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A dumb approximation of π 
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Why sampling? 

“Monte Carlo is an extremely bad method; it should be used only 

when all alternative methods are worse.” 

— Alan Sokal, 1996 

Example: numerical solutions to (nice) 1D integrals are fast. 

 

 

 

 

 

Numerical analysis lecturers are covering alternatives for higher dimensions. 

 

But, no approx. integration method always works. Sometimes Monte Carlo is the best. 
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Probabilistic approximation taxonomy 

Many problems of interest in probabilistic approximation can be written as an integral 

of type: 

 

 

Examples: 

 

• Free energy: 

 

• Thermodynamics/posterior expectations: 

 

• Evidence and model selection: 

 

• Prediction: 

 

In practice, these integrals can rarely be evaluated exactly.  
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Probabilistic approximation taxonomy 

 

 

 

 

• Replace hard integrals with summations. 

• Sampling methods 

• Central problem: how to sample 𝑥𝑖 

• Monte Carlo, MCMC, Gibbs, etc. 
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Probabilistic approximation taxonomy 

 

 

 

 

• Replace hard integrals with easier integrals. 

• Message passing on factor graph 

• Central problem: how to find 

• VB, EP, etc. 
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Probabilistic approximation taxonomy 

 

 

 

 

• Replace hard integrals with estimators. 

• "Non-Bayesian" methods 

• Central problem: how to find 𝑥∗ 

• MAP, ML, Laplace, etc. 
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Eye-balling samples 
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A brief history 

Buffon (1707 - 1788): Needle problem. 

 

Enrico Fermi (1901 - 1954): Monte Carlo method for 

neutron diffusion 

 

Stanisław Ulam (1909 - 1984), John von Neumann 

(1903 - 1957), Nicholas Metropolis (1915 - 1999): 

Markov Chain Monte Carlo (MCMC) 
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Sampling from distributions 

Use library routines for univariate 

distributions 

(and some other special cases) 

 

This book (free online) explains how 

some of them work 
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Sampling from distributions 
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Sampling from distributions 

Draw points uniformly under the curve: 
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Rejection sampling 
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Importance sampling 
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Importance sampling 

 

 

 

 

 

 

 

 

 

 

This estimator is consistent but biased 

 

Exercise: Prove that                                 (which leads to the Free Energy 

Perturbation). 
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Summary so far 

• Sums and integrals, often expectations, occur frequently in statistics 

 

• Monte Carlo approximates expectations with a sample average 

 

• Rejection sampling draws samples from complex distributions 

 

• Importance sampling applies Monte Carlo to ‘any’ sum/integral 



22 

Application to large problems 

Rejection & importance sampling scale badly with dimensionality: 

Rejection sampling: 

Importance sampling: 
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Markov chain Monte Carlo 

Construct a biased random walk that explores target dist 𝑃∗(𝑥) 
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Transfer operators 

Discrete example 

 

 

 

 

 

𝑃∗ is an invariant distribution of 𝑇 because 𝑃∗𝑇 = 𝑃∗, i.e. 

 

 

 

Also 𝑃∗ is the equilibrium distribution of 𝑇: 

 

 

Ergodicity requires: Elements of 𝑃∗, 𝑇𝐾 are positive for some 𝐾. 
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Detailed balance 

Detailed balance means → 𝑥 → 𝑥′ and → 𝑥′ → 𝑥 are equally probable: 

 

 

 

 

 

 

 

 

 

 

Exercise: Prove detailed balance wrt 𝑃∗ ⇒ 𝑃∗ is the equilibrium distribution of 𝑇 

 

Enforcing detailed balance is easy: it only involves isolated pairs 
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Metropolis–Hastings 

Transfer operator: 

 

 

 

 

 

Notes: 

 

(Exercise: Prove this.) 
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Solution 
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Step-size demo 

Explore standard normal distribution with different step sizes σ 
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Metropolis limitations 

Generic proposals use 

 

 

 

 

σ large → many rejections 

 

σ small → slow diffusion: 

~(𝐿/𝜎)2 iterations required 
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Random walk Metropolis 

How large a step? 
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0.234 rule 
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Metropolis-adjusted Langevin algorithm (MALA) 

Overdamped Langevin equation: 

 

 

 

⟹ Euler discretization: 

 

 

 

⟹ Metropolis acceptance with proposale density: 

 

 

 

The optimal acceptance rate for this algorithm is 0.574 according to G. O. Roberts 

and J. S. Rosenthal (1998). 
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Stochastic gradient Langevin dynamics 

Settings: Inference for big data (notations are different here) 

Given some parameter vector 𝜃, its prior distribution 𝑝(𝜃), and a set of data points 

𝑋 = {𝑥𝑖}𝑖=1
𝑁 , Stochastic Gradient Langevin dynamics samples from the posterior 

distribution 

 

 

 

 

But it is difficult to directly draw samples for an extremely large 𝑁. 
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Stochastic gradient Langevin dynamics 

Stochastic optimization: If we are only interested in the MAP estimation 

 

where 
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Stochastic gradient Langevin dynamics 

Stochastic gradient Langevin dynamics: 

where 

It can be proved that 𝜃𝑡 → 𝑝(𝜃|𝑋) as 𝑡 → ∞. (Welling and Teh, ICML 2011) 
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Random batch method for interacting particle 
systems 

Settings: Simulation for a large number of particles 

 

 

Given a system consisting of 𝑁 particles 𝑥𝑖
𝑖=1

𝑁
, the external force −𝛻𝑉 and the 

interacting force 𝐾, we hope to draw samples from the equilibrium distribution of 

 

 

 

 

 

But it is difficult to perform direct simulations for an extremely large 𝑁. 
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Random batch method for interacting particle 
systems 

Solution: Perform simulation within a random batch for each step. 

 

Select a random batch 𝒞 ⊂ {1, . . . , 𝑁} and perform a simulation step within the batch: 

 

 

 

 

 

 

It can be proved that the simulation equilibrium distribution tends to the true one as 

τ → 0 and 𝑁 → ∞. (Jin, JCP 2020) 
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Combining operators 
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Gibbs sampling 
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Gibbs sampling 
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“Routine” Gibbs sampling 
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“Routine” Gibbs sampling 

Metropolis sampling can also be used for each Gibbs sampling step. 
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Reducible Gibbs 

• Uniform in two circles 

 

• Update horizontal then vertical 

etc. 

 

• We get stuck on Earth 

 

• Never sample the Moon 
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Ising model 
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Ising model 
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Summary so far 
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Burn-in 

The law of (Markov chain) large numbers supports: 

 

 

 

 

Burn-in ≡ warmup 

 

 

 

 

Skip a few observations. Maybe they’re not so close to 𝑃∗. 

 

Should we? Yes and no. 



49 

Burn-in 

Won’t throw out any data. ← In this book. → Likes to use B = S / 2 
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Thinning 
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Variance 

Assume 𝑥(𝑖)~𝑃∗ (e.g., burn-in) then for 𝑦(𝑖) = 𝑓(𝑥(𝑖)) ∈ ℝ, 

 

 

 

 

 

 

 

assuming that the limit of  𝜌𝑘
∞
𝑘=1  exists. Typically they do, like 𝜌𝑘 = 𝑂(𝜌

𝑘) for some 

𝜌 < 1. 
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Autocorrelations 

Autocorrelations for the Ising model 
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Did the chain mix well? 

Recent promising work by Gorham & Mackey using Stein discrepancy can 

provide a “Yes” (but it’s expensive). 

https://arxiv.org/abs/1909.11827 

https://arxiv.org/abs/1703.01717 
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Summary so far 
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Hamiltonian dynamics 
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Hamiltonian Monte Carlo 
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Leap-frog dynamics 

𝑣𝑖 
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Leap-frog dynamics 

Why? 

𝑣𝑖 
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MH with deterministic transformation 

1. Current sample 𝑥 

2. Draw a random variable 𝑣~𝑔(𝑣) 

3. Perform an invertible and deterministic transformation (𝑥′, 𝑣′) = ℎ(𝑥, 𝑣) 

4. Accept 𝑥′ as the new sample (i.e., 𝑥:= 𝑥′) with probability 

 

 

 

5. The invariant distribution of of the sampling step is 𝑝(𝑥) 

 

Green, P. J. (2003). Trans-dimensional Markov chain Monte Carlo, pp. 179–98. OUP, Oxford. 
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MH with deterministic transformation 

1. Current sample 𝑥 

2. Draw a random variable 𝑣~𝑔(𝑣) 

3. Perform an invertible and deterministic transformation (𝑥′, 𝑣′) = ℎ(𝑥, 𝑣) 

4. Accept 𝑥′ as the new sample (i.e., 𝑥:= 𝑥′) with probability 

 

 

 

5. The invariant distribution of of the sampling step is 𝑝(𝑥) 

 

For HMC, 𝑝(𝑥) = exp(−𝐸(𝑥)), 𝑔(𝑣) = 𝑔′(𝑣) = exp(−𝐾(𝑣)) and ℎ(𝑥, 𝑣) 
is volume preserving. 

Green, P. J. (2003). Trans-dimensional Markov chain Monte Carlo, pp. 179–98. OUP, Oxford. 
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Hamiltonian Monte Carlo 
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Annealing / Tempering 
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Using other distributions 
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Parallel tempering 
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Approx. Bayesian computation 
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Thank you！ 

Questions？ 

THE END 


