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The phase transition in heavy-ion collisions
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Why is dynamical modeling important?

In a grand-canonical ensemble, the system is

• in thermal equilibrium (= long-lived),

• in equilibrium with a particle heat bath,

• spatially infinite

• and static.

Systems created in heavy-ion collisions are

• short-lived,

• spatially small,

• inhomogeneous,

• and highly dynamical!
plot by H. Petersen, madai.us

Solution: Develop dynamical models to describe the phase transition in heavy-ion

collisions!

Event-by-event dynamical modeling allows us in addition to study different particle

species, experimental cuts, hadronic final interactions, etc.

EMMI Rapid Reaction Task Force: M.Bluhm et al. NPA 1003 (2020), 2001.08831
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The phase transition in fluid dynamics

• The discovery of RHIC: The QGP is an almost ideal strongly coupled fluid.

P. Kolb, U. Heinz, QGP (2003)

• Including the phase transition in fluid dynamics is easy: just need to know the

equation of state!

HotQCD Coll. PRD90 (2014); WB Coll. PLB730 (2014)
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EoS at µB = 0 from lattice QCD.

P. Parotto et al., PRC101 (2020)

EoS with a 3D Ising critical point

• But fluctuations matter at the phase transition, and including fluctuations in

fluid dynamcis is challenging!

K. Murase et al., NPA956 (2016); MN et al., APP 10 (2017); M. Singh et al., NPA982 (2019)
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Dynamical effects are very important...

• At the critical point: ξ →∞ ⇒ fluctuations of the critical mode diverge!

• Relaxation time τrel ∝ ξz diverges ⇒ critical slowing down!

NχFD
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⇒ Study fluctuations coupled to a fluid dynamical medium!
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Nonequilibrium chiral fluid

dynamics (NχFD)
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Nonequilibrium chiral fluid dynamics (NχFD)

Propagate the critical mode σ coupled to a fluid dynamical expansion

• Relaxational equation for the critical mode: damping and noise from the

interaction with the fermions/fast modes

∂µ∂
µσ +

δVeff(σ)

δσ
+ η∂tσ = ξ

• Phenomenological dynamics for the Polyakov-loop

η`∂t`T
2 +

∂Veff(`)

∂`
= ξ`

• Fluid dynamical expansion = heat bath, including energy-momentum exchange

∂µT
µν
fluid = Sν = −∂µTµνσ , ∂µN

µ
q = 0

⇒ includes a stochastic source term!

• Nonequilibrium equation of state p = p(e, σ)

MN, S. Leupold, I. Mishustin, C. Herold, M. Bleicher, PRC 84 (2011); PLB 711 (2012); JPG 40 (2013); C. Herold,

MN, I. Mishustin, M. Bleicher PRC 87 (2013); NPA925 (2014), C. Herold, MN, Y. Yan, C. Kobdaj JPG 41 (2014);

MN and C. Herold, EPJA 52 (2016); C. Herold, MN, Y. Yan and C. Kobdaj, PRC93 (2016) no.2, PLB790 (2019)
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Droplet formation & decay at the QH phase transition

• Chiral effective model with correct low-temperature degrees of freedom in NχFD!

V. Dexheimer, S. Schramm, PRC81 (2010); M. Hempel, V. Dexheimer, S. Schramm, I. Iosilevskiy PRC88 (2013)
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• Droplets of quark density form dynamically at the phase transition.

• Droplets of quark density decay in the hadronic phase due to non-vanishing large

pressure

MN and C. Herold, EPJA 52 (2016); cf, but no dynamical fluctuations: J. Steinheimer et al., PRC89 (2014)
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Sigma field Fluctuations/Susceptibilities in the critical region

• static, finite-size medium, periodic boundary conditions

• fixed temperature (no back-coupling) at µq = 100 MeV

variance skewness kurtosis
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• Shape is well reproduced, some discrepancy for higher-order cumulants

(renormalization of the EoS? coarse-graining of the noise?)!

QM 2017 talk by C. Herold
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Net-Proton fluctuations near the critical point

• UrQMD initial conditions rescaled to the EoS of the effective model.

• From densities to particles via Cooper-Frye particlization.

• Couple the densities of the sigma field with the fluid dynamical densities
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• No non-monotonic behavior in pure mean-field equilibrium calculations.

• Clear signal for criticality in net-proton fluctuations at the transition energy

density!

• Overall decreasing trend probably due to net-baryon number conservation cf. MN et

al, EPJC72 (2012), 0903.2911.
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NχFD + FRG ⇒ QCD assisted transport

• Include effective potential beyond mean field, momentum dependent equilibrium

sigma spectral function ⇒ linear response regime of QCD.

First-principle approach to QCD from the Functional Renormalization Group (FRG)

Cyrol, Mitter, Pawlowski, Strodthoff PRD97 (2018)
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F. Gao, J. Pawlowski, 2010.13705; T. Herbst et al, PLB731 (2014); T. Herbst PRD88 (2013); F. Rennecke, J. Pawlowski, N. Wink

• Excellent description of phase structure at

vanishing chemical potential.

• Phase structure qualitatively similar to

the conjectured QCD phase diagram.

• Obtain spectral functions from analytical

continuation. 9 / 28



NχFD + FRG ⇒ QCD assisted transport

M. Bluhm et al., NPA982 (2019)

Transport equation: δΓ
δσ

= ξ, where
{
<Γ

(2)
σ (ω, ~p),=Γ

(2)
σ (ω, ~p),U

}
∈ Γ

Normalized Kurtosis:
Equilibration time:

• Critical end point and the phase structure are clearly identifiable.

• Critical slowing down in the vicinity of the critical point, but no dramatic

enhancement of τrelax in a dynamic setup!
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Diffusive dynamics of

net-baryon density fluctuations
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Diffusive dynamics of the net-baryon density

∂µN
µ
B = 0 net-baryon charge conservation

The diffusive dynamics follows the minimized free energy F :

∂tnB(t, x) = κ∇2

(
δF [nB ]

δnB

)
+∇J(t, x)

To study intrinsic fluctuations include a stochastic current:

J(t, x) =
√

2Tκ ζ(t, x), κ =
Dnc
T

→ ζ(t, x) is Gaussian and uncorrelated (white noise):

〈ζ(x , t)ζ(0, 0)〉 = δ(x)δ(t)

⇒ respects the fluctuation-dissipation theorem:

Peq[nB ] = 1
Z exp (−F [nB ]/T )
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Couplings motivated by 3-dimensional Ising model

F [nB ] = T

∫
d3r

(
m2

2n2
c

∆n2
B +

K

2n2
c

(∇∆nB)2 +
λ3

3n3
c

∆n3
B +

λ4

4n4
c

∆n4
B +

λ6

6n6
c

∆n6
B

)
The couplings depend on temperature via the correlation length ξ(T ):

m2 = 1/(ξ0ξ
2)

K = K̃/ξ0

λ3 = nc λ̃3 (ξ/ξ0)−3/2

λ4 = nc λ̃4 (ξ/ξ0)−1

λ6 = nc λ̃6

M. Tsypin PRL73 (1994); PRB55 (1997)

parameter choice: ∆nB = nB − nc
ξ0 ∼ 0.5 fm, Tc = 0.15 GeV, nc = 1/3 fm−3

K = 1/ξ0 (surface tension)

λ̃3, λ̃4, λ̃6 (universal, but mapping to QCD)
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Ginzburg-Landau model in equilibrium
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• Important for any algorithm of fluctuations: test fluctuations observables vs

analytical expectations (in the appropriate limit)!

• Here: structure factor and the equal-time correlation function are well

reproduced, discretization and baryon conservation effects under control.

• Nonlinear interactions reduce Sk for long-wavelength fluctuations!

• At the level of 2-point correlations, results of Ginzburg-Landau model can be

described by a modified m2 coupling for the Gauss+surface model.

L = 20 fmL = 20 fm
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Scaling of equilibrium cumulants

• Expected scaling in an infinite system

(ξ � V ): M. Stephanov, PRL102 (2009)

σ2
V ∝ ξ

2, (Sσ)V ∝ ξ2.5, (κσ2)V ∝ ξ5

• Here, a finite system with exact baryon

conservation (ξ . V )! Can be

systematically studied in ξ/V ⇒
affects equilibrium scaling!

• E.g. for the skewness terms ∝ λ3λ4

and ∝ λ3λ6 contribute with opposite

sign.

σ2
V ∝ ξ

1.3±0.05

(Sσ)V ∝ −#ξ1.47±0.05 + #ξ2.4±0.05

(κσ2)V ∝ ξ2.5±0.1
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Dynamical critical scaling

• Dynamical structure factor for Gaussian model in continuum:

S(k, t) = S(k) exp (−t/τk ) with τ−1
k = Dm2

nc

(
1 + K

m2 k
2
)
k2

• Analyze ξ-dependence of relaxation time for modes with k∗ = 1/ξ:
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z = 4 ± 0.1

 0.001

 0.01

 0.1

 1

 10

0.5 1 1.5 2 2.5 3 3.5

τ* k
 v

s
. 
a

ξz
 [
a
.u

.]

T/Tc

Gauss+surface τ*k
Ginzburg−Landau τ*k

z = 4 ± 0.1

for both models: τ∗k = a ξz with

z = 4± 0.1

a =
ncξ0

D(1 + K̃)

⇒ Simulations reproduce scaling of model B!

(for the dynamics of a HIC, couple to fluctuations in the momentum density

⇒ model H Hohenberg, Halperin, Rev.Mod.Phys.49 (1977))
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Dynamics: temperature quench and equilibration
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• temperature quench:

at τ0 temperature drops from

T0 = 0.5 GeV to T ∗

• fast initial relaxation

• variance approaches

equilibrium value faster than

kurtosis

• long relaxation times near Tc

B. Berdnikov, K. Rajagopal PRD61 (2000)
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Dynamics: time evolution of critical fluctuations

For a Bjorken-like temperature evolution:
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• shift of extrema for variance/kurtosis

(retardation effects) to later times

corresponding to T (τ) < Tc

• |extremal values| in dyn simulations <

equilibrium values (nonequilibrium effects):

(σ2
V )max

dyn ≈ 0.75 (σ2
V )max

eq

((κσ2)V )min
dyn ≈ 0.5 (κσ2

V )min
eq

• expected behavior with varying D and c2
s

(expansion rate)

MN, M. Bluhm, T. Schaefer, S. Bass, PRD99 (2019), MN, M. Bluhm, PRD102 (2020) 18 / 28



Diffusive dynamics of

net-baryon density fluctuations

in expanding systems
Grégoire Pihan, M. Bluhm, M. Kitazawa, T. Sami, MN, in preparation
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From Cartesian to Milne coordinates

Choose an appropriate coordinate system

for the geometry of a HIC

τ =
√

t2 − z2

y =
1

2
ln

(
t + z

t − z

)
n(y , τ)

τ
= n(x , t)

fluctuations studied in an expanding background, e.g.: J. Ka-

pusta et al, PRC85 (2012) Y. Akamatsu et al, PRC95 (2017),

M. Martinez et al, PRC99 (2019),...

J. Bjorken, PRD27 (1983)

The nonlinear stochastic diffusion equation transforms as:

∂τnB =
Dm2

ncτ
∂2
ynB −

DK

ncτ3
∂4
ynB +

∑
i=3,4,6

Dλi

ni−1
c

1

τ
∂2
yn

i−1
B + ∂y ζ

〈ζy (Y )ζy (Y ′)〉 =
2Dnc

τ
δ2(Y − Y ′)

in Gauss limit: M. Sakaida, M. Asakawa, H. Fuji, M. Kitazawa, PRC95 (2017);

nonlinear (only critical): M. Kitazawa, G. Pihan, N. Touroux, M. Bluhm, M. Nahrgang, NPA1005 (2021)
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Singular and regular susceptibilities

• Parametrize the susceptibilities χ2(τ) and χ4(τ) with a regular part using the

argument in M. Asakawa, U. Heinz, B. Muller, PRL85 (2000)

χn(τ) =
〈∆Nn

B〉
S

∣∣∣
QGP/HRG

=
χn

B

s/T 3

∣∣∣
QGP/HRG

with χn
B and the entropy density fixed to lattice results at T = 280 MeV for the

QGP and T = 130 MeV for the HRG, match via a tanh function.

• Couple with the singular contribution (3D Ising as before) via

χn(T ) = χsing
n (T ) + χreg

n (T )

• Match to the coefficients in the expansion of the free energy density functional.

χn(τ) = τ

 δnF
δnnB

∣∣∣∣∣
∆nB=0

−1

• Investigate several trajectories in the QCD phase diagram.
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Benchmarking in Gauss model: structure factor

T = 200 MeV T = Tc

• Numerics in perfect agreement with discretized analytical results.

• Approach to continuum as resolution is increased.

• Lower wavenumbers well described with the maximal resolution chosen for this

work.

• Enhancement of fluctuations with low wavenumbers at Tc .
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Benchmarking in Gauss+surface model: structure factor

T = 200 MeV T = Tc

• Numerics in perfect agreement with discretized analytical results.

• Approach to continuum as resolution is increased.

• All wavenumbers well described with the maximal resolution chosen for this

work, perfect reproduction of continuum results.

• Enhancement of fluctuations with low wavenumbers at Tc .
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Benchmarking in Gaussian models: correlation function

• Numerics in perfect agreement with

discretized analytical results.

• Qualitatively different shape of the

correlation function in Gauss and

Gauss+surface models.

• Strong signal of criticality washed

out in Gauss+surface model.

Gauss:

Gauss+surface:
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Time evolution of variance and kurtosis

• Include the fourth-order coupling.

• Variance and kurtosis show the

critical point signal for

trajectories at larger µB .

• Quickly decrease to hadronic

values for T > Tc .

• Final values depend strongly on

the freeze-out temperature.

variance

kurtosis
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Variance and kurtosis at freeze-out

• As the trajectory closest to the critical point is approached the critical signal in

the variance and kurtosis increases for temperatures around Tc .

• Despite the rapid expansion the critical signal survives if the system freezes-out

close to Tc .

25 / 28



Dependence on the diffusion length: correlation function

As the diffusion length D is increased, diffusion wins over expansion:

⇒ Fluctuations are balanced over larger and larger distances.

⇒ The correlation function ressembles the equilibrium CF in a static system.
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Dependence on the diffusion length: integrated variance

• Take the variance over ∆y > the numerical resolution.

• Increases as D is increased, maximum moves to larger ∆y .

• For trajectories farther away from the critical point this integrated variance

quickly saturates.
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Conclusions

Many promising approaches to treating the dynamics of critical fluctuations!

Ongoing work (with Master and PhD students):

NχFD:

• Renormalization due to lattice spacing

important? with Nadine Attieh

• Use of realistic EoS and damping coefficients

→ FRG input

Stochastic net-baryon diffusion:

• Coupling to energy- and momentum density

with Grégoire Pihan

• Renormalization in 3d with Nathan Touroux

Fluctuating Dissipative Fluid Dynamics

with Nathan Touroux and Grégoire Pihan

Thanks to:
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