Critical Fluctuation Dynamics

M. Stephanov

Outline

Introduction: critical point and heavy-ion collisions

- 2 Equilibrium fluctuations near QCD critical point
 - Critical fluctuations
 - Intriguing data from RHIC BES I

3 Non-equilibrium dynamics of fluctuations (work in progress)

- Hydrodynamics and fluctuations
- Hydro+
- General formalism

Summary and Outlook

Substance ^{[13][14]} ¢	Critical temperature +	Critical pressure (absolute) \$
Argon	-122.4 °C (150.8 K)	48.1 atm (4,870 kPa)
Ammonia ^[15]	132.4 °C (405.5 K)	111.3 atm (11,280 kPa)
Bromine	310.8 °C (584.0 K)	102 atm (10,300 kPa)
Caesium	1,664.85 °C (1,938.00 K)	94 atm (9,500 kPa)
Chlorine	143.8 °C (416.9 K)	76.0 atm (7,700 kPa)
Ethanol	241 °C (514 K)	62.18 atm (6,300 kPa)
Fluorine	-128.85 °C (144.30 K)	51.5 atm (5,220 kPa)
Helium	-267.96 °C (5.19 K)	2.24 atm (227 kPa)
Hydrogen	-239.95 °C (33.20 K)	12.8 atm (1,300 kPa)
Krypton	-63.8 °C (209.3 K)	54.3 atm (5,500 kPa)
CH ₄ (methane)	-82.3 °C (190.8 K)	45.79 atm (4,640 kPa)
Neon	-228.75 °C (44.40 K)	27.2 atm (2,760 kPa)
Nitrogen	-146.9 °C (126.2 K)	33.5 atm (3,390 kPa)
Oxygen	-118.6 °C (154.6 K)	49.8 atm (5,050 kPa)
CO ₂	31.04 °C (304.19 K)	72.8 atm (7,380 kPa)
N ₂ O	36.4 °C (309.5 K)	71.5 atm (7,240 kPa)
H ₂ SO ₄	654 °C (927 K)	45.4 atm (4,600 kPa)
Xenon	16.6 °C (289.8 K)	57.6 atm (5,840 kPa)
Lithium	2,950 °C (3,220 K)	652 atm (66,100 kPa)
Mercury	1,476.9 °C (1,750.1 K)	1,720 atm (174,000 kPa)
Sulfur	1,040.85 °C (1,314.00 K)	207 atm (21,000 kPa)
Iron	8,227 °C (8,500 K)	
Gold	6,977 °C (7,250 K)	5,000 atm (510,000 kPa)
Water[2][16]	373.946 °C (647.096 K)	217.7 atm (22.06 MPa)

Critical point

 – end of phase coexistence – is a ubiquitous phenomenon

Water:

Is there one in QCD?

Is there a CP between QGP and hadron gas phases?

- Infortunately, lattice QCD cannot reach beyond $\mu_B \sim 2T$.
- But 1st order transition (and thus C.P.) is ubiquitous in models of QCD: NJL, RM, Holography, Strong coupl. Lattice QCD, ...

Critical Fluctuation Dynamics

M. Stephanov

Essentially two approaches to discovering the QCD critical point. Each with its own challenges.

Lattice simulations.

The *sign problem* restricts reliable lattice calculations to $\mu_B = 0$.

Under different assumptions one can estimate the position of the critical point, assuming it exists, by extrapolation from $\mu_B = 0$.

Heavy-ion collisions. Non-equilibrium.

Beam Energy Scan.

Expansion accompanied by cooling, followed by freezeout. Freezout at a point tunable via \sqrt{s} .

Assumption for the next part of this talk

H.I.C. are sufficiently close to equilibrium that we can study thermodynamics at freezeout T and μ_B — as a first approximation.

Assumption for the next part of this talk

H.I.C. are sufficiently close to equilibrium that we can study thermodynamics at freezeout *T* and μ_B — as a first approximation.

NB: Event-by-event fluctuations:

Heavy-ion collisions create systems which are large enough (for thermodynamics), but not too large ($N\sim 10^2-10^4$ particles)

EBE fluctuations are small $(1/\sqrt{N})$, but measurable.

Outline

Introduction: critical point and heavy-ion collisions

- 2 Equilibrium fluctuations near QCD critical point
 - Critical fluctuations
 - Intriguing data from RHIC BES I

Non-equilibrium dynamics of fluctuations (work in progress)

- Hydrodynamics and fluctuations
- Hydro+
- General formalism

Summary and Outlook

EBE fluctuations vs \sqrt{s} [PRL81(1998)4816]

Equilibrium = maximum entropy.

 $P(\sigma) \sim e^{S(\sigma)}$ (Einstein 1910)

EBE fluctuations vs \sqrt{s} [PRL81(1998)4816]

Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

- EBE fluctuations vs \sqrt{s} [PRL81(1998)4816]
- Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

● At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \delta \sigma^2 \rangle V \rightarrow \infty$.

CLT?

- EBE fluctuations vs \sqrt{s} [PRL81(1998)4816]
- Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

• At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \delta \sigma^2 \rangle V \to \infty$.

CLT?

 $\delta\sigma$ is not an average of ∞ many *uncorrelated* contributions: $\xi \to \infty$

In fact, $\langle \delta \sigma^2 \rangle \sim \xi^2 / V$.

Higher order cumulants

• n > 2 cumulants (shape of $P(\sigma)$) depend stronger on ξ .

E.g., $\langle \sigma^2 \rangle \sim \xi^2$ while $\kappa_4 = \langle \sigma^4 \rangle_c \sim \xi^7$ [PRL102(2009)032301]

- For n > 2, sign depends on which side of the CP we are.
 This dependence is also universal. [PRL107(2011)052301]
- Using Ising model variables:

Mapping Ising to QCD and observables near CP

 κ_4 vs μ_B and T:

Parotto *et al*, 1805.05249 Pradeep-MS 1905.13247 Mrozcek *et al*, 2008.04022

Mapping Ising to QCD and observables near CP

$\kappa_4 \text{ vs } \mu_B \text{ and } T$:

In QCD
$$(r,h) \rightarrow (\mu - \mu_{\rm CP}, T - T_{\rm CP})$$

Parotto *et al*, 1805.05249 Pradeep-MS 1905.13247 Mrozcek *et al*, 2008.04022

•
$$\kappa_n(N) = N + \mathcal{O}(\kappa_n(\sigma))$$

1104.1627

Equilibrium κ_4 vs μ_B and T:

M. Stephanov

Equilibrium κ_4 vs μ_B and T:

M. Stephanov

Critical Fluctuation Dynamics

14.5 11.5

a.1

Equilibrium κ_4 vs μ_B and T:

M. Stephanov

Critical Fluctuation Dynamics

11.5 0.1 11

BES Seminar 2020

12/29

Equilibrium κ_4 vs μ_B and T:

M. Stephanov

Critical Fluctuation Dynamics

Outline

Introduction: critical point and heavy-ion collisions

- 2 Equilibrium fluctuations near QCD critical point
 - Critical fluctuations
 - Intriguing data from RHIC BES I

3 Non-equilibrium dynamics of fluctuations (work in progress)

- Hydrodynamics and fluctuations
- Hydro+
- General formalism

4 Summary and Outlook

Non-equilibrium physics is essential near the critical point.

Goal: build a *quantitative* theoretical framework describing critical point signatures for comparison with experiment.

Strategy:

- Parameterize QCD EOS with yet unknown $T_{\rm CP}$ and $\mu_{\rm CP}$ as variable parameters (e.g., Parotto *et al*, 1805.05249).
- Use the EOS in a hydrodynamic simulation and compare with experiment to determine or constrain T_{CP} and μ_{CP} .

• Hydrodynamic eqs. are conservation equations ($\partial_{\mu}T^{\mu\nu} = 0$):

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

Stochastic hydrodynamics

• Hydrodynamic eqs. are conservation equations ($\partial_{\mu}T^{\mu\nu} = 0$):

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

Stochastic variables Ψ = (Ťⁱ⁰, J⁰) are local operators coarse-grained (over "cells" b: ℓ_{mic} ≪ b ≪ L):

$$\partial_t \breve{\psi} = -\nabla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise} \right)$$
 (Landau-Lifshitz)

• Hydrodynamic eqs. are conservation equations ($\partial_{\mu}T^{\mu\nu} = 0$):

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

• Stochastic variables $\check{\psi} = (\check{T}^{i0}, \check{J}^0)$ are local operators coarse-grained (over "cells" $b: \ell_{\text{mic}} \ll b \ll L$):

$$\partial_t \breve{\psi} = -
abla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise}
ight)$$
 (Landau-Lifshitz)

- Linearized version has been considered and applied to heavyion collisions (Kapusta-Muller-MS, Kapusta-Torres-Rincon, ...)
- Non-linearities + point-like noise ⇒ UV divergences. In numerical simulations – cutoff dependence.

Deterministic approach

Variables are one- and two-point functions: $\psi = \langle \vec{\psi} \rangle \text{ and } G = \langle \vec{\psi} \vec{\psi} \rangle - \langle \vec{\psi} \rangle \langle \vec{\psi} \rangle - \text{equal-time correlator}$ Nonlinearities lead to dependence of flux on G.

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi, G];$$
 (conservation)
 $\partial_t G = \mathsf{L}[G; \psi].$ (relaxation)

In Bjorken flow by Akamatsu *et al*, Martinez-Schaefer. For arbitrary relativistic flow – by An *et al* (this talk). Earlier, in *nonrelativistic* context, – by Andreev in 1970s.

Deterministic approach

Variables are one- and two-point functions: $\psi = \langle \vec{\psi} \rangle \text{ and } G = \langle \vec{\psi} \vec{\psi} \rangle - \langle \vec{\psi} \rangle \langle \vec{\psi} \rangle - \text{equal-time correlator}$ Nonlinearities lead to dependence of flux on G.

 $\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi, G];$ (conservation) $\partial_t G = \mathsf{L}[G; \psi].$ (relaxation)

- In Bjorken flow by Akamatsu *et al*, Martinez-Schaefer. For arbitrary relativistic flow – by An *et al* (this talk). Earlier, in *nonrelativistic* context, – by Andreev in 1970s.
- Advantage: deterministic equations.

"Infinite noise" causes UV renormalization of EOS and transport coefficients – can be taken care of *analytically* (1902.09517)

Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305 Rajagopal et al, 1908.08539 Du et al, 2004.02719

Fluctuation dynamics near CP requires two main ingredients:

● Critical fluctuations $(\xi \rightarrow \infty)$

● Slow relaxation mode with $τ_{relax} ~ ε_{\xi^3}$ (leading to ζ → ∞)

Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305 Rajagopal et al, 1908.08539 Du et al, 2004.02719

Fluctuation dynamics near CP requires two main ingredients:

● Critical fluctuations ($\xi \rightarrow \infty$)

● Slow relaxation mode with $τ_{relax} ~ ε_{\xi^3}$ (leading to ζ → ∞)

- Both described by the same object: the two-point function of the slowest hydrodynamic mode $m \equiv (s/n)$, i.e., $\langle \delta m(x_1) \delta m(x_2) \rangle$.
- Without this mode, hydrodynamics would break down near CP when $\tau_{expansion} \sim \tau_{relax} \sim \xi^3$.

Additional variables in Hydro+

• At the CP the *slowest* new variable is the 2-pt function $\langle \delta m \delta m \rangle$ of the slowest hydro variable:

$$\phi_{\boldsymbol{Q}}(\boldsymbol{x}) = \int_{\Delta \boldsymbol{x}} \left\langle \delta m\left(\boldsymbol{x}_{+}\right) \, \delta m\left(\boldsymbol{x}_{-}\right) \right\rangle \, e^{i \boldsymbol{Q} \cdot \Delta \boldsymbol{x}}$$

where ${m x} = ({m x}_+ + {m x}_-)/2$ and $\Delta {m x} = {m x}_+ - {m x}_-.$

■ Wigner transformed b/c dependence on x (~ L) is slow and relevant $\Delta x \ll L$. Scale separation similar to kinetic theory.

$$\begin{array}{c} \Delta x \\ L \\ \end{array}$$

Relaxation of fluctuations towards equilibrium

● As usual, equilibration maximizes entropy $S = \sum_i p_i \log(1/p_i)$:

$$s_{(+)}(\epsilon, n, \phi_{\mathbf{Q}}) = s(\epsilon, n) + \frac{1}{2} \int_{\mathbf{Q}} \left(\log \frac{\phi_{\mathbf{Q}}}{\bar{\phi}_{\mathbf{Q}}} - \frac{\phi_{\mathbf{Q}}}{\bar{\phi}_{\mathbf{Q}}} + 1 \right)$$

Relaxation of fluctuations towards equilibrium

● As usual, equilibration maximizes entropy $S = \sum_i p_i \log(1/p_i)$:

$$s_{(+)}(\epsilon, n, \phi_{\boldsymbol{Q}}) = s(\epsilon, n) + \frac{1}{2} \int_{\boldsymbol{Q}} \left(\log \frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}} - \frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}} + 1 \right)$$

Entropy = log # of states, which depends on the width of P(m_Q), i.e., \(\phi_Q\):

Wider distribution – more microstates
– more entropy:
$$\log(\phi/\bar{\phi})^{1/2}$$
;

vs

■ Penalty for larger deviations from peak entropy (at $\delta m = 0$): $-(1/2)\phi/\bar{\phi}$.

Maximum of $s_{(+)}$ is achieved at $\phi = \overline{\phi}$.

--- equilibrium (variance $\bar{\phi}$)

—- actual (variance ϕ)

Hydro+ mode kinetics

9 The equation for ϕ_{Q} is a relaxation equation:

$$(u \cdot \partial)\phi_{\boldsymbol{Q}} = -\gamma_{\pi}(\boldsymbol{Q})\pi_{\boldsymbol{Q}}, \quad \pi_{\boldsymbol{Q}} = -\left(\frac{\partial s_{(+)}}{\partial\phi_{\boldsymbol{Q}}}\right)_{\epsilon,n}$$

 $\gamma_{\pi}(Q)$ is known from mode-coupling calculation in 'model H'. It is universal (Kawasaki function).

$$\gamma_{\pi}(oldsymbol{Q})pprox 2DQ^2$$
 for $Q\ll\xi^{-1}$. ($D\sim 1/\xi$).

- Characteristic rate: $\Gamma(Q) \sim \gamma_{\pi}(Q) \sim \xi^{-3}$ at $Q \sim \xi^{-1}$.
- Slowness of this relaxation process is behind the divergence of $\zeta \sim 1/\Gamma \sim \xi^3$ and the breakdown of *ordinary* hydro near CP (frequency dependence of ζ at $\omega \sim \xi^{-3}$).

Towards a general deterministic formalism

An, Basar, Yee, MS, 1902.09517,1912.13456

- To embed Hydro+ into a unified theory for critical as well as noncritical fluctuations we develop a general *deterministic* (*hydrokinetic*) formalism.
 - We expand hydrodynamic eqs. in $\{\delta m, \delta p, \delta u^{\mu}\} \sim \phi$ and then average, using equal-time correlator $G(x, y) \equiv \langle \phi(x + y/2) \phi(x - y/2) \rangle.$
 - What is "equal-time" in *relativistic* hydro?

Renormalization.

Equal time

We use equal-time correlator $G = \langle \phi(t, \boldsymbol{x}_+) \phi(t, \boldsymbol{x}_-) \rangle$.

But what does "equal time" mean? Needs a frame choice.

The most natural choice is local u(x) ($x = (x_+ + x_-)/2$).

Derivatives wrt x at "y-fixed" should take this into account:

Confluent derivative, connection and correlator

Take out dependence of *components* of ϕ due to change of u(x):

 $\Delta x \cdot \bar{\nabla} \phi = \Lambda(\Delta x) \phi(x + \Delta x) - \phi(x)$

Confluent two-point correlator:

(

$$\bar{G}(x,y) = \Lambda(y/2) \left\langle \phi(x+y/2) \phi(x-y/2) \right\rangle \Lambda(-y/2)^{T}$$

(boost to u(x) – rest frame at midpoint)

$$\bar{\nabla}_{\mu}\bar{G}_{AB} = \partial_{\mu}\bar{G}_{AB} - \bar{\omega}^{C}_{\mu A}\bar{G}_{CB} - \bar{\omega}^{C}_{\mu B}\bar{G}_{AC} - \overset{\circ}{\omega}^{b}_{\mu a}\,y^{a}\frac{\partial}{\partial y^{b}}\bar{G}_{AB}\,.$$

Connection $\bar{\omega}$ corresponds to the boost Λ .

Connection $\mathring{\omega}$ makes sure derivative is independent of the choice of local space triad e_a needed to express $y \equiv x_+ - x_-$.

We then define the Wigner transform $W_{AB}(x,q)$ of $\bar{G}_{AB}(x,y)$.

Sound-sound correlation and phonon kinetic equation

Upon lots of algebra with many *miraculous* cancellations we arrive at "hydro-kinetic" equations for components of W.

The longitudinal components, corresponding to p and u^{μ} fluctuations at $\delta(s/n) = 0$, obey the following eq. $(N_L \equiv W_L/(wc_s|q|))$

$$\underbrace{\left[(u+v) \cdot \bar{\nabla} + f \cdot \frac{\partial}{\partial q} \right] N_L}_{\mathcal{L}[N_L] - \text{Liouville op.}} = -\gamma_L q^2 \left(N_L - \underbrace{\frac{T}{c_s |q|}}_{N_L^{(0)}} \right)$$

Sinetic eq. for phonons with $E = c_s |q|$, $v = c_s q/|q|$ ($q \cdot u = 0$)

$$f_{\mu} = \underbrace{-E(a_{\mu} + 2v^{\nu}\omega_{\nu\mu})}_{\text{inertial + Coriolis}} \underbrace{-q^{\nu}\partial_{\perp\mu}u_{\nu}}_{\text{"Hubble"}} - \bar{\nabla}_{\perp\mu}E$$

• $N_L^{(0)}$ is equilibrium Bose-distribution.

Diffusive mode fluctuations

Fluctuations of $m \equiv s/n$ and transverse components of u^{μ} obey

$$\begin{array}{ll} (\text{entropy-entropy}) & \mathcal{L}[N_{mm}] = -2\Gamma_{\lambda} \left(N_{mm} - \frac{c_p}{n} \right) + \dots \\ (\text{entropy-velosity}) & \mathcal{L}[N_{mi}] = -2(\Gamma_{\eta} + \Gamma_{\lambda})N_{mi} + \dots \\ (\text{velocity-velocity}) & \mathcal{L}[N_{ij}] = -2\Gamma_{\eta} \left(N_{ij} - \frac{Tw}{n} \right) + \dots \end{array}$$

- \mathcal{L} is Liouville operator with v = f = 0, i.e., no propagation, but diffusion: $\Gamma_X = \gamma_X q^2$, where $\gamma_\lambda = \lambda/c_p$ and $\gamma_\eta = \eta/w$.
- "..." are terms ~ background grads, mixing $N_{mm} \leftrightarrow N_{mi} \leftrightarrow N_{ij}$.
- Near critical point Γ_{λ} is smallest, $\gamma_{\lambda} = \lambda/c_p \sim 1/\xi \rightarrow 0$.

 N_{mm} equation decouples and matches Hydro+ ($\phi_{Q} = nN_{mm}$). Very nontrivially!

Beyond Hydro+

- Hydro+ breaks down when hydro frequency/rate is of order ξ⁻² due to next-to-slowest modes (N_{mi} and N_{ij}).
 λ is frequency dependent.
- The formalism extends Hydro+ to higher frequencies, i.e., shorter hydrodynamic scales (all the way to ξ.)

Fluctuations (N_{mi}) enhance conductivity λ for small ω .

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} W(x,q).$

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} W(x,q)$.

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} W(x,q)$.

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} W(x,q)$.

$$\langle T^{\mu\nu}(x)\rangle = \epsilon u^{\mu}u^{\nu} + p(\epsilon, n)\Delta^{\mu\nu} + \Pi^{\mu\nu} + \left\{G(x, 0)\right\}$$
$$= \epsilon_R u^{\mu}_R u^{\nu} + p_R(\epsilon_R, n_R)\Delta^{\mu\nu}_R + \Pi^{\mu\nu}_R + \left\{\tilde{G}(x, 0)\right\} .$$

- Add higher-order correlators for non-gaussian fluctuations.
- Connect *fluctuating* hydro with freezeout kinetics and implement in full hydrodynamic code and event generator.
 Compare with experiment.
- First-order transition in fluctuating hydrodynamics?
- Connection to action principle (SK) formulation.

- A fundamental question about QCD phase diagram: Is there a critical point on the QGP-HG boundary?
- Intriguing results from experiments (BES-I).
 More to come from BES-II (also FAIR/CBM, NICA, J-PARC).
 Quantitative theoretical framework is needed ⇒ BEST.
- In H.I.C., the magnitude of the fluctuation signatures of CP is controlled by dynamical *non-equilibrium effects*.

In turn, critical fluctuations affect hydrodynamics.

The interplay of critical and dynamical phenomena: Hydro+.