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Motivation: How to represent HEP data for machine learning?
Graph neural networks

Example applications in HEP
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hands-on tutorial: jet tagging with GNNs
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INTRODUCTION

Jet tagging: identifying the hard scattering particle f )
—JQ —Je

that initiates the jet

heavy flavor tagging (bottom/charm)

heavy resonance tagging (top/W/Z/Higgs) Light Flavor (u,d,s,9) Jet
quark/gluon discrimination
exotic jet tagging (displaced, 4-prong,...) %

powerful tools for many new physics searches and Image credit

standard model measurements
One of the frontiers of ML for HEP

playground for novel ML approaches / algorithms

t—=UJg—qQqq

rich structure / information in a jet h/W/Z~aq

How far are we from the performance limit?

significant performance improvement in real

experiments p——

Q/g

but also new perspectives and deeper insights into
QCD / jet physics

Image credit
4


http://www.hep.ph.ic.ac.uk/seminars/slides/2018/181115_Chisholm_ATLAS_Hcc.pdf
https://link.springer.com/article/10.1140/epjc/s10052-020-7608-4

BOOSTED JET TAGGING

At high pT,the decay products from heavy particles (Higgs/W/Z/top) become collimated
and can be contained in a single large-R jet
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Large-R jets from resonance (Higgs/W/Z/top) decays exhibit different characteristics
that can be used to separate them from jets initiated by QCD radiations

different radiation patterns (“substructure”)
3-prong (top), 2-prong (W/Z/H) vs 1-prong (gluon/light quark jet)
different flavor content: existence of one or more b-/c-quarks

simultaneously exploiting both substructure and flavor to maximize the performance
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lepton
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JET AS A POINT CLOUD
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Point cloud

From Wikipedia, the free encyclopedia

A point cloud is a set of data points in space.
Point clouds are generally produced by 3D
scanners, which measure a large number of points
on the external surfaces of objects around them.

Jet (Particle cloud)

From Wikipedia, the free encyclopedia

A jet (particle cloud) is a set of particles in space.
Particle clouds are generally created by clustering
a large number of particles measured by particle
detectors, e.g.,?ATLAS and .

EXPERIMENT
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ARCHITECTURE: PARTICLENET

ParticleNet [Phys.Rev.D 0] (2020) 5, 056019]

customized graph neural network architecture for jet tagging with the point cloud approach, based on
Dynamic Graph CNN [Y.Wang et al., arXiv:1801.07829] —

explicitly respects the permutation symmetry of the point cloud = N
Key building block: EdgeConv

treating a point cloud as a graph: each point is a vertex

iiiii

for each point, a local patch is defined by finding its k-nearest neighbors

iiiii

EdgeConv block

designing a permutation-invariant ‘convolution” function

define “edge feature” for each center-neighbor pair: ej; = he(x;, x;)

same he for all neighbor points,and all center points, for symmetry

|
aggregate the edge features in a symmetric way: x;' = mean e;

EdgeConv Block

EdgeConv can be stacked to form a deep network

—

EdgeConv Block

——

EdgeConv Block

learning both local and global structures, in a hierarchical way
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019

PERFORMANCE OF PARTICLENET

Performance on the public top tagging benchmark dataset

ParticleNet achieves the highest performance among all algorithms

G. Kasieczka et al.
[SciPost Phys. 7 (2019) 014]

AUC | Acc 1/ep (es = 0.3) #Param
single mean median
CNN [16] 0.981 | 0.930 914+14 995415 975118 610k
ResNeXt [30] 0.984 | 0.936 | 1122447 1270428 1286431 1.46M
TopoDNN [18] 0.972 | 0.916 295+5 382+ 5 378 + 8 59k
Architecture Multi-body N-subjettiness 6 [24] | 0.979 | 0.922 792418  T798+12 808+13 57k
used by DeepAK8  Multi-body N-subjettiness 8 [24] | 0.981 | 0.929 867+15  918+20 926118 58k
. TreeNiN [43] 0.982 | 0.933 | 1025411 1202423 1188+24 34k
P-CNN 0.980 | 0.930 732424  845+13 834414 348k
ParticleNet [47] (Preliminary ver.) | 0.985 | 0.938 | 1208446 1412445 1393+41 | 498k
LBN [19] 0.981 | 0.931 836+17 859467 966120 705k
LoLa [22] 0.980 | 0.929 722417  T768*11 765411 127k
Energy Flow Polynomials [21] 0.980 | 0.932 384 1k
Ensemble of Energy Flow Network [23] 0.979 | 0.927 63331 729413 726411 82k
all taggers \ Particle Flow Network [23] 0.982 | 0.932 89118 1063+21 1052429 82k
GoaT 0.985 | 0.939 | 13684140 15494208 35k
ParticleNet-Lite 0.984 0.937 1262+49 26k
ParticleNet 0.98 0940 1615x93 366k



https://scipost.org/10.21468/SciPostPhys.7.1.014
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VVEAVER

https://github.com/hqucms/weaver

a streamlined yet flexible machine learning R&D framework for HEP

data loading: both in-memory and out-of-memory (scalable to O(100M) entries/TB level)

supports common HEP data formats: ROOT, HDF5, awkward array
Input preprocessing: transformation/standardization, reweighting/sampling, padding,

shuffling, etc.
training: built-in training/validation loop for classification and regression

monitoring/visualization via TensorBoard

deployment: exporting PyTorch model to ONNX
optimized inference w/ ONNXRuntime on CPUs/GPUs in Python/C/C++/etc.

To train a neural network with Weaver:
a YAML data configuration file describing how to process the input data.

a python model configuration file providing the neural network module and the loss

function


https://github.com/hqucms/weaver

TOP TAGGING DATASET

https://zenodo.org/record/2603256
hadronic tops for signal, gcd dijets background, both generated with Pythia8

no MPI/pile-up included
Delphes ATLAS detector card

clustering of particle-flow entries (produced by Delphes E-flow) into anti-kr 0.8 jets in the
pt range [550,650] GeV

all top jets are matched to a parton-level top within AR = 0.8, and to all top decay partons within
0.8

the leading 200 jet constituent four-momenta are stored, with zero-padding for jets with
fewer than 200

constituents are sorted by pr, with the highest pr one first

1.2M / 400k / 400k for train / val / testing


https://zenodo.org/record/2603256

HANDS-ON TIME!

To make it easier to copy the commands:

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889

Setup Weaver and weaver-benchmark

# prerequisite: install the dependent packages
# https://github.com/hqucms/weaver#set—-up—-your—environmen

git clone https://github.com/hqucms/weaver.git
cd weaver

git pull # update to the latest status
git clone https://github.com/hqucms/weaver-benchmark.git


https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889

HANDS-ON TIME!

To make it easier to copy the commands:

https://gist.github.com/hgqucms/3a9d9e9b53bf21253831108e8dbf8889

Download and convert the dataset

# 1n the weaver/ directory

mkdir top-dataset

cd top—dataset

# download the top-tagging dataset

curl -0 'https://zenodo.org/record/2603256/files/train.h5"
curl -0 'https://zenodo.org/record/2603256/files/val.h5’
curl -0 'https://zenodo.org/record/2603256/files/test.h5"’
cd ..

# back in the weaver/ directory

# convert the h5 files to awkward arrays

python weaver-benchmark/utils/convert_top_datasets.py -1 top-dataset/ -o
top-dataset/converted


https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889

HANDS-ON TIME!

To make it easier to copy the commands:

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889

Training the ParticleNet model

# 1in the weaver/ directory
python train.py \
——data-train top—-dataset/converted/train_file_0.awkd \
——data-val top-dataset/converted/val_file_0.awkd \
——data-test top-dataset/converted/test_file_0.awkd \
——data—-config weaver—-benchmark/data/top/pf_points_features.yaml \
——network—-config weaver—benchmark/networks/top/particlenet_pf.py \
——model-prefix outputs/{auto}/net \
——predict-output pred.root \
——num-workers 1 ——fetch-step 1 ——data-fraction 1 \
——gpus 0 ——batch-size 128 —-num-epochs 20 \
——start-1lr 5e-3 ——optimizer ranger \
——1log logs/{auto}.log ——tensorboard _particle_net


https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889

HANDS-ON TIME!

To make it easier to copy the commands:

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889

Training the Deep Set / Particle Flow Network

# 1in the weaver/ directory

python train.py \

——data-train top—-dataset/converted/train_file_0.awkd \
——data-val top-dataset/converted/val_file_0.awkd \
——data-test top-dataset/converted/test_file_0.awkd \
——data—-config weaver—-benchmark/data/top/pf_features_mask.yaml \
——network—config weaver—-benchmark/networks/top/pfn_pf.py \
——model-prefix outputs/{auto}/net \

——predict-output pred.root \

——num-workers 1 ——fetch-step 1 ——data-fraction 1 \

——qgpus 1 ——batch-size 128 —-num-epochs 20 \

——startalr 5e-3 ——optimizer ranger \

——1log logs/{auto}.log ——tensorboard _pfn

——gpus '' # to run on CPU


https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889

HANDS-ON TIME!

To make it easier to copy the commands:

https://gist.github.com/hgqucms/3a9d9e9b53bf21253831108e8dbf8889

Monitor training progress with TensorBoard

# 1in the weaver/ directory
tensorboard ——logdir=runs

# open tensorboard in the web browser
# http://localhost:6006


https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889

HANDS-ON TIME!

To make it easier to copy the commands:

https://gist.github.com/hgqucms/3a9d9e9b53bf21253831108e8dbf8889

Evaluate the performance

# 1in the weaver/ directory
jupyter notebook

# open jupyter in the web browser
# http://localhost:8888



https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
http://localhost:8888
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JETS IN THE LUND PLANE

Jets in the Lund plane
each emission (splitting) is mapped to a point in the 2D (angle, transverse momentum) plane

further emissions (of the secondary particles) are represented in additional leaf planes
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perturbation theory / Monte Carlo parton shower generators

Relative
Uncertainty
o

can also be measured experimentally [ATLAS, PRL 124, 222002 (2020)]

In(R/AR)
107 102
19

AR = AR(emission, core)



https://link.aps.org/doi/10.1103/PhysRevLett.124.222002

CONSTRUCTING THE LUND PLANE

The Lund plane of a jet can be constructed in the following way:
(1) recluster a jet j with the Cambridge/Aachen algorithm.

(2) undo the last clustering step, defining two subjets ja, jb ordered in pr.

(3) a set of kinematic variables (denoted as 97(")) can be defined for the current splitting:

AZ = (ya — yb)2 + (¢a — ¢b)2’ kt = ptbAab7 m2 = (pa +pb)27
1 Y= Ya
be—Qba’

Z

Dtb /‘&:ZA,

; = 1 = tan
Dta T DPtb
(4) repeat (2) and (3) on ja, /b until j, jb become single particles.

Equivalently, the full Lund plane can also be represented as a binary Lund tree, with a tuple of
variables 7 for each node i

In kt

71

T(3)

20



LUNDNET

F. Dreyer and HQ
[JHEP 03 (2021) 052]

The Lund plane/Lund tree essentially encodes the full radiation patterns of a jet

a natural input for ML algorithms on jets [cf. F. Dreyer, G. Salam and G. Soyez, JHEP 12 (2018) 064]

LundNet: a graph neural network on the Lund tree

overall architecture similar to ParticleNet

each node exchanges information with one parent
and two child nodes, using EdgeConv

global pooling of all nodes at the end to get
feature maps for final classification

but unlike ParticleNet:
no expensive k-nearest neighbor finding needed
graph structure determined by the Lund tree
only 3 (instead of 16) neighbors in EdgeConv

significantly lower computational cost
Two variants of LundNet studied

LundNet-5: using all five Lund variables,

(J0)
™9

Linear (C4) + BN + ReLU
\4
Linear (Co) + BN + ReLU

Aggregation

(hl kta ll’lA, IHZ, lnm, ¢)

LundNet-3: using only three Lund variables, (Ink¢,In A, In z)

Lund tree Lund coordinates
<

N EdgeConv Block

Y
EdgeConv Block

»
>

Y
EdgeConv Block

»
>

Y
EdgeConv Block

»
>

Y
EdgeConv Block

S/
Y
> EdgeConv Block
Concatenate ]

0
45—4

Linear (384) + BN + ReLU
Y
[ Global Average Pooling J
\ 2

Fully Connected
256, RelLU, Dropout = 0.1

Y

Fully Connected
2

A4

Softmax

(©)
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https://doi.org/10.1007/JHEP12(2018)064
https://inspirehep.net/authors/1332133
https://doi.org/10.1007/JHEP03(2021)052

PERFORMANCE OF LUNDNET

1/eqep

F. Dreyer and HQ
[JHEP 03 (2021) 052]

Significantly improved performance for top tagging compared to ParticleNet

similar performance for W tagging and g/g discrimination

Almost an order of magnitude speed-up in training/inference time compared to

ParticleNet

QCD rejection v. W tagging efficiency

QCD rejection v. Top tagging efficiency

1 =—— RecNN (LCBC '17)

Gluon rejection v. Quark tagging efficiency

Pythia 8.223 simulation
signal: pp - g4, background: pp- gg
anti-k; R =0.4 jets, p: > 500:GeV

Quark vs gluon

LundNet-5
LundNet-3

Lund+LSTM (DSS '18)
ParticleNet (QG:'19)

00 01 02 03 04 05 06 07 08 09 1.0

Pythia 8.223 simulation Pythia 8.223 simulation
signal: pp - WW, background: pp - jj slgnal: pp - tt, background: pp - jj
10000 - anti-ky R-=1 jets, p;> 500 :GeV 10000 anti-k¢ R =1 jets, py>500:GeV
W tagging
1000 - 1000 - 100 7
8 E
g 5
100 5 ™ 100 - -
Top tagging 10 |
—— LundNet-5 —— LundNet-5 ]
10 3 ——"LundNet-3 10 o LundNet-3
1 —— RecNN (LCBC '17) { — RecNN (LCBC '17)
—— Lund+LSTM (DSS '18) { =— Lund+LSTM (DSS '18)
—— ParticleNet (QG '19) —— ParticleNet (QG '19)
1 LA DL BN BN BN DL DL B BN UL 1 Trrrfrrrrfrrrrfrrrrfrrrrfrrrrfrrrrfrrrr|frrrr|rroror1 1
00 01 02 03 04 05 06 07 08 09 1. 00 01 02 03 04 05 06 0.7 08 09 1.0
Ew ETop
Number of Training time Inference time
parameters [ms/sample/epoch]  [ms/sample]
LundNet 395k 0.472 0.117
ParticleNet 369k 3.488 1.036
Lund+LSTM 67k 0.424 0.131

EQuark

DGL + PyTorch
Nvidia GTX [080Ti
batch size = 256

22


https://inspirehep.net/authors/1332133
https://doi.org/10.1007/JHEP03(2021)052

ROBUSTNESS OF LUNDNET

Moreover, LundNet provides a systematic way to control the robustness
of the tagger

robustness assessed by applying the model trained on hadron-level
samples to parton-level samples and compare the difference

the non-perturbative region can be effectively rejected by applying a k:
cut on the Lund plane, therefore improving the robustness of the tagger
against non-perturbative effects

LundNet-3 shows much higher resilience than LundNet-5

QCD rejection v. W tagging efficiency

Pythia 8.223 simulation
signal: pp » WW, background: pp - jj performance v. resilience
10000 -: anti-kt R = 1 jets’ pt> 2 Tev LI ‘ T T T T T T LI | T T T T T T T T
LundNet-3 : LundNet-3
LundNet-5 —e—
20 I RecNN (LCBC '17) i
1000 O - Lund+LSTM (DSS '18) —a—
O ParticleNet (QG'19) 4
] c
S S . . .
= R E Pythia 8.223 simulation
100 4 - signal: pp->WW, background: pp->jj
(0 10 _ - anti kt R=1 jets, p>2 TeV, gy=0.7 _
-
1 — Inke>1 L
10 4 = In k>0 'Q-
] — Inke> -1 L.
] Inke> —2 8
] no k; cut -|q_)) 5r
----- (applied to parton-level)
(a @]
In k; cuts: @, -2,-1.5,-1,-0.5,0,0.5, 1, 1.5, 2
2 1 1 1 1 1 | 1 1 1 1 1 1 1 1 |
1 10 100

F. Dreyer and HQ
[JHEP 03 (2021) 052]

\
L4

Primary Lund-plane regions

In(k¢/GeV)

b, . | A

% non-pert. (small kt)‘\
«\ \
In(1/A)

€W
Performance: "_/eqcp

Resilience:

A, Adop)
Sl WY
W QCD

where Ae = € — € and () = 1/2(e+¢€)

€ : hadron-level

¢’ : parton-level

Better resilience to non-pert. effects —» 23


https://inspirehep.net/authors/1332133
https://doi.org/10.1007/JHEP03(2021)052
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PARTICLENEXT: PAIRWISE FEATURES

ParticleNeXt: next-generation of ParticleNet, for better performance

The first enhancement is the addition of (explicit) pairwise features on the edges

ParticleNet ParticleNeXt

o o<

'Qij — MLP(Xi, X]) 'Qij — MLP(Xl', Xj, Xl:]')

Examples of pairwise features:
Aizj =(y;— yj)2 + (¢, — ij)z, m* = (p; +PJ-)2,
min(pr,;, pr;)

Pri+ D1
(use the logarithm to improve stability of the training)

kr = min(py;, pr) By 2

25



PARTICLENEXT: ATTENTIVE POOLING

Use attention-based pooling to increase the expressive power

for both the local neighborhood pooling, and the final global pooling

ParticleNet ParticleNe Xt
\ ®;j \ ;i
— ™
2] = meamj(eij) aH‘“zj = MLP( sz)

Wi = sof{'h«\axj(a/'fmlj)

2; = 2wy 2;j)

26



PARTICLENEXT: MULTI-SCALE AGGREGATION

Introduce multi-scale aggregation to better capture both short- and long-range correlations

perform local aggregation for the 4, 8,16 and 32 nearest neighbors (with different attentive
pooling) and combine the 4 aggregated representations with a MLP

on the other hand: remove dynamic kNN (based on learned features), i.e.,use only kNN in n—¢
space, to reduce computational cost

in this case the kNN needs to be performed only once, and then the graph connectivity is fixed

ParticleNet ParticleNeXt

N " "

concat

X, =2 x| = M(_p(ziconcm‘)

27



DATASET

A new jet tagging dataset was generated for the development of ParticleNeXt

all events are generated with MadGraph5 aMC@NLO v3.1.1 at LO and interfaced with Pythia
v8.245 for parton shower (w/ the default tune and MPI enabled)

fast detector simulation w/ Delphes v3.5.0, using the CMS card

tracking resolution parametrization based on the CMS Runl performance [1405.6569]
jets clustered from the Delphes e-flow objects using the anti-kt algorithm w/ R=0.8
only consider jets w/ 500 < pr 1000 GeV,and In| < 2

input features for each jet constituent particle: 4-momenta, PID, impact parameters and errors
top-tagging benchmark:

Top quark jets: pp — tf (t > bW, W — qq’)
truth matching criteria: AR(jet, q) < 0.8 for all three quarks from hadronic top decay

QCD jets:pp — Z(—vv)+j(j = u,d,s,c,b, g)
Higgs-tagging benchmark:
Higgs boson jets: pp — hh (h — bb)
truth matching criteria: AR(jet, b) < 0.8 for both quarks from the Higgs decay

QCD jets: pp — Z(—vr)+j(j =u,d,s,c,b, g)
28



PERFORMANCE: TOP T AGGING

—
o
o
L

© — ParticleNet (AUC - 0.9879) | Training/validation/test splitting:

ParticleNeXt (AUC = 0.9982) 7
1.6M /0.4M / 2M

Training repeated for 3 times starting
from randomly initialized weights

Background efficiency
2
I
|

the median-accuracy training is

1072 reported, and the standard deviation of
the 3 trainings is quoted as the
uncertainty

10°F Significant improvement in background

* rejection w/ ParticleNeXt
~50% higher BKG rejection (@¢€g = 70%)
10—4 A
0.0 0.2 0.4 0.6 0.8 1.0 : ,
Signal efficiency computational cost still under control
Accuracy AUC 1/ep at Parameters Inference time Training time
es =T0% &5 ="50% (CPU)  (GPU) (GPU)
ParticleNet 0.980 0.9979  13424+4 6173 £425 366k 23ms  0.30 ms 1.0 ms
ParticleNeXt  0.981  0.9982 2008475 8621+ 309 560k 30 ms  0.54 ms 1.7 ms

29



ABLATION STUDY

—
o
o
T

1 1 1 | 1 1 1 | 1 1 1 1 1 1

B —— ParticleNet (AUC = 0.9979)

i ParticleNeXt (AUC = 0.9982)

- --- ParticleNeXt (w/o pairwise features) (AUC = 0.9980)

- --- ParticleNeXt (w/o attentive pooling) (AUC = 0.9980)

--- ParticleNeXt (w/o multi-scale aggregation) (AUC = 0.9981)

Background efficiency
2
T

Investigated the effects of the new
features of ParticleNeXt by removing
each of them and repeat the training

all the new features contribute

~20% loss in BKG rejection if any of

1072 the three is removed
1073 =
10—4 I I I | I I I | p I | I I I | I I I
0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency
Accuracy AUC 1/ep at e = 70% 1/ep at 5 = 50%
ParticleNet 0.980 0.9979 1342 +4 6173 £ 425
ParticleNeXt 0.981 0.9982 2008 £ 75 8621 + 309
ParticleNeXt (w/o pairwise features) 0.980 0.9980 1695 £+ 70 7353 + 193
ParticleNeXt (w/o attentive pooling) 0.980 0.9981 1689 £ 72 7463 £+ 696
ParticleNeXt (w/o multi-scale aggregation) 0.981 0.9980 1664 £ 57 7407 4+ 193

30



MODEL ENSEMBLING

> 100 - 1 1 1 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 ] o o
o | — ParticleNet (AUC = 0.9979) : Model ensembling still helps, even for
D i ParticleNet (average ensemble) (AUC = 0.9980) ] .
o | — ParticleNeXt (AUC = 0.9982) : the new ParticleNeXt
q"'q:) - —-— ParticleNeXt (average ensemble) (AUC = 0.9984)
2401k - ensembling method: average the DNN
> - .
S outputs from the 3 independent
x | . .
S i trainings
m .
1021 ~30% improvement for ParticleNeXt
i with the 3-model ensemble
i ~15% for ParticleNet
1073 =
10—4 ! ] ] | ] ] ] | ] | ] ] ]
0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency
Accuracy AUC 1/ep at e = 70% 1/ep at €5 = 50%
ParticleNet 0.930 0.9979 1342 £ 4 6173 + 425
ParticleNeXt 0.981 0.9982 2008 + 75 8621 + 309
ParticleNet (average ensemble) 0.980 0.9980 1558 6897
ParticleNeXt (average ensemble) 0.982 0.9984 2558 11494

31



EXTENDED [TRAINING DATASET

—
o
o
L

— ParticleNet (AUC = 0.9979) ; Training on a larger dataset

ParticleNeXt (AUC = 0.9982)
------ ParticleNeXt (extended dataset) (AUC = 0.9986)

training/validation/test splitting:
1IOM/ 1M/ 2M

l.e., 5x more jets for training compared
to the baseline dataset

Background efficiency
2
I
|

1072}
Substantial gain in performance
~70% higher BKG rejection (@¢eg = 70%)
10_3? . .
: Question: Can we encode more physics
into the network to make the training
I e S more data-efficient?
0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency
Accuracy AUC 1/ep at e = 70% 1/ep at 5 = 50%
ParticleNet 0.980 0.9979 1342 +4 6173 + 425
ParticleNeXt 0.981 0.9982 2008 + 75 8621 + 309
ParticleNeXt (extended dataset) 0.983 0.9986 3378 15873
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PERFORMANCE ON PUBLIC BENCHMARKS

AUC | Acc 1/ep (es = 0.3) #Param
single mean median
CNN [16] 0.981 | 0.930 | 914+14 995415 975418 | 610k G. Kasieczka et al.
ResNeXt [30] 0.984 | 0.936 | 1122447 1270428 1286431 | 1.46M [1902.09914]
TopoDNN [18] 0.972 | 0.916 29545 382+ 5 378 £ 8 59k
Multi-body N-subjettiness 6 [24] | 0.979 | 0.922 | 792418  798+12  808+13 57k
Multi-body N-subjettiness 8 [24] | 0.981 | 0.929 | 867415 918420 926418 58k
TreeNiN [43] 0.982 | 0.933 | 1025411 1202423  1188+24 34k
P-CNN 0.080 [ 0.930 | 732424 845413  834+14 348k
ParticleNet [47] 0.985 | 0.938 | 1298+46 1412445 1393+41 498k
LBN [19] 0.981 | 0.931 | 836+17 859467 96620 705k
LoLa [22] 0.980 | 0.929 | 722417 768+11  765+11 127k
Energy Flow Polynomials [21] 0.980 | 0.932 384 1k
Energy Flow Network [23] 0.979 | 0.927 | 633+£31 729413  726+11 82k
Particle Flow Network [23] 0.982 | 0.932 | 891+18 1063+21 1052429 82k
GoaT | 0.985 | 0.939 | 13684140 15494208 | 35k
ParticleNet-Lite 0.984 0.937 1262+49 26k
ParticleNet 0986 0940 1615493 366k
ParticleNeXt 0987 0.942 1923+48 560k .
Quark/gluon tagging
Acc AUC 1/ep (es=0.5) 1/ep (es =0.3)
ResNeXt-50 [16] 0.821  0.9060 30.9 80.8
P-CNN [16] 0.827  0.9002 34.7 91.0
PFN [32] - 0.9005 34.7+0.4 -
ParticleNet-Lite [16] 0.835  0.9079 37.1 94.5
ParticleNet [16] 0.840  0.9116 39.8+0.2 98.6+1.3
ABCNet [17] 0.840  0.9126 42.60.4 118.4+1.5
SPCT 0.824  0.899 34.4£0.4 100.3+1.5
S : PCT 0.841 0.9140  43.3+0.7 117.5+1.4
V. Mikuni, F. Canelli :
[2102.05073] ParticleNeXt 0841 09129 4140.1 105+ 1.0
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MASS (DE)CORRELATION

One feature of these taggers is the correlation with the jet mass

jet mass shape of the background becomes similar to that of the signal after selection with
the tagger: “Mass sculpting”

not necessarily a problem, but a mass-independent tagger is often more desirable:
if using the mass variable to separate signal and background

tagging signal jets with an unknown mass

Background di-jet sample

(13 TeV)
- ] L
<E' 0.25[ CMS -e- Inclusive N
- Simulation Preliminary - ¢ =5% -
| Dijet sample = — 19 i ’ .
0.2] H--bb tagging: DeepAKS eg=1% : How to reduce the tagger’s correlation
- 500<p!” <1000 GeV, "™ <2.4 ¢, =0.5% i with jet mass?
0.15F - . More broadly: How to develop a classifier
0 =cos | CMSDP-2020/002 | - that. is decorrelated with one or more
0.1 2 o - auxiliary variables?
| O PR i
et -8 :
005_ = _O__O_-O-_O__O__._ o
i o Gf%{}{}{} :
1 . o e ]
O-._I_._l R S R R T R ;%#%
50 100 150 200 250 300
Mg [GeV]
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https://cds.cern.ch/record/2707946/

METHOD |: TRANSFORM T AGGER RESPONSE

A tagger is mass-correlated because its response changes with the jet mass
a mass-independent tagger has a uniform response w.r.t the jet mass

Mass decorrelation method 1: the “brute-force” way

Transforming the tagger response such that
it no longer changes with the jet mass

mass-correlated mass-independent

Tagger
response

Transformation

Tagger
response

Jet Mass Tof Mass
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DESIGNING DECORRELATED TAGGER (DDT)

Designing Decorrelated Tagger (DDT) pHep 1605 (2016) 156]

DDT map: N2(3%)
transforms the tagger response as a function of the jet . CMS Simuiaton
= 2/p72): % b Mutietevents 5
prand p = In(msp®/pr’): %1;22_ JHtEJ|; 1801 (2018) 097 Zzz x
Tagger™T(p, 7-) = Tagger(p, vr) — Taggert®(p, »-) X

E 0.22
700

where Tagger*%)(p, v-) is the threshold for a background oo

efficiency of x%, derived from simulated background b 016
(QCD) events 300F 014
2007 -6 -5 -4 8 -2
after the transformation, the selection TaggerPdT>0 (or P = nimyPy)
<0) yields a constant background efficiency of x% across . (13 TeV)
S5 T T T
the msp and the pr range < [CMS N nchstv (45} 3
10 _ Slmulatlon Preliminary :gzgms-mo _
N 2 D DT ? \II)VI-:)ec:ssoETa):ging, &= 5: % Lzém ]
1 ' h | 2 =
N2: generalized energy correlation functions pHep 1612 (2016
153) for 2-prong (W/Z/H) tagging 10‘( - E
N,DDT: mass-decorrelated version of N; using the DDT 1ol LL S
method o AT OOV IO

50 100 150 200 250 300
Mg, [GeV]
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http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-18-002/index.html

METHOD 2: MODIFY TRAINING PROCEDURE

Mass decorrelation method 2: the “active” way

Modifying the training procedure/target
to prevent mass correlation

L:Lce L=LC6+LN\D

Cross-Entropy loss Cross-Entropy loss + Mass-decorrelation loss

Broadly speaking, this method involves choosing a differentiable metric to
quantify the level of mass correlation and then minimize both the
classification loss and this mass correlation metric

mass correlation can be measured with a number of metrics
KL divergence of the pass / fail mass shapes (e.g., CMS DeepDoubleB/C [cMs-DP-2018-046])
mutual information
a neural network — the GAN approach (e.g., CMS DeepAK8-MD)
distance correlation [Phys. Rev. Lett. 125,122001]
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DEEPAKS8-MD

DeepAK8-MD: mass-decorrelation using adversarial training [1611.0104]
added a mass prediction network to predict the jet mass from the learned features
higher mass prediction accuracy -> stronger correlation w/ the jet mass
accuracy of the mass prediction included in the loss function as a penalty
minimizing the joint loss -> improving classification accuracy while preventing mass correlation

in addition: signal/background samples reweighted to a ~flat (pt. msp) distribution to aid the
training

The adversarial training approach works reasonably well

significantly reduced mass sculpting while still strong performance

however the training process is quite challenging and requires a lot of fine-tuning...

-102:.|....|....|........(T‘?’T?YZ
Nominal DeepAK8 ?ﬁ E CMS netusve (K8
- Simulation Preliminary DeepAK8
Feature extractor Classifier 10 pijet sample 77 DespAKBMD 7

- Higgs boson tagging, & =50 % — BEST

: ; ) [ 600 < p™ <1000 GeV, h/*!l < 2.4 — double-b i
Classification Joint loss 1L T |
OUtPUt = LC - >\LMP E

. - DeepAK8-MD |
Mass predictor
Mass Loss 102

prediction Lmp

| 1 1 1 1 1 | I I
back propagation 50 100

150 200 250 300



http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-18-002/index.html

METHOD 3: REWEIGHT TRAINING SAMPLES

For ML taggers, mass correlation arises because signal (t/W/Z/H) and
background (QCD) jets have very different mass distributions

maximizing signal/background separation inevitably causes the tagger responses to
depend on the jet mass

if signal and background jets have similar mass distributions, then mass sculpting
simply cannot happen

Mass decorrelation method 3: the “passive” way

Reweighting the training samples such that signal and
background jets have the same mass distributions

. D
= Background <C Background
<c ' .
Signal ' Signal
Jet mass Jet mass
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METHOD 4: GENERATE SPECIAL TRAINING SAMPLES

The reweighting method works well for binary classification, but not sufficient
for multi-class taggers

multiple signals, so cannot reweight the background mass shape to the signals
can possibly reweight everything to a flat / background-like mass distribution

but very low stats for signal away from the mass peak -> poor performance

Instead of reweighting, can generate dedicated samples to populate the full
mass range

Mass decorrelation method 4: the “actively-passive” way

Generating a special training sample in which the
signal particle has a flat mass distribution

D
Background < Background
Stgnal Signal

AU.

Jef mass Jef mass 43



PARTICLENET-MD

ParticleNet-MD

a generic mass-decorrelated 2-prong (W /Z/H/..) tagger

w/ also flavour information: i.e., X->bb, X->cc and X->qq

trained using a dedicated signal sample

hadronic decays of a spin-0 particle X: X — bb,X — ¢¢,X — qg

flat mass spectrum: mx € [15, 250] GeV

signal and background further reweighted to a flat [pt, msp] distribution

using the ParticleNet graph neural network architecture

>
<

Very good mass decorrelation with this approach

also very straightforward to train

no need to modify training procedure / loss

—~

0.2
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014
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[ H—bb tagging: ParticleNet-MD
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DEEPAKS8 IN CMS

Advanced deep learning-based algorithm for boosted object tagging, using AK8 (anti-kt R=0.8) jets

multi-class classifier for top quark and W, Z, Higgs boson tagging

sub-classes based on decay modes (e.g.,H—=bb,H—cc, H=VV*—>4q)

output scores can be aggregated/transformed for different tasks -> highly versatile tagger

directly uses jet constituents (particle-flow candidates / secondary vertices)

1D convolutional neural network (CNN) based on the ResNet [arxiv: 1512.03385] architecture

significant performance improvement

Up to 100 PF candidates®

Sorted in descending pt order

Uses basic kinematic variables,
Puppi weights, and track
properties (quality, covariance,
t, etc.)

Up to 7 SVs( (inside jet cone)
Sorted in descending Sip2p order

Uses SV kinematics and properties
(quality, displacement, etc.)

Output

Category

Label

Architecture
. Particles
&

particles, ordered by pr

| P

>
<SVs, ordered by Sip2p

features

Fully

connected Output

(I layer)

Higgs

Top

QCD

H (bb)
H (cc)

H (VW*—qqqq)
top (bcq)
top (bqq)

top (bc)
top (ba)
W (ca)
W (qg)
Z (bb)

Z (cc)
Z(qq)
QCD (bb)
QCD (cc)
QCD (b)
QCD (c)
QCD (others)

Background efficiency

—
o

107"

1072

1078

1074

Top quark tagging

(13 TeV)
'cms
- Simulation i
E Top quark vs. QCD multijet 3
- 1000 < p2™" < 1500 GeV, In™"I < 2.4 .
- 105 <mis’ <210 GeV .
— 110 <mdy'° <210 GeV -
E 140 < myyg < 220 GeV E
i — DeepAKS8 ]
--- DeepAK8-MD
3 ImageTop 3
- -=ImageTop-MD ]
- —Mgp + Tgp .
B “eMgp + Ty +b |
= —BEST 3
- —HOTVR .
i —N,-BDT (CA15)]
. PR R NN T SR SRS NN SR N S SN SR '
0 0.2 0.4 0.6 0.8 1

Signal efficiency

JINST 15 (2020) P06005
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http://dx.doi.org/10.1088/1748-0221/15/06/P06005

PE RFO RMAN C E I N DATA CMS [JINST 15 (2020) P06005]

Single- sample Dijet sample Single-y sample
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TAGGER CALIBRATION IN DATA

Crucial to calibrate these taggers in real data for them to be used in analyses

Top/W tagging efficiency JINST 15 (2020) P06005

35.9 b7 (13 TeV) 35.9 b7 (13 TeV)

cC 220 :‘ T UL L L DL I LA BN B cC FriTTmrr T UL L I I I L IR B
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measured using the single-py sample enriched in semi-leptonic ttbar events

fit jet mass templates in the “pass” and “fail” categories simultaneously to extract efficiency in data

simulation-to-data scale factors SF = eff(data) / eff(MC) derived to correct the simulation

jet mass scale and resolution scale factors can also be extracted
H->bb/H->cc tagging efficiency: measured via proxy jets, gluon->bb/cc, using a di-jet sample

Mistag rates of background jet typically derived directly from analysis-specific control regions


http://dx.doi.org/10.1088/1748-0221/15/06/P06005

TAGGER CALIBRATION IN DATA (ll)

scale factor

W tagging: T2/ [ T,/PPT

(35.9 + 41.5 + 59.7) fb ' (13 TeV)

[ Jr,:HP<035<LP(<0.75) [ v,: HP <0.45<LP <0.75

E— CMS B " HP <0.43<LP<0.79 [ 2°": HP <0.50 <LP <0.80

= Preliminary I <, HP <0.40<LP [ v, HP<055<LP
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Top tagging: DeepAK8-MD

DeepAK8-MD Top quark tagging

C M S Mist.Rate= 0.1% Mist.Rate= 0.5% _g
Preliminary |1 wistRate= 1.0% MistRate=25% |
2018 E
- e TEE eEnT T mT e —SeTe 0w = [m g g mem magh = ] T mLT T —o@wme mge
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1.0 E_ﬁ-m---"“m-m------&m-uum-- -“mm-m-m—é-
0.5 =
300 <p_ <400 GeV 400<p <480 GeV 480<p <600GeV 600 <p_ <1200 GeV

Simulation-to-data scale factors typically consistent with 1.0 within 10-20%
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