Physics-Informed Neural Network (PINN): Algorithms, Applications, and Software

Lu Lu

Department of Chemical and Biomolecular Engineering University of Pennsylvania

> QCD School Central China Normal University Oct 15, 2021

• Black-box & Trial-and-error

• Big data

イロト イボト イヨト イヨト

Scientific Machine Learning: Learning from Small Data

• Dinky, Dirty, Dynamic, Deceptive Data

э

• Big data

< ロ > < 同 > < 回 > < 回 >

Scientific Machine Learning: Learning from Small Data

- Dinky, Dirty, Dynamic, Deceptive Data
- Scientific domain knowledge
 - e.g., physical principles, constraints, symmetries, computational simulations
- Accurate, Robust, Reliable, Interpretable, Explainable

Leonardo da Vinci's drawing of turbulence

"Observe the motion of the surface of the water, Which resembles that of hair, which has two motions ..."

PINN

Machine learning with physics

Infer pressure p and velocity fields (u, v) from concentration c

Lu Lu (Penn CBE)

Image: A matrix

Data & Physics

Karniadakis, Kevrekidis, **Lu**, et al., *Nature Rev Phys*, 2021 Three scenarios:

- Lots of physics—Forward problems
 - Finite difference/elements
- Some physics—Inverse problems
 - Multi-fidelity learning
 - Physics-informed neural network (PINN)
 - DeepM&Mnet
- So physics—System identification/discovery
 - Operator learning (DeepONet)

Deep learning for partial differential equations (PDEs)

PDE-dependent approaches:

- image-like domain
 - e.g., (Long et al., ICML, 2018), (Zhu et al., J Comput Phys, 2019)
- parabolic PDEs, e.g., through Feynman-Kac formula
 - e.g., (Beck et al., J Nonlinear Sci, 2017), (Han et al., PNAS, 2018)
- variational form
 - e.g., (E & Yu, Commun Math Stat, 2018)

General approaches:

- Galerkin type projection
 - e.g., (Meade & Fernandez, Math Comput Model, 1994), (Kharazmi et al., arXiv, 2019)
- strong form (Physics-informed neural networks)
 - e.g., (Dissanayake & Phan-Thien, Commun Numer Meth En, 1994), (Lagaris et al., IEEE Trans Neural Netw, 1998), (Raissi et al., J Comput Phys, 2019)

< □ > < □ > < □ > < □ > < □ > < □ >

How to embed physics in ML?

Principles of physics-informed learning:

CCNU, Oct 2021

э

7/39

Inverse problems

Challenge: *small* data + *incomplete* physics laws

Invisible cloaking

Permittivity $\epsilon,$ permeability μ Electric field E without coating

Electric field ${\boldsymbol E}$ with coating

Chen, Lu, et al., Opt Express, 2020

joint work with Prof. Luca Dal Negro (Boston U)

0.5

0 5 x (µm)

Lu Lu (Penn CBE)

10

-5

y (µm)

Invisible cloaking

Goal: Given ϵ_1 and ϵ_3 , find $\epsilon_2(x, y)$ s.t. $E_1 \approx E_{1,target}$

Helmholtz equation $(k_0 = \frac{2\pi}{\lambda_0})$

$$\nabla^2 E_i + \epsilon_i k_0^2 E_i = 0, \qquad i = 1, 2, 3$$

Boundary conditions:

- Outer circle: $E_1 = E_2$, $\frac{1}{\mu_1} \frac{\partial E_1}{\partial \mathbf{n}} = \frac{1}{\mu_2} \frac{\partial E_2}{\partial \mathbf{n}}$
- Inner circle: $E_2 = E_3$, $\frac{1}{\mu_2} \frac{\partial E_2}{\partial \mathbf{n}} = \frac{1}{\mu_3} \frac{\partial E_3}{\partial \mathbf{n}}$

Chen, Lu, et al., Opt Express, 2020

Physics-informed neural networks (PINNs)

Idea: Embed a PDE into the loss via automatic differentiation (AD)

- mesh-free & particle-free
- inverse problems: seamlessly integrate data and physics
- black-box or noisy IC/BC/forcing terms (Pang*, Lu*, et al., SIAM J Sci Comput, 2019)
- a unified framework: PDE, integro-differential equations (Lu et al., SIAM Rev, 2021), fractional PDE (Pang*, Lu*, et al., SIAM J Sci Comput, 2019), stochastic PDE (Zhang Lu, et al., J Comput Phys, 2019)

Lu Lu (Penn CBE)

Invisible cloaking

Electric field E_i

Permittivity ϵ_2

Lu Lu (Penn CBE)

э

Physics-informed neural networks (PINNs)

$$f\left(\mathbf{x};\frac{\partial u}{\partial x_{1}},\ldots,\frac{\partial u}{\partial x_{d}};\frac{\partial^{2} u}{\partial x_{1}\partial x_{1}},\ldots,\frac{\partial^{2} u}{\partial x_{1}\partial x_{d}};\ldots;\boldsymbol{\lambda}\right)=0, \quad \mathbf{x}\in\Omega$$

- Initial/boundary conditions $\mathcal{B}(u,\mathbf{x})=0$ on $\partial\Omega$
- Extra information $\mathcal{I}(u, \mathbf{x}) = 0$ for $\mathbf{x} \in \mathcal{T}_i$

 $\min_{\boldsymbol{\theta}, \boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}; \mathcal{T}) = w_f \mathcal{L}_f(\boldsymbol{\theta}, \boldsymbol{\lambda}; \mathcal{T}_f) + w_b \mathcal{L}_b(\boldsymbol{\theta}, \boldsymbol{\lambda}; \mathcal{T}_b) + w_i \mathcal{L}_i(\boldsymbol{\theta}, \boldsymbol{\lambda}; \mathcal{T}_i)$

where

$$\mathcal{L}_{f} = \frac{1}{|\mathcal{T}_{f}|} \sum_{\mathbf{x}\in\mathcal{T}_{f}} \left\| f\left(\mathbf{x}; \frac{\partial \hat{u}}{\partial x_{1}}, \dots; \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{1}}, \dots; \boldsymbol{\lambda} \right) \right\|_{2}^{2}$$
$$\mathcal{L}_{b} = \frac{1}{|\mathcal{T}_{b}|} \sum_{\mathbf{x}\in\mathcal{T}_{b}} \|\mathcal{B}(\hat{u}, \mathbf{x})\|_{2}^{2}$$
$$\mathcal{L}_{i} = \frac{1}{|\mathcal{T}_{i}|} \sum_{\mathbf{x}\in\mathcal{T}_{i}} \|\mathcal{I}(\hat{u}, \mathbf{x})\|_{2}^{2}$$

Inferring the flow over an espresso cup Data: A video of temperature field.

Cai et al., J Fluid Mech, 2021

э

Filtering of *in-vivo* 4D-flow magnetic resonance imaging (MRI) data of blood flow in a porcine descending aorta

• MRI data: Very coarse resolution & heavily corrupted by noise

- Reconstructions of the velocity and pressure fields
- Identify regions of no-slip flow, from which one can reconstruct the location and motion of the arterial wall

Wang, Kissas, & Perdikaris

Error analysis

Theorem (Universal approximation theorem; Cybenko, 1989)

Let σ be any continuous sigmoidal function. Then finite sums of the form $G(x) = \sum_{j=1}^{N} \alpha_j \sigma(w_j \cdot x + b_j)$ are dense in $C(I_d)$.

Theorem (Pinkus, 1999)

Let $\mathbf{m}^i \in \mathbb{Z}^d_+$, $i = 1, \ldots, s$, and set $m = \max_{i=1,\ldots,s}(m_1^i + \cdots + m_d^i)$. Assume $\sigma \in C^m(\mathbb{R})$ and σ is not a polynomial. Then the space of single hidden layer neural nets

$$\mathcal{M}(\sigma) \coloneqq span\{\sigma(\mathbf{w} \cdot \mathbf{x} + b) : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}\}\$$

is dense in

$$C^{\mathbf{m}^1,\ldots,\mathbf{m}^s}(\mathbb{R}^d) \coloneqq \cap_{i=1}^s C^{\mathbf{m}^i}(\mathbb{R}^d).$$

Optimization & Generalization:

Shin et al., 2020; Mishra & Molinaro, 2020; Luo & Yang, 2020

Lu Lu (Penn CBE)

Optimization

- A: approximate $f(x) = \sum_{k=1}^{5} \sin(2kx)/(2k)$
 - learn from low to high frequencies (Rahaman et al., *ICML*, 2019; Xu et al., arXiv, 2019)
- B: solve the Poisson equation $-f_{xx} = \sum_{k=1}^{5} 2k \sin(2kx)$
 - all frequencies are learned almost simultaneously
 - faster learning

Generalization: Residual-based adaptive refinement (RAR)

Challenge: Uniform residual points are not efficient for PDEs with steep solutions.

e.g., Burgers equation ($x \in [-1,1], t \in [0,1]$):

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad u(x,0) = -\sin(\pi x), \quad u(-1,t) = u(1,t) = 0.$$

• Idea: adaptively add more points in locations with large PDE residual $\left\| f\left(\mathbf{x}; \frac{\partial \hat{u}}{\partial x_1}, \dots, \frac{\partial \hat{u}}{\partial x_d}; \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_1}, \dots, \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_d}; \dots; \boldsymbol{\lambda} \right) \right\|$

Hard constraints in inverse design/topology optimization

Constrained optimization problem for $\gamma(\mathbf{x})$

 $\min_{\mathbf{u},\gamma} \mathcal{J}(\mathbf{u};\gamma)$

subject to

$$\begin{bmatrix} \mathcal{F} [\mathbf{u}; \gamma] = \mathbf{0}, \\ \mathcal{B} [\mathbf{u}] = 0, \\ h(\mathbf{u}, \gamma) \le 0, \end{bmatrix}$$

Convert the constrained optimization to an unconstrained optimization via losses:

$$\mathcal{L}_{\mathcal{F}}(\boldsymbol{\theta}_{u},\boldsymbol{\theta}_{\gamma}) = \frac{1}{MN} \sum_{j=1}^{M} \sum_{i=1}^{N} |\mathcal{F}_{i}[\hat{\mathbf{u}}(\mathbf{x}_{j});\hat{\gamma}(\mathbf{x}_{j})]|^{2},$$
$$\mathcal{L}_{h}(\boldsymbol{\theta}_{u},\boldsymbol{\theta}_{\gamma}) = \mathbb{1}_{\{h(\hat{\mathbf{u}},\hat{\gamma})>0\}} h^{2}(\hat{\mathbf{u}},\hat{\gamma}),$$

Hard constraints

• Soft constraints: large $\mu_{\mathcal{F}}, \mu_h \Rightarrow$ ill-conditioned optimization

$$\mathcal{L}(\boldsymbol{\theta}_u, \boldsymbol{\theta}_{\gamma}) = \mathcal{J} + \mu_{\mathcal{F}} \mathcal{L}_{\mathcal{F}} + \mu_h \mathcal{L}_h$$

• Penalty method (a sequence of soft constraints)

$$\mathcal{L}^{k}(\boldsymbol{\theta}_{u},\boldsymbol{\theta}_{\gamma}) = \mathcal{J} + \mu_{\mathcal{F}}^{k}\mathcal{L}_{\mathcal{F}} + \mu_{h}^{k}\mathcal{L}_{h}$$
$$\mu_{\mathcal{F}}^{k+1} = \beta_{\mathcal{F}}\mu_{\mathcal{F}}^{k}, \quad \mu_{h}^{k+1} = \beta_{h}\mu_{h}^{k}$$

• Augmented Lagrangian method: new terms to mimic Lagrange multipliers

$$\mathcal{L}^{k}(\boldsymbol{\theta}_{u},\boldsymbol{\theta}_{\gamma}) = \mathcal{J} + \mu_{\mathcal{F}}^{k}\mathcal{L}_{\mathcal{F}} + \mu_{h}^{k}\mathbb{1}_{\{h>0\vee\lambda_{h}^{k}>0\}}h^{2} \\ + \frac{1}{MN}\sum_{j=1}^{M}\sum_{i=1}^{N}\lambda_{i,j}^{k}\mathcal{F}_{i}\left[\hat{\mathbf{u}}(\mathbf{x}_{j});\hat{\gamma}(\mathbf{x}_{j})\right] + \lambda_{h}^{k}h \\ \lambda_{i,j}^{k} = \lambda_{i,j}^{k-1} + 2\mu_{\mathcal{F}}^{k-1}\mathcal{F}_{i}\left[\hat{\mathbf{u}}(\mathbf{x}_{j};\boldsymbol{\theta}_{u}^{k-1});\hat{\gamma}(\mathbf{x}_{j};\boldsymbol{\theta}_{\gamma}^{k-1})\right] \\ \lambda_{h}^{k} = \max\left(\lambda_{h}^{k-1} + 2\mu_{h}^{k-1}h\left(\hat{\mathbf{u}}(\mathbf{x};\boldsymbol{\theta}_{u}^{k-1}),\hat{\gamma}(\mathbf{x};\boldsymbol{\theta}_{\gamma}^{k-1})\right),0\right)$$

Lu et al., arXiv:2102.04626

< □ > < □ > < □ > < □ > < □ > < □ >

hPINN: PINN with hard constraints

Augmented Lagrangian method

$$\mathcal{L}^{k}(\boldsymbol{\theta}_{u},\boldsymbol{\theta}_{\gamma}) = \mathcal{J} + \mu_{\mathcal{F}}^{k}\mathcal{L}_{\mathcal{F}} + \mu_{h}^{k}\mathbb{1}_{\{h>0\vee\lambda_{h}^{k}>0\}}h^{2} \\ + \frac{1}{MN}\sum_{j=1}^{M}\sum_{i=1}^{N}\lambda_{i,j}^{k}\mathcal{F}_{i}\left[\hat{\mathbf{u}}(\mathbf{x}_{j});\hat{\gamma}(\mathbf{x}_{j})\right] + \lambda_{h}^{k}h$$

Algorithm 2.2 hPINNs via the augmented Lagrangian method.

Hyperparameters: initial penalty coefficients $\mu_{\mathcal{F}}^0$ and μ_h^0 , factors $\beta_{\mathcal{F}}$ and β_h $k \longleftarrow 0$ $\lambda_{i,j}^0 \longleftarrow 0$ for $1 \le i \le N, 1 \le j \le M$ $\lambda_h^0 \longleftarrow 0$ $\theta_u^0, \theta_\gamma^0 \longleftarrow \arg\min_{\theta_u, \theta_\gamma} \mathcal{L}^0(\theta_u, \theta_\gamma)$: Train the networks $\hat{\mathbf{u}}(\mathbf{x}; \theta_u)$ and $\hat{\gamma}(\mathbf{x}; \theta_\gamma)$ from random initialization, until the training loss is converged

repeat

$$\begin{split} & k \longleftarrow k+1 \\ & \mu_{\mathcal{F}}^{k} \longleftarrow \beta_{\mathcal{F}} \mu_{\mathcal{F}}^{k-1} \\ & \mu_{h}^{k} \longleftarrow \beta_{h} \mu_{h}^{k-1} \\ & \lambda_{i,j}^{k} \longleftarrow \beta_{i,j}^{k-1} + 2\mu_{\mathcal{F}}^{k-1} \mathcal{F}_{i} \left[\hat{\mathbf{u}}(\mathbf{x}_{j}; \boldsymbol{\theta}_{u}^{k-1}); \hat{\gamma}(\mathbf{x}_{j}; \boldsymbol{\theta}_{\gamma}^{k-1}) \right] \text{ for } 1 \leq i \leq N, \ 1 \leq j \leq M \\ & \lambda_{h}^{k} \longleftarrow \max \left(\lambda_{h}^{k-1} + 2\mu_{h}^{k-1} h \left(\hat{\mathbf{u}}(\mathbf{x}; \boldsymbol{\theta}_{u}^{k-1}), \hat{\gamma}(\mathbf{x}; \boldsymbol{\theta}_{\gamma}^{k-1}) \right), 0 \right) \\ & \boldsymbol{\theta}_{u}^{k}, \boldsymbol{\theta}_{\gamma}^{k} \longleftarrow \arg \min_{\boldsymbol{\theta}_{u}, \boldsymbol{\theta}_{\gamma}} \mathcal{L}^{k}(\boldsymbol{\theta}_{u}, \boldsymbol{\theta}_{\gamma}): \text{ Train the networks } \hat{\mathbf{u}}(\mathbf{x}; \boldsymbol{\theta}_{u}) \text{ and } \hat{\gamma}(\mathbf{x}; \boldsymbol{\theta}_{\gamma}) \\ & \text{ from the initialization of } \boldsymbol{\theta}_{u}^{k-1} \text{ and } \boldsymbol{\theta}_{\gamma}^{k-1}, \text{ until the training loss is converged} \\ & \text{ until } \mathcal{L}_{\mathcal{F}}(\boldsymbol{\theta}_{u}^{k}, \boldsymbol{\theta}_{\gamma}^{k}) \text{ and } \mathcal{L}_{h}(\boldsymbol{\theta}_{u}^{k}, \boldsymbol{\theta}_{\gamma}^{k}) \text{ are smaller than a tolerance} \end{split}$$

Lu et al., arXiv:2102.04626

Topology optimization of fluids in Stokes flow

- Solid: $\rho = 0$; fluid: $\rho = 1$
- Minimize a objective of dissipated power

$$\mathcal{J} = \int_{\Omega} \left(\frac{1}{2} \nabla \mathbf{u} : \nabla \mathbf{u} + \frac{1}{2} \alpha \mathbf{u}^2 \right) dx dy$$

• Generalized Stokes equation with Darcy's law

$$-\nu\Delta\mathbf{u} + \nabla p = \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

- $\mathbf{f} = \alpha \mathbf{u}$: the Brinkman term
- α : inverted permeability $\alpha(\rho) = \overline{\alpha} + (\underline{\alpha} \overline{\alpha})\rho \frac{1+q}{\rho+q}$

J

• fluid volume constraint:

$$\int_{\Omega} \rho \, dx dy \le \gamma = 0.9$$

Topology optimization of fluids in Stokes flow

Lu Lu (Penn CBE)

CCNU, Oct 2021 22 / 39

PINNs for solving integro-differential equations

e.g., Riemann-Liouville directional fractional derivative of order $\alpha \in (1,2)$

$$D_{\theta}^{\alpha}u(\boldsymbol{x}) = \frac{1}{\Gamma(2-\alpha)} \left(\theta \cdot \nabla\right)^2 \int_0^{+\infty} \xi^{1-\alpha} u(\boldsymbol{x}-\xi\theta) d\xi \qquad \boldsymbol{x}, \theta \in \mathbb{R}^D$$
$$= \frac{1}{(\Delta x)^{\alpha}} \sum_{k=1}^{\lceil \lambda d(\boldsymbol{x},\theta,\Omega) \rceil} (-1)^k {\alpha \choose k} u(\boldsymbol{x}-(k-1)\Delta x\theta) + \mathcal{O}(\Delta x)$$

Pang*, Lu*, et al., SIAM J Sci Comput, 2019 Lu et al., SIAM Rev, 2021

Lu Lu (Penn CBE)

Space-time-fractional PDEs with black-box (BB) terms

Fractional advection-diffusion equation with zero BC

$$\frac{\partial^{\gamma} u(\boldsymbol{x},t)}{\partial t^{\gamma}} = -c(-\Delta)^{\alpha/2} u(\boldsymbol{x},t) - \boldsymbol{v} \cdot \nabla u(\boldsymbol{x},t) + f_{BB}(\boldsymbol{x},t)$$

Forcing term f_{BB} only known at scattered spatio-temporal points

PINN vs. FDM: no interpolation error

Pang*, Lu*, et al., SIAM J Sci Comput, 2019

Lu Lu (Penn CBE)

Space-time-fractional PDEs with noisy terms

$$\frac{\partial^{\gamma} u(\boldsymbol{x},t)}{\partial t^{\gamma}} = -c(-\Delta)^{\alpha/2} u(\boldsymbol{x},t) - \boldsymbol{v} \cdot \nabla u(\boldsymbol{x},t) + f_{BB}(\boldsymbol{x},t)$$

Gaussian noise added to the forcing term f_{BB} (left) Forward problem & (right) Inverse problem

PINN: noise easily handled by regularization

Pang*, Lu*, et al., SIAM J Sci Comput, 2019

Lu Lu (Penn CBE)

25 / 39

< ロ > < 同 > < 回 > < 回 >

PINNs for solving stochastic PDEs

$$-\frac{d}{dx}\left(k(x;\omega)\frac{du}{dx}\right) = f(x), \quad x \in [-1,1], \quad \omega \in \Omega$$
$$u(-1) = u(1) = 0$$

• Karhunen-Loève expansion: $k(x;\omega_s) = \widehat{k_0}(x) + \sum_{i=1}^M \sqrt{\lambda_i} \widehat{k_i}(x) \xi_{s,i}$

• arbitrary polynomial chaos: $u(x;\omega_s) = \sum_{\alpha=0}^{P} \widehat{u_{\alpha}}(x) \psi_{\alpha}(\boldsymbol{\xi}_s)$

PINNs for solving stochastic PDEs

Use different NNs to learn the mean and modes of different scales

Lu Lu (Penn CBE)

Active learning for stochastic inverse problem

Dropout-induced uncertainty serves as the guidance for *active learning*.

0.14

0.10

Open-source software: **DeepXDE**

NEWS FEATURE · 20 JANUARY 2021

nature

Ten computer codes that transformed science

From Fortran to arXiv.org, these advances in programming and platforms sent biology, climate science and physics into warp speed.

Physics-informed deep learning

> 100,000 downloads, 600 GitHub Stars

Usage of DeepXDE

Solving differential equations in DeepXDE is no more than **specifying the problem using the build-in modules**.

イロト イボト イヨト イヨト

I. Time-independent problems: Poisson equation

2D Poisson equation over an L-shaped domain $\Omega = [-1,1]^2 \setminus [0,1]^2$:

 $-\Delta u(x,y)=1,\quad (x,y)\in\Omega,\qquad u(x,y)=0,\quad (x,y)\in\partial\Omega$

geometry

```
1 geom = dde.geometry.Polygon(
2 [[0, 0], [1, 0], [1, -1], [-1, -1], [-1, 1], [0, 1]])
```

PDE via automatic differentiation

IC: Dirichlet, Neumann, Robin, periodic, and a general BC

```
1 def boundary(x, on_boundary):
2    return on_boundary # Default: entire geometry boundary
3 def func(x):
4    return 0 # Value
5
6 bc = dde.DirichletBC(geom, func, boundary)
```

I. Time-independent problems: Poisson equation

```
data": geometry + PDE + BC + "training" points
```

```
data = dde.data.PDE(
    geom, pde, bc, num_domain=1000, num_boundary=100, ...)
```

Inetwork, e.g., feed-forward network

```
1 net = dde.maps.FNN([2]+[50]*4+[1], "tanh", "Glorot uniform",
      ...)
```

 \bigcirc model: data + network, and train

```
1 model = dde.Model(data, net)
```

```
2 model.compile("adam", lr=0.001, ...)
```

```
3 model.train(epochs=50000, ...)
```

(A) spectral element, (B) PINN, (C) error

II. Time-dependent problems: Diffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 x}{\partial x^2} - e^{-t}(1 - \pi^2)\sin(\pi x), \quad x \in [-1, 1], t \in [0, 1]$$

with Dirichlet BC. (Exact solution $u(x,t) = e^{-t}\sin(\pi x)$)

geometry

```
1 geom = dde.geometry.Interval(-1, 1)
2 timedomain = dde.geometry.TimeDomain(0, 1)
3 geomtime = dde.geometry.GeometryXTime(geom, timedomain)
```

• IC, similar to Dirichlet BC

```
def func(x):
    return np.sin(np.pi * x[:, 0:1]) * np.exp(-x[:, 1:])

dic = dde.IC(geomtime, func, lambda _, on_initial: on_initial)

e "data": geometry + PDE + BC/IC + "training" points

data = dde.data.TimePDE(
    geomtime, ..., [bc, ic],
    num_domain=40, num_boundary=20, num_initial=10, ...)
```

III. ODE/PDE system: Lorenz system

$$\frac{dx}{dt} = \rho(y - x), \quad \frac{dy}{dt} = x(\sigma - z) - y, \quad \frac{dz}{dt} = xy - \beta z$$

ODE system

```
1
 def Lorenz_system(x, y):
     y1, y2, y3 = y[:, 0:1], y[:, 1:2], y[:, 2:]
2
     dy1_x = dde.grad.jacobian(y, x, i=0)
3
     dy2_x = dde.grad.jacobian(y, x, i=1)
4
5
     dy3_x = dde.grad.jacobian(y, x, i=2)
   return [
6
7
          dy1_x - C1 * (y2 - y1),
          dy_2x - y_1 * (C_2 - y_3) + y_2,
8
          dy3_x - y1 * y2 + C3 * y3
9
      ٦
```

ICs

```
1 ic1 = dde.IC(geom, ..., ..., component=0)
2 ic2 = dde.IC(geom, ..., ..., component=1)
3 ic3 = dde.IC(geom, ..., ..., component=2)
```

イロト 不得下 イヨト イヨト 二日

IV. Integro-differential equations: Volterra IDE

$$\frac{dy}{dx} + y(x) = \int_0^x e^{t-x} y(t) dt, \quad y(0) = 1$$

kernel

1 def kernel(x, s): 2 return np.exp(s - x)

IDE

Lu Lu (Penn CBE)

```
1 def ide(x, y, int_mat):
2     rhs = tf.matmul(int_mat, y) # \int_0^x exp(t-x) y(t) dt
3     lhs1 = tf.gradients(y, x)[0] # dy/dx
4     return (lhs1 + y)[: tf.size(rhs)] - rhs
```

```
• "data": geometry + IDE + BC + "training" points
```


V. Inverse problems

A diffusion-reaction system on $x \in [0, 1], t \in [0, 10]$:

$$\frac{\partial C_A}{\partial t} = \mathbf{D} \frac{\partial^2 C_A}{\partial x^2} - \mathbf{k_f} C_A C_B^2, \quad \frac{\partial C_B}{\partial t} = \mathbf{D} \frac{\partial^2 C_B}{\partial x^2} - 2\mathbf{k_f} C_A C_B^2$$

• Define D and k_f as trainable variables

- 1 kf = dde.Variable(0.05)
- 2 D = dde.Variable(1.0)

• Define C_A measurements as Dirichlet BC (the same for C_B)

- 1 observe_x = ... # All the locations of measurements
- 2 observe_Ca = ... # The corresponding measurements of Ca
- 3 observe = dde.PointSetBC(observe_x, observe_Ca, component=0)

Complex geometry: Constructive solid geometry

Primitive geometries

interval, triangle, rectangle, polygon, disk, cuboid, sphere

- boolean operations:
 - Union A|B
 - difference A B
 - \blacktriangleright intersection A&B

DeepXDE

- Short and comprehensive code
- Three backends: TensorFlow 1.x, TensorFlow 2.x, and PyTorch
- No TensorFlow/PyTorch knowledge
- Lots of useful features
- Well-structured and highly configurable

Other functions

- Multi-fidelity NN (Lu et al., PNAS, 2020)
- DeepONet: Operator learning (Lu et al., Nature Mach Intell, 2021)

Lu Group University of Pennsylvania

- Group website: https://lu.seas.upenn.edu
- Chemical and Biomolecular Engineering (CBE)
- Applied Mathematics and Computational Science (AMCS)
- Email: lulu1@seas.upenn.edu