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Outline

• Overview of the AMPT model
• Importance of nuclear thickness at lower energies

• Improved parton cascade and extraction of parton h/s
• Future developments for high baryon density physics
• Summary

Based on arXiv:1704.08418, 2001.10140, 
2012.13825, 2102.06937, 2103.10815
(in collaboration with Todd Mendenhall, 
Xinli Zhao, Guo-Liang Ma, Yu-Gang Ma, 
Han-Sheng Wang, Wei-jie Fu,
Chao Zhang, Liang Zheng, Shusu Shi)
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Initial conditions

Parton Cascade

Hadron Cascade

A+B

Final particle spectra

Hadronization

A Multi-Phase Transport (AMPT)
was constructed as a self-contained kinetic description of heavy ion collisions:
• evolves the system from initial condition to final observables;
• particle productions of different flavours at different PT & y;
• non-equilibrium initial condition & dynamics (e.g. fluctuations & correlations).

Source codes at the ECU website 
http://myweb.ecu.edu/linz/ampt/

ZWL, Ko, Li, Zhang & Pal, PRC (2005);
ZWL & Zheng, NST (in press, 2021)

http://myweb.ecu.edu/linz/ampt/
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• Escape mechanism dominates v2 for small systems 
& even semi-central AuAu@RHIC.

• At very large opacity (large system/energy/σ),
hydrodynamic collective flow will dominate v2
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L He et al. PLB (2016),
ZWL et al. NPA (2016)

The escape mechanism:
interaction-induced response 
to anisotropic geometry 
from kinetic theory.

Transport versus hydrodynamics for finite systems

• It is important to develop transport model/kinetic theory & compare with 
hydrodynamics to understand physics/collectivity of finite size systems.

• Transport model (non-equilibrium, microscopic picture) &
hydrodynamics (EoS, transport coefficients) nicely complement each other.

Heiselberg and Levy, PRC (1999), Borghini, Feld and Kersting, EPJC (2018),  
Kurkela, Wiedemann and Wu, PLB (2018) & EPJC (2019)
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~ 5 12 40 GeV/fm3

SPS RHIC    LHC

>> critical energy density
for QCD phase transition:
εc ~ O(1/2) GeV/fm3

Proper formation time, 
taken as 0.5 fm/c

èAt high-enough energies, 

hadronic matter such as strings cannot exist at early times,

the initial matter should be represented by a high density partonic matter

è the string melting version of  AMPT ZWL & Ko, PRC (2002)

From the Bjorken formula for initial energy density in central AA collisions:

Transverse area

String Melting version of AMPT (AMPT-SM)

𝜖 𝜏 =
1

𝜏 𝐴!
𝑑𝐸!(𝜏)
𝑑𝑦
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AMPT codes are available online since 2004

String Melting AMPT since 4/2015 can reasonably describe
the bulk matter at high energies at RHIC and LHC. 

http://myweb.ecu.edu/linz/ampt/
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A central Au+Au event at 200AGeV from the AMPT-SM

Side view:

Beam axes

60fm-long box
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from STAR arXiv:1007.2613

Higher baryon densities / lower energies

• For lower energies such as BES, 
particular interests are in high 
baryon density physics including 
the QCD critical end point (CEP).

• Before addressing possible effects 
of the critical point, 
one needs to know trajectory 
of nuclear collisions on 
the QCD phase diagram, 

including time evolutions 
of energy density ε & 
net-baryon density nB  
(or T & µB)
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Results from AMPT-SM at different energies

String melting AMPT can now reasonably describe both large and small systems,         
including their centrality dependence after we apply local nuclear scaling on 
2 key input parameters (Lund b parameter & minijet pT cutoff p0):
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Centrality dependence of <pT> 
is now much better than public AMPT

However, finite nuclear thickness is neglected in AMPT-SM
as it was constructed for high energy nuclear collisions.
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Importance of nuclear thickness at lower energies

• Effects of nuclear thickness at low 
energies are big on energy density 
ε & net-baryon density nB
(consequently on T & µB)
ZWL, 1704.08418, 
Mendenhall & ZWL, 2012.13825, 
H.S. Wang et al. 2102.06937

• For hydrodynamics models: 
dynamical initialization scheme
is needed instead of initial condition 
at a fixed proper time.

Okai et al. 1702.07541, 
Shen et al. 1704.04109

from STAR arXiv:1007.2613
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t = 0

z0

t = dt /2

t = dt

3 5 11.5 27 50 200
10.5 5.3 2.2 0.91 0.49 0.12

𝑠"" (GeV)
𝑑# (𝑓𝑚/𝑐)

For central Au+Au collisions:

→ the Bjorken formula

is only valid when dt <<  τF
or for τF= 0.5 fm/c𝑠"" > ~50 GeV

For central A+A collisions in CM frame
with the hard sphere model for nucleus:
crossing time is

𝑑! =
2𝑅"

sinh 𝑦#$
=
2𝑅"
γ 𝛽

Effect of nuclear thickness on initial energy density

𝜖 𝜏 =
1

𝜏 𝐴!
𝑑𝐸!(𝜏)
𝑑𝑦
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A schematic picture:
The shaded area 
is the primary collision region
that can contribute to ε(t),
after considering formation time
tF = τF cosh(y).

At late t (> dt+τF),
ε(t) comes from the full primary 
collision region (the big diamond area).

K. Kajantie et al. / Hydrodynamics of hadronic matter 161 

densities attained. Still the hadron production time even in the TFR is shorter than 
the hydrodynamic evolution time R Afm, as long as A I/3 >> 1. 

The pairwise character of the interactions between the N^ nucleons in each 
one-dimensional nucleus (figs. 2-3, 5) is an essential feature of the inside-outside 
cascade model as formulated in sect. 2: after the two first nucleons have collided at 
t = x = 0 (fig. 5) they turn to a collection of pointlike quarks and gluons with a small 
probability of interacting when crossing the remaining nucleons. This pattern is 
repeated as many (--NA) times as there are nucleons in the one-dimensional 
(sections of) nuclei being discussed. With N Acc A 1/3 this leads to a central region 
pion rapidity density scaling as p~,A(y)ccA (A 2/3 comes from the transverse 
dimensions). 

Any interactions between the fragments and the nucleons would lead to a transfer 
of energy from the fragmentation regions to the central region and to an increase of 
the central rapidity density. Each crossing contributing equally would give another 
factor N A and O~A(Y) ~ -44/3. Equivalently, one might say that the nucleons are not 
Lorentz-contracted as in fig. 5 but that the slow-parton part of their wave function 
retains the width 1/AQc D - 1 fm. All slow-parton parts could then possibly interact 
with each other with the result O~A(Y) eC A4/3. Models with this property have been 
explicitly constructed [27]. If this really happened, the chances of attaining the 
quark-gluon plasma phase in the CR would correspondingly improve. We shall later 
include even this possibility in the numerical calculations. Note that already energy- 
momentum conservation restricts the increase of Og.A(Y) in the fragmentation 
regions to being proportional to A. 

Return now to fig. 2. For ~" < 1 the system is in a complicated nonthermal state of 
quarks and gluons with certain expectation values ~T~) and ~J~) which do not 
concern us. At • -- 1 hadrons start materializing and interacting. As in [4, 5] we shall 
assume that the hadronized part of the system immediately thermalizes with an 

~, \ \ x. 

\ x ~ N 

X \ ~" \ 
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i . / / / / / ' / , /  , , /  

/ / / 
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Fig. 5. An alternative description of the A + A collision. In addition to the paitwise N + N collisions on 
the time axis (crosses), the secondaries may further interact with the incoming nucleons (circles). This 

would enhance the energy density in the central region. 

Kajantie et al. 
NPB (1983)

In these semi-analytical studies, 
we only consider the central region (hs ~0) 
& neglect secondary scatterings or transverse expansion.

Mendenhall & ZWL 2012.13825

x: production time, ∈ [0, dt]

Effect of nuclear thickness on initial energy density
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We first use this simpler method 
to illustrate the qualitative effect 
of nuclear thickness on initial ε(t)

3) With both finite t & z 1) Without finite t or z:
the Bjorken ε formula 

2) With finite t 
(but not finite z-width)

Bjorken, PRD (1983) 

ZWL 1704.08418

Mendenhall & ZWL 2012.13825 

Extension of Bjorken ε formula with nuclear thickness: 2)
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Extension of the Bjorken ε formula: the uniform time profile

x

For the simplest uniform profile,
initial energy (at hs~𝑦$~0) 
is produced uniformly 
from time t1 to t2 :

7&8'
79(7:

= ;
<&)

78'
79%

for 𝑥 ∈ 𝑡%, 𝑡& ,
with t21 ≡ t2 − t1

𝜀(𝑡) =
1
𝐴!

B
$

#'(! 𝑑𝑥
𝑡 − 𝑥

𝑑&𝐸!
𝑑𝑦$𝑑𝑥

ZWL 1704.08418

Circles: AMPT results

dET/dy(y=0) parameterization from PHENIX PRC (2005) 
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pseudo-rapidity) needs to satisfy

| tanh y| ⇡ |y| 
d

t� x

at y ⇠ 0. Note that the right-hand-side above can al-
ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z dt

0

d2ET

dy dx

dx

(t� x)
.

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z t�⌧
F

0

d2ET

dy dx

dx

(t� x)
.

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  dt + ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d2ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2
(with t21 ⌘ t2 � t1):

d2ET

dy dx
=

1

t21

dET

dy
, if x 2 [t1, t2].

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to dt for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (1)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy
ln

✓
t� t1
⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy
ln

✓
t� t1
t� t2

◆
, if t � t2 + ⌧F .

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏max
uni = ✏uni(t2 + ⌧F) =

1

ATt21

dET

dy
ln

✓
1 +

t21
⌧F

◆
.

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏max
uni

✏Bj(⌧F)
=

⌧F
t21

ln

✓
1 +

t21
⌧F

◆
.

Therefore the ✏max value above is always smaller than
the Bjorken initial energy density: ✏max

⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏max

⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(dt) is bigger. In addition, Eq.(1)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time dt/2). We thus expect
the time profile of the initial energy production to peak
around time dt/2 while diminish at time 0 and dt. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d2ET

dy dx
= an [x(dt � x)]n

dET

dy
, if x 2 [0, dt].

In the above, power n does not need to be an integer, and
an = 1/d2n+1

t /B(n+1, n+1) is the normalization factor
with B(↵,�) being the Beta function. This smooth beta
profile reduces to a uniform profile when n = 0; with an
appropriate value of n it can also well describe the trans-
port model time profile, as shown in Fig. 2. We obtain
the following solution for the formed energy density:

✏beta(t) =
1

AT

dET

dy

[(t� ⌧F)/dt]
n+1

(n+ 1)B(n+ 1, n+ 1) t

⇤F1


n+ 1,�n, 1, n+ 2,

t� ⌧F
dt

,
t� ⌧F

t

�
,

if t 2 [⌧F , dt + ⌧F ];

=
1

AT

dET

dy

1

t
⇤2F1


1, n+ 1, 2n+ 2,

dt
t

�
,

if t � dt + ⌧F .

F1 above is the Appell hypergeometric function of two
variables, and 2F1 is the Gaussian hypergeometric func-
tion. One can verify that for n = 0 the above solution
reduces to Eq.(1) for t1 = 0 & t2 = dt.
We now apply these solutions to central Au+Au colli-

sions. The nuclear transverse area is taken as

AT = ⇡R2
A, with RA = 1.12A1/3 fm,

• At high energies
(thin nuclei, or t21 /τF → 0):

𝜀)*+(𝑡) → 𝜀,-(𝑡)
analytically.

• At lower energies:
very different from Bjorken.

→ solution:

Extension of the Bjorken ε formula: the uniform time profile

time

eUniform

t1+τF t2+τF

Bjorken formula

Uniform formula

Central Au+Au@11.5GeV𝜀(𝑡)

𝑡
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time

eUniform

At very low energies (t21 /τF >>1):
ratio over Bjorken → 0;

So the peak energy density 
• << Bjorken value
• much less sensitive to τF

𝜀)*+./0 ∝ ln %
"!

,      not %
(!
.
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pseudo-rapidity) needs to satisfy
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at y ⇠ 0. Note that the right-hand-side above can al-
ways be made small with small-enough d. Therefore the
average energy density in this region at time t is
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From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z t�⌧
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dx

(t� x)
.

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  dt + ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d2ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2
(with t21 ⌘ t2 � t1):

d2ET

dy dx
=

1

t21

dET

dy
, if x 2 [t1, t2].

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to dt for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (1)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET
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ln
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t� t1
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, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
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t� t2
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, if t � t2 + ⌧F .

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏max
uni = ✏uni(t2 + ⌧F) =

1

ATt21

dET

dy
ln

✓
1 +

t21
⌧F

◆
.

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏max
uni

✏Bj(⌧F)
=

⌧F
t21

ln

✓
1 +

t21
⌧F

◆
.

Therefore the ✏max value above is always smaller than
the Bjorken initial energy density: ✏max

⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏max

⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(dt) is bigger. In addition, Eq.(1)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time dt/2). We thus expect
the time profile of the initial energy production to peak
around time dt/2 while diminish at time 0 and dt. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d2ET

dy dx
= an [x(dt � x)]n

dET

dy
, if x 2 [0, dt].

In the above, power n does not need to be an integer, and
an = 1/d2n+1

t /B(n+1, n+1) is the normalization factor
with B(↵,�) being the Beta function. This smooth beta
profile reduces to a uniform profile when n = 0; with an
appropriate value of n it can also well describe the trans-
port model time profile, as shown in Fig. 2. We obtain
the following solution for the formed energy density:

✏beta(t) =
1

AT

dET

dy

[(t� ⌧F)/dt]
n+1

(n+ 1)B(n+ 1, n+ 1) t

⇤F1


n+ 1,�n, 1, n+ 2,

t� ⌧F
dt

,
t� ⌧F

t

�
,

if t 2 [⌧F , dt + ⌧F ];

=
1

AT

dET

dy

1

t
⇤2F1


1, n+ 1, 2n+ 2,

dt
t

�
,

if t � dt + ⌧F .

F1 above is the Appell hypergeometric function of two
variables, and 2F1 is the Gaussian hypergeometric func-
tion. One can verify that for n = 0 the above solution
reduces to Eq.(1) for t1 = 0 & t2 = dt.
We now apply these solutions to central Au+Au colli-

sions. The nuclear transverse area is taken as

AT = ⇡R2
A, with RA = 1.12A1/3 fm,

𝜀!"#$%&

→ ratio over Bjorken: ≤ 1 always.

2
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time

0
d-d
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FIG. 1: Particles around zero rapidity could be produced at
any time x within [0, dt] and propagate to observation time t.

ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z dt

0

d2ET

dy dx

dx

(t� x)
. (4)

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z t�⌧
F

0

d2ET

dy dx

dx

(t� x)
. (5)

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  dt + ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d2ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2
(with t21 ⌘ t2 � t1):

d2ET

dy dx
=

1

t21

dET

dy
, if x 2 [t1, t2]. (6)

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to dt for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (5)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy
ln

✓
t� t1
⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy
ln

✓
t� t1
t� t2

◆
, if t � t2 + ⌧F . (7)

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏max
uni = ✏uni(t2 + ⌧F) =

1

ATt21

dET

dy
ln

✓
1 +

t21
⌧F

◆
. (8)

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏max
uni

✏Bj(⌧F)
=

⌧F
t21

ln

✓
1 +

t21
⌧F

◆
. (9)

Therefore the ✏max value above is always smaller than
the Bjorken initial energy density: ✏max

⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏max

⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(dt) is bigger. In addition, Eq.(7)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time dt/2). We thus expect
the time profile of the initial energy production to peak
around time dt/2 while diminish at time 0 and dt. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d2ET

dy dx
= an [x(dt � x)]n

dET

dy
, if x 2 [0, dt]. (10)

Peak energy density

• FWHM width in t >> Bjorken

Extension of the Bjorken ε formula: the uniform time profile

t1+τF t2+τF

Bjorken formula

Uniform formula

Central Au+Au@11.5GeV𝜀(𝑡)

𝑡
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We incorporated nuclear thickness in AMPT initial condition in a test version;
the results show:
• Same qualitative features as our semi-analytical studies.
• Effect of nuclear thickness could be very important at low/BES energies.
• Peak energy density 𝜀&'( increases with 𝑠)) much faster than Bjorken.

Nuclear thickness effects from AMPT-SM

ZWL 1704.08418
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———————

————————-

—————

3) With both finite t & z 
Mendenhall & ZWL 2012.13825 

Extension of Bjorken ε formula with nuclear thickness: 3)

Depends on !!""
!## !$!%

: initial dmT/dy production density in x-z plane: 
assumed to be uniform in x-z plane
(similar to triangular time profile of earlier study  ZWL 1704.08418).

dmT/dy is based on improving dET/dy(y=0) parameterization from PHENIX PRC (2005)
by including net-baryon contribution (important at low energies).

𝜀(𝑡) = '
(!
∫∫ )&)*

+,&
)"$!

)-# )&)*
𝑐ℎ3𝑦.

S

S: integration area (shaded),
has 2 or 3 pieces depending on t:
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• Qualitatively similar to earlier study ZWL 1704.08418
𝜀#$% << Bjorken value at low energies,   ≈Bjorken value at high energies;
𝜀#$% & ε(t) depend on  τF more weakly than Bjorken at lower energies.

• Surprise finding:  𝜀./0 is finite at τF = 0 at any colliding energy.

Mendenhall & ZWL 2012.13825 

Extension of Bjorken ε formula with nuclear thickness: 3)

3) With both finite t & z 



20

Todd Mendenhall has written a web interface
to calculate the initial energy density ε(t)

• Can be accessed at bottom of the AMPT webpage

• Takes input from user:

• Outputs ε(t) plot, 
user can download data file: 

Mendenhall & ZWL 2012.13825 

Extension of Bjorken ε formula with nuclear thickness: 3)

3) With both finite t & z 

https://toddmmendenhall.pythonanywhere.com/
http://myweb.ecu.edu/linz/ampt/
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Nuclear thickness effects from AMPT-SM on µB

Han-Sheng Wang et al.
2102.06937, 
preliminary

• Qualitatively similar to ε(t) results ZWL 1704.08418, Mendenhall & ZWL 2012.13825:

𝑛𝐵&'( decreases drastically at very low energies (after including thickness);
smaller change at higher energies.
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Nuclear thickness effects from AMPT-SM on T-µB

Han-Sheng Wang et al.
2102.06937, 
preliminary

• Trajectory is plotted from 𝑡./0 (time of reaching 𝜀./0) to t=10 fm/c.

• T & µB both decrease significantly at very low energies (after including thickness);
little change at high energies.
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Flows like v2 & v3 of large systems
mostly come from parton cascade in AMPT.

But ZPC/MPC cascade solution of the Boltzmann equation 
is well known to suffer from causality violation.

Parton subdivision can resolve this problem:
but is very CPU-consuming 
& alters e-by-e fluctuation/correlation.

We study
→ how accurate ZPC is under expected densities/opacities
→ how to accurately solve Boltzmann equation w/o subdivision
→ extract parton h or h/s

Improved parton cascade and extraction of parton h/s

Xinli Zhao et al. 2001.10140, Mendenhall & ZWL (ongoing) 
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We have found a new scheme to perform parton collisions:
it almost eliminates causality violation
& is more accurate than default ZPC collision scheme

Xinli Zhao et al. 2001.10140

Gluons in a box: 
T = 0.5 GeV
σ=2.6 mb

ZPC in AMPT numerically solves the Boltzmann equation for 2-body collisions:

l=106

Improved parton cascade and extraction of parton h/s
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We calculate h with the Green-Kubo relation:

Gluons in a box: 
T = 0.5 GeV
σ=2.6 mb, 𝝌=2.0 

l=106

Xinli Zhao et al. 2001.10140

New scheme
≈ Subdivision results
=  Navier-Stokes values

(for isotropic scatterings): 

𝜼
𝒔

𝑵𝑺
≈
𝟎. 𝟏𝟖𝟑𝟗
𝝌𝟐/𝟑

Opacity parameter 𝜒 =
𝜎
𝜋
/𝜆"#$ = 𝑛

𝜎%

𝜋
Bin Zhang, Gyulassy and Pang, PRC (1998)

Next step: extract parton h/s
of a 3-d expanding system

Improved parton cascade and extraction of parton h/s
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Future developments for high baryon density physics

Above developments of the AMPT model 
lay a good foundation for studies of nuclear collisions 
at low energies /high baryon densities.

Still, much important work needs to be done:
1) realistic Equation of State of the dense matter (including QCD critical end point)
2) inelastic parton reactions of different flavors   (QGP chemical composition)
3) link parton cross sections with η/s and other transport coefficients
4) hadronization   (parton recombination/quark coalescence/fragmentation)
5) potentials   (partonic and hadronic)

+more
better hadron cascade
kinetics of spin polarizations
transport under electromagnetic fields
better model maintenance & integration to experiments
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A+B

Final particle spectra

ZPC (parton cascade)

Strings melt to q & 
qbar via intermediate 
hadrons

HIJING1.0:
minijet partons, excited strings,  spectator nucleons

Extended ART (hadron cascade)

Partons freeze out

Generate parton space-time

String Melting AMPT

1) QCD equation of state & CEP 
(FRG / dynamical parton mass / NJL)

2) inelastic parton reactions
with flavor-dependent cross sections

3) link σ with η/s
5a) parton potentials (FRG / NJL)

5b) hadron potentials

Hadronization (Quark Coalescence)
4a) improve coalescence with energy conservation
4b) fragmentation of partons w/o coalescing partners

Important work to be done:

Future developments for high baryon density physics
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FRG is applicable at high µB
and well suited for search of CEP.

One direction is to couple AMPT with FRG 
since they complement each other:

Fu, Pawlowski and Rennecke, PRD (2020)

AMPT: a dynamical non-equilibrium model, 
can be directly compared with experimental data.

FRG (functional renormalization group):
A non-perturbative but static QCD approach,
consistent with lattice QCD.

With the coupling of AMPT with FRG:

• first-principle QCD EoS from FRG 
provides information to improve EoS in AMPT.

• it enables calculation of dynamical evolution 
of fluctuations and possible effects of CEP.

From Wei-Jie Fu

Future developments for high baryon density physics
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Fu, Pawlowski and Rennecke, PRD (2020)
FRG could provide proper treatment of 
QCD interactions in AMPT

QCD strong couplings among quarks and gluons from FRG:

Future developments for high baryon density physics

From Wei-Jie Fu
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• The string melting AMPT can now reasonably describe bulk observables 
of both large and small systems, including the centrality dependence

• At low energies like the BES, finite nuclear thickness has big effects on 
energy density ε & net-baryon density nB ,
and consequently on event trajectories and relation to CEP

• We have incorporated finite nuclear thickness into AMPT
to provide a better foundation for further studies at high baryon densities

• We have found a more accurate new collision scheme that almost eliminates 
causality violation in parton cascade and gives correct parton h values

• Much important work needs to be done,  especially on 
realistic Equation of State of the dense matter including the CEP

Summary


