Compact Stars and Heavy-Ion Collisions

Jürgen Schaffner-Bielich

Institut für Theoretische Physik

On-line seminar series II on "RHIC Beam Energy Scan: Theory and Experiment", June 20, 2021

Jürgen Schaffner-Bielich

Compact Stars and Heavy-Ion Collisions

June 20, 2021 1 / 47

- 2 Equation of State
- 3 Phase Transitions
- 4 Hyperon puzzle

1 Neutron Stars

- 2 Equation of State
- 3 Phase Transitions
- 4 Hyperon puzzle
- 5 Outlook

< 一型

Stellar Evolution (Credit: NASA/CXC/M.Weiss)

Jürgen Schaffner-Bielich

Compact Stars and Heavy-Ion Collisions

June 20, 2021 4 / 47

endpoints of stellar evolution:

 $M < 0.08 M_{\odot}$: no stable nuclear burning \rightarrow brown dwarfs

 $M < 0.4 M_{\odot}$: hydrogen burning \rightarrow H-He white dwarfs

 $M < 8M_{\odot}$: helium burning \rightarrow C-O white dwarfs (our Sun!)

- $8 < M < 10 M_{\odot}$: carbon burning, degenerate Ne-O-Mg core, core collapse supernova \rightarrow neutron star
- $M > 10 M_{\odot}$: Ne-O-Si burning, degenerate Fe core, core collapse supernova \rightarrow neutron star
- $M \gtrsim 25 M_{\odot}$: core collapse supernova \rightarrow black hole

 $M \sim 100 M_{\odot}$: upper mass limit for stars

(formation of black holes also by supermassive stars (first stars), primordial black holes ('mini black holes' with $M > 10^{15}$ g) or collision of compact stars in binary systems)

< 回 > < 三 > <

Neutron Stars - the Crab Nebula

- produced in core collapse supernova explosions
- compact, massive objects: radius \approx 10 km, mass $1-2M_{\odot}$
- extreme densities, several times nuclear density: $n \gg n_0 = 2.5 \cdot 10^{14} \text{ g/cm}^3$
- in the middle of the crab nebula: a pulsar, a rotating neutron star!

< (17) > < (17) > <

Compact Stars and Heavy-Ion Collisions

	mass (M_{\odot})	radius (km)	density (g/cm^3)	GM/R
Sun	1	695.700	1.4	10^{-6}
white dwarf	0.5 - 1	~ 10.000	$\sim 10^{6}$	$\sim 10^{-4}$
neutron star	1-2	~ 10	$\sim 10^{15}$	0.1 - 0.3
black hole	$10 - 10^{10}$	$30-3 imes10^9$	N/A	0.5

 $(M_{\odot} = 1.98848(9) \cdot 10^{33} \mathrm{g})$

huge range of densities, involves all four fundamental forces (strong, weak, electromagnetic, gravity)

The Pulsar Diagram

(ATNF pulsar catalog)

- the diagram for pulsars: period versus period change (P-P)
- dipole model for pulsars: characteristic age: $\tau = P/(2\dot{P})$ and magnetic field $B = 2 \cdot 10^{19} (P \cdot \dot{P})^{1/2}$ Gauss
- anomalous x-ray pulsars: AXP, soft-gamma ray repeaters: SGR, young pulsars in supernova remnants: SNR
- rapidly rotating pulsars (millisecond pulsars): mostly in binary systems (old recycled pulsars!)

Masses of Pulsars

(figure: Vivek V. Krishnan, 2021)

- more than 2000 pulsars known with 140 binary pulsars
- up-to-date list of pulsar masses by Paolo Freire at: https://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html
- most massive pulsars: PSR 0740+6620 with $M = 2.08(7)M_{\odot}$ (Fonseca et al. 2021) and PSR 0348+0432 $M = 2.01(4)M_{\odot}$ (Antoniadis et al. 2013)

The Double Pulsar PSR J0737-3039

- sensational discovery of two pulsars orbiting each other (Lyne et al. 2004)
- all in agreement with the prediction of GR to within 0.05% !
- fundamental tests of General Relativity in STRONG fields

animation (credit: Michael Kramer)

Constraint from gravitational wave event GW170817

(LIGO and Virgo collaboration 2017)

- $\bullet\,$ limits on the tidal deformability of two merging neutron stars ($\Lambda < 720)$
- for high-spin (left plot) and low-spin (right plot) scenario
- rules out several models for neutron star matter (equations of state)
- more compact neutron stars (with higher mass-to-radius-ratio) are favoured

NICER constraint on neutron stars: proof of concept

- observing hot spots on neutron stars in x-rays
- modulated by the curvature of spacetime
- constraints on compactness C = GM/R (upper plots) or mass and radius (lower plots, fastly rotating) possible

(Bogdanov et al. 2021)

NICER measurement for PSR J0740+6620

(Riley et al. 2021)

- newest data from a pulsar with known mass!
- constraint: R = 11.4 13.7 km (Riley et al. 2021) and R = 12.2 - 16.3 km (Miller et al. 2021)
- ruling out softer EOS (without a phase transition)

Neutron Stars

2 Equation of State

3 Phase Transitions

4 Hyperon puzzle

5 Outlook

Nuclear Equation of State as Input in Astrophysics

(Koppitz/Giacomazzo/Rezzolla (AEI/ZIB))

- supernovae simulations: T = 1-50 MeV, $n = 10^{-10}-2n_0$
- proto-neutron star: T = 1-50 MeV, $n = 10^{-3}-10n_0$
- global properties of neutron stars: T = 0, $n = 10^{-3} 10n_0$
- neutron star mergers: T = 0-100 MeV, $n = 10^{-10}-10n_0$

Phase Diagram for Supernova Simulations

(Fischer, Hempel, Sagert, Suwa, JSB 2014)

- wide range in densities, temperatures and electron fraction needed for the EoS in core-collapse supernova simulations
- densities: $n = 10^{-10} 10^{-1}$ fm⁻³, temperatures: T = 0.5 50 MeV, electron to baryon fraction: $Y_e = 0 0.5$

Phase Diagram of Quantum Chromodynamics QCD

- early universe at zero density and high temperature
- heavy-ion collisions at high temperature and density
- neutron star matter at small temperature and high density
- first order phase transition to quark matter at high density?

Jürgen Schaffner-Bielich

Compact Stars and Heavy-Ion Collisions

Phase diagram for neutron star merger

(Dexheimer, Constantinou, Most, Papenfort, Hanauske, Schramm, Stöcker, Rezzolla, 2019)

Jürgen Schaffner-Bielich

Compact Stars and Heavy-Ion Collisions

What we know about the EoS for neutron star matter

- pressure versus the quark chemical potential (above the one of ⁵⁶Fe)
- low-density regime: outer crust (lattice of nuclei), inner crust (lattice of nuclei in a neutron fluid), neutron matter
- high-density regime: pQCD, close to Stefan-Boltzmann limit

Structure of Neutron Stars — the Crust (Dany Page)

- $n \le 10^4 \text{ g/cm}^3$: atmosphere (atoms)
- n = 10⁴ 4 · 10¹¹ g/cm³: outer crust or envelope (free e⁻, lattice of nuclei)
- $n = 4 \cdot 10^{11} 10^{14} \text{ g/cm}^3$: Inner crust (lattice of nuclei with free neutrons and e^-)

June 20, 2021

20 / 47

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Pure Neutron Matter: EOS known

(Tews, Krüger, Hebeler, Schwenk 2012)

- chiral effective field theory including N³LO terms with 3N and 4N forces
- comparison to Quantum Monte Carlo Simulations QMC and GCR

Properties of available Supernovae EoS

(Fischer, Hempel, Sagert, Suwa, JSB 2014)

- widely used: Lattimer and Swesty (LS220) and Shen et al. (STOS), fail to describe neutron matter (Krüger, Tews, Hebeler, Schwenk 2013)
- mass-radius relation depends on SLOPE of EoS (see e.g. IUFSU and LS220) which determines the pressure

Jürgen Schaffner-Bielich

High-Density Side: perturbative QCD

(Fraga, Kurkela, Vuorinen, 2013)

- asymptotic freedom of strong interactions (QCD): weakly interacting at large scales (temperature and/or chemical potential)
- perturbative calculations up to $\mathcal{O}(\alpha_s^2)$: follows lattice data at nonzero temperature
- band of uncertainty for the pQCD equation of state at nonzero μ (from choice of renormalization scale)

QCD Matter in Compact Stars

(Kurkela, Fraga, JSB, Vuorinen, 2014))

- green band: interpolated region compatible with pulsar mass constraint
- only pretty narrow region allowed for the EOS (without a phase transition)!
- note: we do not know what the matter within the green band is made of!

Mass-radius relation (smooth interpolation)

• Buchdahl limit: incompressible fluid (C = GM/R = 4/9)

- causality limit: $P = \epsilon \epsilon_0$ (C = 0.354)
- interpolated EOS: R = 10 15 km ($M = 2M_{\odot}$)

- Neutron Stars
- 2 Equation of State
- 3 Phase Transitions
- 4 Hyperon puzzle

5 Outlook

Mass-radius relation (causal EOS)

• causal EOS $p = \epsilon$ ($\Delta \epsilon = 0$): right bound in mass-radius relation

• causal EOS with jump $\Delta\epsilon$: left bound in mass-radius relation with $M_{\rm max}=2M_{\odot}$

Mass-radius constraints from GW170817

(Most, Weih, Rezzolla, JSB, 2018)

- mass-radius constraint from GW170817
- left plot: smooth interpolation
- right plot: allowing for a phase transition (twin stars)

Newest constraints on mass-radius relation

(Annala, Gorda, Katerini, Kurkela, Nättilä, Paschalidis, Vuorinen 2021)

- left plot: constraints on EOS from GW170817 and newest NICER data
- right plot: constraints on mass-radius relation
- dominant constraints: $\Lambda <$ 720 ($R \leq$ 13.4 km) at 1.4 M_{\odot} and $R \geq$ 11.4 km for 2 M_{\odot}

Third Family of Compact Stars

(Gerlach 1968; Kämpfer 1981; Glendenning, Kettner 2000; Schertler, C. Greiner, JSB, Thoma 2000)

R

- third solution to the TOV equations besides white dwarfs and neutron stars, solution is stable!
- generates stars more compact than neutron stars ۰
- possible for any first order phase transition or rapid crossover!

Jürgen Schaffner-Bielich

Compact Stars and Heavy-Ion Collisions

Equation of state with a phase transition

(Christian, Zacchi, JSB 2018)

- model phase transition by two parameters: transition pressure $p_{\rm trans}$ and jump in energy density $\Delta \epsilon$
- choose stiffest possible equation of state for the quark phase (speed of sound $c_s^2 = 1$)

Classification of twin star solutions

- four different classes of separate compact star branches
- category I: both branches reach $2M_{\odot}$
- category II: only first branch reaches 2M_☉
- category III: only second branch reaches $2M_{\odot}$ and first branch is above $1M_{\odot}$
- category IV: only second branch reaches $2M_{\odot}$ and first branch is below $1M_{\odot}$ (unobservable)

Classes of solution for twin stars

(Christian, Zacchi, JSB 2018)

- twin stars: two compact stars with the same mass but different radii
- twin star solutions exist for certain values of transition pressure $p_{\rm trans}$ and energy density jump $\Delta\epsilon$
- pulsar mass measurement of $M_{
 m max} > 2 M_{\odot}$ can be fulfilled

Jürgen Schaffner-Bielich

Unusual tidal deformabilities for twin stars

(Christian, Zacchi, JSB 2019)

- $\bullet\,$ tidal deformabilities Λ_1 and Λ_2 of merging neutron stars
- $\bullet\,$ normal neutron stars: $\Lambda_2>\Lambda_1$ (the more massive neutron star has a smaller radius)
- twin stars: $\Lambda_1 > \Lambda_2$ (the more massive neutron star has a LARGER radius)

Radius constraints: limit on phase transition density

- radius constraint on J0030+0451 from NICER: $R = 12.71^{+1.14}_{-1.19}$ km (Riley et al. 2019) and $R = 13.02^{+1.24}_{-1.06}$ km (Miller et al. 2019)
- strong phase transitions for $\epsilon < 1.7 \epsilon_{0}$ are ruled out
- new constraints from J0740+6620 from 2021: work in progress!

Jürgen Schaffner-Bielich

Neutron-star merger and QCD phase transition

(Most, Papenfort, Dexheimer, Hanauske, Schramm, Stöcker, Rezzolla, 2019)

- First full GR calculation of neutron-star mergers with a phase transition to quark matter
- Produces a very hot and dense quark core
- Strong effects on the gravitational wave signal

(see also Bauswein, Bastian, Blaschke, Chatziioannou, Clark, Fischer, Oertel 2019)

Implications for Supernova – Neutrino-Signal!

- temporal profile of the emitted neutrinos out of the supernova
- pronounced second peak of anti-neutrinos from a phase transition (Sagert, Hempel, Pagliara, JSB, Fischer, Mezzacappa, Thielemann, Liebendörfer, 2009)
- peak location and height determined by the critical density and strength of the QCD phase transition
- update: compatible with pulsar masses, works for blue giants (Fischer, Bastian, Wu,

Baklanov, Sorokina, Blinnikov, Typel, Klähn, Blaschke 2019)

- Neutron Stars
- 2 Equation of State
- 3 Phase Transitions
- 4 Hyperon puzzle

5 Outlook

Experimental Status of Hypernuclear Systems

- NA: attractive \rightarrow A-hypernuclei for A = 3 209 $U_{\Lambda} = -30$ MeV at $n = n_0$
- NS: ${}^{4}_{\Sigma}$ He hypernucleus bound by isospin forces Σ^{-} atoms: potential is repulsive
- N \equiv : attractive \rightarrow 5 new \equiv hypernuclear events $U_{\equiv} \leq -20$ MeV at $n = n_0$ (Friedmann and Gal 2021) quasi-free production of \equiv : $U_{\equiv} = -18$ MeV

 $\Lambda\Lambda$: attractive \rightarrow one unambiguous $\Lambda\Lambda$ hypernucleus (Nagara event ${}_{\Lambda\Lambda}{}^{6}$ He)

YY: $Y = \Lambda, \Sigma, \Xi$ starting to be explored via femtoscopy! (see e.g. Fabbietti, Sarti, Doce 2021)

hypernuclear programs: JLab, J-PARC, STAR, ALICE, FAIR: PANDA, HYPHI, CBM \longrightarrow access to strange dibaryons, multi-hypernuclei!

Mass-radius relation and nuclear parameters

(Hornick, Tolos, Zacchi, Christian, JSB 2018)

- relativistic mean field model fitted to nuclear matter and neutron matter
- different slope parameters L: small impact on mass-radius relation
- effective mass *m*^{*}: dominant impact on mass-radius relation

Maximum mass with nucleons only

(Weissenborn, Chatterjee, JSB 2011)

- maximum mass for different effective masses m^*/m and compressibility K
- ullet change in maximum mass for different incompressibilities: at most 0.1 M_{\odot}
- change in maximum mass for different m^*/m : up to $1M_{\odot}!$
- values of $M>2M_{\odot}$ possible for reasonable values of m^*/m

Maximum mass with hyperons: hyperon puzzle

(Weissenborn, Chatterjee, JSB 2011)

- maximum mass for different effective masses of RMF parameter sets
- stars: parameter sets with standard SU(6) baryon couplings (no ϕ meson)
- values of $M>2M_{\odot}$ possible with hyperons for stiff nuclear EoS

Onset of hyperons in neutron star matter

(JSB 2021)

- condition for appearance of hyperons: in-medium energy lower than the chemical potential
- left plot: hyperon potentials from hypernuclear data
- right plot: hyperon potentials from lattice data (HAL QCD collaboration 2019)

• onset of
$$\Sigma^-$$
 and Ξ^- very different

Jürgen Schaffner-Bielich

Hyperon composition in neutron star matter

(JSB 2021)

- left plot: with hypernuclear potentials right plot: with lattice potentials
- fraction of Σ^- hyperons widely different
- new input from heavy-ion data?

Hyperons in supernovae and neutron star merger

(Banik, Hempel, Bandyopadhyay 2014)

- equation of state at nonzero T and Y_p with hyperons
- for core-collapse supernovae and neutron star merger simulations
- high hyperon fractions seen at low electron fraction Y_e and high temperature

- Neutron Stars
- 2 Equation of State
- 3 Phase Transitions
- 4 Hyperon puzzle

Two different types of modification from high-density QCD matter

• equation of state, phase transition(s):

- mass-radius relation (third family of compact stars?)
- dynamics of core-collapse supernovae (second shock wave?)
- proto-neutron star evolution (collapse to a black hole?)
- neutron star merger (gravitational wave signal)
- transport properties:
 - bulk and shear viscosity (r-mode instability)
 - neutrino reactions (cooling of (proto-) neutron stars, neutron star merger)

X-ray satellites (NuSTAR, NICER, eRosita, ATHENA), optical (JWST), radio (SKA), gravitational wave (LIGO, Virgo, KAGRA, LIGO-India!) and neutrino detectors (Super-K, IceCube)