利用直接核反应研究原子核体系的集团结构

- ✓ Introduction for cluster studies
 - \checkmark Generally used methods to study clusters
- ✓ Formation of α cluster in heavy nuclei probed with (*p*,*p* α)
- ✓ Future experiments at RCNP/RIBF/RIBLL1

杨再宏 <u>RCNP, Oscaka University</u>

"Effective binding" or "Scale-saparation"

"Ikeda diagram"

Rich Cluster structures in light nuclei

Observation of Enhanced Monopole Strength and Clustering in ¹²Be

Z. H. Yang (杨再宏),¹ Y. L. Ye (叶沿林),^{1,*} Z. H. Li (李智ட候),¹ J. L. Lou (棲建玲),¹ J. S. Wang (王建松),² D. X. Jiang (江栋兴),¹ Y. C. Ge (葛愉成),¹ Q. T. Li (李奇特),¹ H. Hua (牛鲜料),¹ X. Q. Li (李湘庆),¹ F. R. Xu (许甫荣),¹ J. C. Pei (表俊琛),¹ R. Qiao (乔俊),¹ H. B. You (游海波),¹ H. Wang (王林),^{1,3} Z. Y. Tian (田正附),¹ K. A. Li (李訚昂),¹ Y. L. Sun (孙叶磊),¹ H. N. Liu (刘红娜),^{1,3} J. Chen (陈洁),¹ J. Wu (吴德),^{1,3} J. Li (李声品),¹ W. Jiang (蒋伟),¹ C. Wen (文超),^{1,3} B. Yang (杨彪),¹ Y. Y. Yang (杨彦云),² P. Ma (马明),² J. B. Ma (马军兵),² S. L. Jin (金仕纶),² J. L. Han (韩建龙),² and J. Lee (李暁菁)³

Exp. challenges: population + identication

◆ How to populate Cluster structure in the excited states:

- ✓ Inelastic scattering: e.g. ${}^{12}C(\alpha, \alpha')$
- ✓ Cluster (multi-N) transfer: e.g ${}^{12}C({}^{6}Li,d){}^{16}O, {}^{9}Be({}^{13}C, {}^{18}O){}^{4}He$
- ✓ Resonant scattering (active target): e.g 10 Be + α , 6 He + α

¹²Be 实验@RIBLL1 [Z. H. Yang, Y. L. Ye et al. PRL 112, 162501 (2014)]

(实验识别-1) Cluster rotational band

- ✓ Invarimant-mass measurement by detecting the decay fragments
- ✓ Spin-parity assignment via **angular correlation analysis**
- ✓ E.g, ¹²Be PRC82(99)1383, *PRL112(14)162501; ¹⁰Be, PRL96(06)042501*

FIG. 3. Projected angular correlations (see text) for the states at (a) 13.2 MeV (J = 4), (b) 16.1 MeV (J = 6), (c) triplet centered at 18.6 MeV (J = 6), and (d) 20.9 MeV (J = 8). The dotted lines correspond to the $|P_J|^2$, where J is the assigned spin.

(实验识别-2) Large Cluster SF

 $\Gamma_{\alpha}(E) = 2\gamma_{\alpha}^{2}P_{l}(E) \quad \gamma_{\alpha}^{2}$ -reduced width $P_{l}(E)$ -penetrability

Non-dimentional reduced width (Cluster spectroscopic factor)

$$\theta^{2} = \frac{\gamma_{\alpha}^{2}}{\gamma_{W}^{2}} (0 \le \theta^{2} \le 1) \quad \gamma_{W}^{2} = \frac{3h^{2}}{2\mu a^{2}} : wigner \ \text{lim} it$$

(实验识别-3) Isoscalar Monopole transtion

T. Yamada,, PRC85(12)034315, PTP120(12)1139; Ito, PRC 83(11)044319; Kimura, EPJA52(16)373

✓ Inelastic scattering on $d/\alpha/^{12}C$

✓ Multiple decomposition analysis (MDA) of angular distribution

(实验识别-4) Characteristic EM transitions

⁸Be: In-band B(E2)

QMC: 18.2(4) e² fm⁴ GFMC: 27.2(15) e² fm⁴

Inter-band E1 between cluster parity doublet bands

Kimura, EPJA52(16)373

Nuclear Clusters in the ground state

Quasi-free $(p,p\alpha)$ to probe α clusters

✓ In1970s and 1980s: with light stable nuclei like ⁷Li/⁹Be/¹²C.
 ✓ Recent theoretical development for (*p*,*pα*) (*Yoshida*, *Ogata et al.*)

Nadasen, PRC40(1989) 1130.

"α particle" nuclei [~1930s by Hafstad and Teller]

- ✓ Alpha decay model (quantum tunneling): Gamow, 1928
- ✓ Discovery of the neutron: 1932, Chadwick

α cluster in medium-mass region (A~50)

Taniguchi, Yoshida, et al. PRC103, L031305 (2021)

FIG. 1. Wave-function density distributions for RWA calculation—(a) mean-field solution; (b)–(f) α + ⁴⁴Ca system with different internuclear distances *d*.

FIG. 3. Triple-differential cross section of ${}^{48}\text{Ti}(p, p\alpha){}^{44}\text{Ca}$ reaction via DWIA calculations using RWAs of the $\alpha + {}^{44}\text{Ca}$ (d = 3.0-5.0 fm) and mean-field wave functions shown in Fig. 2(a) and their comparison against experimental results reported by [20]. The

α decay of heavy nuclei: origin of α ?

EoS and symmetry energy

- ✓ Nuclear matter equation of state (EoS) $\frac{E}{A}(\rho,\delta) = \frac{E}{A}(\rho,0) + S(\rho)\delta^{2} + \dots \qquad \rho(r) = \rho_{n}(r) + \rho_{p}(r) \qquad \delta(r) = \frac{\rho_{n}(r) - \rho_{p}(r)}{\rho_{n}(r) + \rho_{p}(r)}$
- ✓ Symmetry energy Slope parameter (neutron pressure) $(\rho - \rho_0) + \frac{K_{sym}}{18\rho_0}(\rho - \rho_0)^2 + \dots$ $S(\rho)$ $\chi EFT (N^{3}LO)$ neutron matter DD2 [MeV] 20E/A10 energy per nucleon 0 Symmetry energy -10symmetric nuclear matter -20 -0.00 0.05 0.10 0.15 0.20 density n [fm⁻³]

EoS: from nucleus to neutron stars

Impact of clustering on EoS

Typel, PRC89(2014) 064321,PRC 81(2010) 015803 ✓ Generalized relativistic density functional (gRDF) predictions: α clusters in low-ρ environments like the surface of heavy nuclei:

Impact of clustering on EoS

Typel, PRC89(2014) 064321,PRC 81(2010) 015803 ✓ Generalized relativistic density functional (gRDF) predictions: α clusters in low-ρ environments like the surface of heavy nuclei:

Quasi-free $(p,p\alpha)$ at RCNP

Adachi, PRC97(08)014601

ΔE ~20 keV

Quasi-free $(p,p\alpha)$ at RCNP

- ✓ Beam: 392 MeV proton, ~100 pnA (halo-free)
 ✓ Targets: ^{112,116,120,124}Sn (~40 mg/cm²)
- ✓ Detectors: Grand Riden (60°) + LAS (45.3°)

Sideview of the trigger scintillators.

Main challenges: * Small σ (~ pb). * Detection of low-energy alpha particles (~ 50MeV).

Development of $(p,p\alpha)$ setup (2015~2018)

Project started in 2015

Proof-of-principle: ⁷Li(*p*,*pα*)

✓ Measurement with $^{7}\text{Li}(p,p\alpha)t$

 $(p,p\alpha)$ with ^{112,116,120,124}Sn

¹¹²Sn($p,p\alpha$) : Missing-mass spectrum

Missing-mass in $(p,p\alpha)$: $M_X = E_{p0} - T_p - E_{\alpha}$

¹¹²Sn($p,p\alpha$) : Missing-mass spectrum

Missing-mass in $(p,p\alpha)$: $M_X = E_{p0} - T_p - E_{\alpha}$

✓ "Accidental coincidence" subtracted.

 \checkmark Fitted using a gaussian peak and the simulated continuum background

Result-1: α separation energy spectrum

✓ E_{sep} Peak clearly observed for each Sn isotope ^{112,116,120,124}Sn

Result-2: systematics of α-clustering

- Reaction Theory: Distorted-Wave Eikonal Approximation
 - \checkmark a-cluster distribution from gRDF
 - \checkmark Distortion effect considered
 - ✓ Realistic experimental conditions.

PREX-II: Where we are now?

PREX collaboration PRL126,172502 (2021)

Reed,et al. arXiv:2101.03193v3

Estee et al. (SπRIT), PRL126,162701 (2021) SπRIT: 42 < L <117 MeV

Nd/Sm(p, $p\alpha$)@RCNP: from α -clustering to α decay

¹²⁻²⁰C($p,p\alpha$) at RIBF (Yang *et al.*, approved)

✓ Rich cluster structures in C isotopes
✓ Measurement at RIBF in inverse kinematics

 α -cluster formation in (extremely) neutron-rich systems.

^{10,11,12}C(α , 2 α) at RIBLL1(Yang, Ye, Ong *et al.*)

Acknowledgement to collaborators

Careers -

REPORT

Contents -

Science

Formation of a clusters in dilute neutron-rich matter

News -

Junki Tanaka^{1,2,3,*}, D Zaihong Yang^{3,4,*}, D Stefan Typel^{1,2}, Satoshi Adachi⁴, Shiwei Bai⁵, Patrik van Beek¹, Didier Beaumel⁶,
 Yuki Fujikawa⁷, D Jiaxing Han⁵, Sebastian Heil¹, Siwei Huang⁵, Azusa Inoue⁴, Ying Jiang⁵, Marco Knösel¹, Nobuyuki Kobayashi⁴, Yuki Kubota³, Wei Liu⁵, D Jianling Lou⁵, P Yukie Maeda⁸, P Yohei Matsuda⁹, Kenjiro Miki¹⁰, Shoken Nakamura⁴, Kazuyuki Ogata^{4,11}, Valerii Panin³, Heiko Scheit¹, Fabia Schindler¹, Philipp Schrock¹², D Dmytro Symochko¹, Atsushi Tamii⁴, Tomohiro Uesaka³, Vadim Wagner¹, Kazuki Yoshida¹³, D Juzo Zenihiro^{3,7}, D Thomas Aumann^{1,2,14}

Journals -

Thanks for your attention!