫1'

0

@
e

2i
3 ⌫1'f(r) 0 0

0 e�
i
3 ⌫1'g(r) 0

0 0 e�
i
3 ⌫1'g(r)

1

A .

(27)
In this form the overall factor of e

i
3 ⌫1' is the U(1)B phase,

while the phase factors within the matrix are a color ro-
tation. [We note for later computation of the covariant
derivative of �(1) that the gradients of these phases are
compensated by the color gauge field (25).]

The chemical potential per quark pair is 2µq = 2
3µB ,

so from Eqs. (6), (7), and (9) the total momentum per
quark pair is related to the superfluid velocity ~v by

~p =
1

3
· ⌫1
r
'̂ =

2

3
µB~v . (28)

The circulation around the vortex, Eq. (12), is

C(1) =

I

C
~v · d~̀= ⇡⌫1

µB

. (29)

Correspondingly, the angular momentum per baryon of
the vortex of the form (24) or (27) is

L(1)z

NB
=

1

2
⌫1 . (30)

The same relations also hold for �(2) with ⌫2 and �(3)

with ⌫3.
We see from Eqs. (1) and (29) and from Eqs. (15) and

(30) that singly quantized (⌫B = 1) vortices in hadronic
matter can match onto singly quantized (⌫1 = 1, ⌫2 = 1,
or ⌫3 = 1) non-Abelian vortices in CFL quark matter at
a crossover between these phases, with no discontinuity
in baryon velocity and angular momentum.

This result can be understood intuitively as follows. In
the hadronic vortex, the dibaryon condensate acquires a
phase of 2⇡ as one follows it along a contour encircling
the vortex core. Since the dibaryon can be viewed as 3
diquarks, this corresponds to each diquark acquiring a
phase of 2⇡/3. The non-Abelian vortex in the CFL con-
densate has exactly the same circulation: each diquark
acquires a phase4 of 2⇡/3.

We conclude, in agreement with Ref. [11], that a sin-
gle non-Abelian CFL vortex has the same circulation as
a hadronic vortex. However, Ref. [11] suggests that, in
order to neutralize the color flux contained in the non-
Abelian vortices, three non-Abelian CFL vortices must
merge to form a boojum at the CFL-hadronic bound-
ary to which three hadronic vortices then connect [see

4
If U(1)B were a local gauge symmetry, the vortex would become

a U(1)B flux tube. The hadronic vortex and the non-Abelian

vortex would both have the same U(1)B flux in their cores.

Fig. 1(b)]. As we argue below, there is no need for such a
boojum: a single non-Abelian CFL vortex can smoothly
evolve into a single hadronic vortex [as in Fig. 1(c)]. To
show this, further consideration of the flavor structure
of the vortices is necessary in the hadronic and the CFL
phases, as we discuss in Sec. IIID.

D. Gauge-invariant description

In Sec. III we described the CFL condensate in the
unitary gauge. Although such a gauge-fixed description
is convenient for writing down the non-Abelian vortex
solution explicitly and showing the continuity of the cir-
culation and angular momentum between the hadronic
phase and the CFL phase, it is not clear how the flavor
structures in the two phases are connected. To resolve
this problem, in this section we describe vortices in the
CFL phase in a gauge-invariant manner [28] using di-
quarks in Eqs. (16) and (17) as building blocks. We can
write down meson-like and baryon-like gauge-invariant
combinations of diquark operators,

M̂j
i (~r ) ⌘ �̂†

i↵�̂
↵j , (31)

⌥̂ijk(~r ) ⌘ 1

6
✏↵���̂

↵i�̂�j�̂�k . (32)

We will focus on ⌥̂ijk(~r ) for the moment and will con-
sider M̂j

i (~r ) later in Sec. IIID 3. According to quark-
hadron continuity, h⌥̂ijk(~r )i is nonzero in both the CFL
and hadronic phases because both phases break baryon
number, via diquark and dibaryon condensates respec-
tively. In Secs. IIID 1 and IIID 2 below we will discuss
the projection of ⌥̂ijk(~r ) onto specific flavor representa-
tions.
In the CFL phase, in the mean field approximation,

⌥ijk(~r ) ⌘ h⌥̂ijk(~r )i = 1

6
✏↵���

↵i��j��k . (33)

⌥ijk(~r ) provides a gauge-invariant description of the
non-Abelian vortex originally defined through the gauge-
dependent condensate �.
Note that the irreducible flavor SU(3) decomposition

of ⌥ijk(~r ) is

3⇤ ⌦ 3⇤ ⌦ 3⇤ = 1� 8� 8� 10⇤ , (34)

so that not only flavor-singlet but also flavored vor-
tices can be obtained from � by appropriate projections.
These would match to certain of the hadronic vortices
classified in Eq. (14).
According to (33) the total number of 6-quark con-

densates in the CFL phase is 3 ⇥ 3 ⇥ 3 = 27, while the
number of pairs of octet baryons in the hadronic phase is
8⇥8 = 64. One might think that there is a mismatch, but
this is because our diquark condensate � only includes
flavor antisymmetric diquarks. We will discuss this point
in Sec. IIID 2.

U(1) counterpart is needed in the hadronic phase, and 
a natural candidate is the w meson.
How the w meson Wilson loop counts the baryon flux 
should be (probably?) dictated by the WZW action.
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Fujimoto-Fukushima-Hidaka-Hirono (in prep.)

If the braiding phase emerges both in the Higgs phase 
and in the confined phase…

If our scenario is the case, the superfluid vortices in 
nuclear matter (found in neutron stars) are nontrivially 
charged by Z3 generated topologically by the vector 
meson Wilson loop!?

Nuclear matter may be more nontrivial than we may think!
Such nontrivial features might be probed by magnetic field?
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Brauner-Yamamoto (2016)

Under strong B  are massive and only  remains massless.π± π0

B ¼0
 domain-wall layers 

should be the ground 
state of nuclear matter.

π0

Baryon density is 
associated with π1(U(1))
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Chen-Fukushima-Qiu (in completion)

In a Skyrme model the baryon number comes from π3(SU(2))
We relaxed the hedgehog Ansatz and studied the deformation.2

FIG. 1. Graphical representation of ⇡3(SU(2)) for the case of
strong magnetic field B = 3; the orange ring is a surface of
⇧2

4+⇧2
3 = 0.1 and the blue sphere is a surface of ⇧2

1+⇧2
2 = 0.1.

We have numerically solved two partial di↵erential
equations under the boundary conditions (7) using the fi-
nite element method. Figure 1 shows how the spatial pro-
file realizes a topological winding even at finite B. Here,
we make reparametrization as ⌃ = ⇧4 + i⌧ ·⇧, and by
construction they satisfy ⇧2

4+⇧2 = 1. The orange inner
ring in Fig. 1 represents a surface of ⇧2

4+⇧2
3 = 0.1, while

the blue outer sphere represents a surface of⇧2
1+⇧2

2 = 0.1
for B = 3 (which is converted to the physical unit with
f⇡). Interestingly, it is evident that the inner ring is
laced with a brace from the outer sphere, which is a clear
graphical representation of ⇡3(SU(2)) winding.

Although the magnetic field explicitly breaks SU(2),
the ⇡3(SU(2)) winding is not unwound even for B = 3,
as seen in Fig. 1. As B gets larger, the Skyrmion be-
comes spatially shrunk and longitudinally deformed (i.e.,
prolate). We can understand this behavior from the ob-
servation that only a combination of B⇢ appears in the
energy functional (8). The magnetic e↵ect is minor in
the region of ⇢ < 1/B where the topological winding sur-
vives, and ⇡

1,2 (or ⇡± in the physical basis) are massive
and suppressed as B⇢ ⇠ 1, so that the spatial extension
is limited by ⇢ . 1/B.

One might think that the magnetic deformation is only
a minor e↵ect, but the angular distribution is signifi-
cantly changed. This is clear in Fig. 2 where g(⇢, z) is
plotted as a function of ⇢ and ✓ = arctan(z/⇢). For small
⇢ linear behavior of g as a function ✓ shows a hedgehog
limit of g ⇠ ✓, and the behavior qualitatively changes for
⇢ � 1/B; we find a sharp leap from g ⇠ 0 to g ⇠ ⇡ near
✓ = 0. This signifies a peculiar structure like a ⇡

0 domain
wall spreading on a ✓ = 0 sheet. However, such a B-
induced domain wall surrounding an isolated Skyrmion
is almost invisible because f is small for large enough

FIG. 2. Graphical representation of ⇡3(SU(2)) for the case of
strong magnetic field B = 3; the orange ring is a surface of
⇧2

4+⇧2
3 = 0.1 and the blue sphere is a surface of ⇧2

1+⇧2
2 = 0.1.

⇢. The situation may become di↵erent, as we will discuss
later, for multi-Skyrmion configurations. [first oblate and
then prolate should be discussed with a simple figure.]

Quantization: It would be an interesting question
how the masses of the proton and the neutron should
change with increasing B. To answer this, we need
to quantize the solution and assign the spin and the
isospin degrees of freedom by rotating the field as ⌃(t) =

U(t)⌃U�1(t) with U = e
i⌧3↵(t). Up to the quadratic

order in ↵, we can expand the Lagrangian density to get,

L = �M +
�

2⇡
↵̇+ 2Iz↵̇

2
. (9)

Here, M is the rescaled energy, Ha/f⇡, with H being
the energy, corresponding to the Skyrmion mass. The
magnetic flux is � ⌘ ⇡R

2
TB with the transverse radius,

RT (B) = 2⇡
R
dzd⇢⇢

3
j
0
B(⇢, z;B). The moment of iner-

tia, Iz, is given by Iz =
R
d
3
x sin2 f sin2 g

⇥
f
2
⇡ + a

�2(F +
G sin2 f)

⇤
. Interestingly, the second term in the right-

hand side / ↵̇ appears from SWZW[A] which vanishes
before spin/isospin quantization. Thus, this term has a
topological origin. We can solve this quantum mechani-
cal problem in a standard procedure to find the following
mass formula,

El = MN +
1

8Iz


(2l + 1)� �

2⇡

�2
, (10)

For example, the proton has J3 = I3 = 1
2 (i.e., l = 0) and

the neutron has J3 = I3 = � 1
2 (i.e., l = �1), so that the

B-induced mass splitting is found to be

�M = Mn �Mp =
�

4⇡Iz
. (11)

This relation is consisent with the fact that the proton
magnetic moment is greater than the neutron magnetic

Topological winding never unwound 
(to preserve the baryon number)

Center keeps hedgehog, but outer

is surrounded by  domain wall 
(whose amplitude is very small)

π0

2
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2 = 0.1.

We have numerically solved two partial di↵erential
equations under the boundary conditions (7) using the fi-
nite element method. Figure 1 shows how the spatial pro-
file realizes a topological winding even at finite B. Here,
we make reparametrization as ⌃ = ⇧4 + i⌧ ·⇧, and by
construction they satisfy ⇧2

4+⇧2 = 1. The orange inner
ring in Fig. 1 represents a surface of ⇧2

4+⇧2
3 = 0.1, while

the blue outer sphere represents a surface of⇧2
1+⇧2

2 = 0.1
for B = 3 (which is converted to the physical unit with
f⇡). Interestingly, it is evident that the inner ring is
laced with a brace from the outer sphere, which is a clear
graphical representation of ⇡3(SU(2)) winding.

Although the magnetic field explicitly breaks SU(2),
the ⇡3(SU(2)) winding is not unwound even for B = 3,
as seen in Fig. 1. As B gets larger, the Skyrmion be-
comes spatially shrunk and longitudinally deformed (i.e.,
prolate). We can understand this behavior from the ob-
servation that only a combination of B⇢ appears in the
energy functional (8). The magnetic e↵ect is minor in
the region of ⇢ < 1/B where the topological winding sur-
vives, and ⇡

1,2 (or ⇡± in the physical basis) are massive
and suppressed as B⇢ ⇠ 1, so that the spatial extension
is limited by ⇢ . 1/B.

One might think that the magnetic deformation is only
a minor e↵ect, but the angular distribution is signifi-
cantly changed. This is clear in Fig. 2 where g(⇢, z) is
plotted as a function of ⇢ and ✓ = arctan(z/⇢). For small
⇢ linear behavior of g as a function ✓ shows a hedgehog
limit of g ⇠ ✓, and the behavior qualitatively changes for
⇢ � 1/B; we find a sharp leap from g ⇠ 0 to g ⇠ ⇡ near
✓ = 0. This signifies a peculiar structure like a ⇡

0 domain
wall spreading on a ✓ = 0 sheet. However, such a B-
induced domain wall surrounding an isolated Skyrmion
is almost invisible because f is small for large enough

FIG. 2. Graphical representation of ⇡3(SU(2)) for the case of
strong magnetic field B = 3; the orange ring is a surface of
⇧2

4+⇧2
3 = 0.1 and the blue sphere is a surface of ⇧2

1+⇧2
2 = 0.1.
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Quantization: It would be an interesting question
how the masses of the proton and the neutron should
change with increasing B. To answer this, we need
to quantize the solution and assign the spin and the
isospin degrees of freedom by rotating the field as ⌃(t) =

U(t)⌃U�1(t) with U = e
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order in ↵, we can expand the Lagrangian density to get,
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Here, M is the rescaled energy, Ha/f⇡, with H being
the energy, corresponding to the Skyrmion mass. The
magnetic flux is � ⌘ ⇡R
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. Interestingly, the second term in the right-

hand side / ↵̇ appears from SWZW[A] which vanishes
before spin/isospin quantization. Thus, this term has a
topological origin. We can solve this quantum mechani-
cal problem in a standard procedure to find the following
mass formula,

El = MN +
1

8Iz
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, (10)

For example, the proton has J3 = I3 = 1
2 (i.e., l = 0) and

the neutron has J3 = I3 = � 1
2 (i.e., l = �1), so that the

B-induced mass splitting is found to be

�M = Mn �Mp =
�

4⇡Iz
. (11)

This relation is consisent with the fact that the proton
magnetic moment is greater than the neutron magnetic

⇡0 = f cos g
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A single Skyrmion can be generalized to a Skyrme crystal 
by imposing a boundary condition (Klebanov)

We found several consistent boundary conditions and 
one of them corresponds to the  domain wall!π0

We are now quantifying the phase diagram: 
(The criterion to determine the phase boundary is nontrivial)

Magnetic Field

Su
rf

ac
e 

Te
ns

io
n Deformed NM

Domain Wall

Topological realizations change 
at a certain magnetic field.

(No continuous deformation)
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Take-Home Messages

Phenomenological EoS

□ Interacting HRG may have validity regions overlapping 

with a deconfined state of matter.

□ Excluded volume effects (including van der Waals) are 

not sufficient but inner structures are crucial.

Perturbative Approach

□ Convergence is not bad, but the uncertainty appears 

from the running coupling, which can be improved.

Topological Nuclear Matter

□ Topological nature of vortices and domain walls in 

nuclear matter should deserve more investigations!
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