

Challenges and opportunities in flow studies Jiangyong Jia

- Introduction
- Challenges
- Opportunities

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

Dynamics and properties of QGP

Challenge: simultaneous determination of two unknowns

Dynamics > Properties

- Properties drives the dynamics of the medium
- Extraction of properties require good knowledge of dynamics

Connecting the initial and final state

Perturbing the system with different initial state fluctuations

Richness of flow fluctuations

Curtsey of L.Pang and X.N Wang, EbyE 3D hydro+AMPT condition

Fluctuation from event to event

Richness of flow fluctuations

Curtsey of L.Pang and X.N Wang, EbyE 3D hydro+AMPT condition

Fluctuation from event to event

Richness of flow fluctuations

Curtsey of L.Pang and X.N Wang, EbyE 3D hydro+AMPT condition

Fluctuation within a single event $\frac{dN}{d\phi} \propto 1 + 2\sum_{n} v_n(p_T, \eta, ...) \cos n \left(\phi - \Phi_n(p_T, \eta, ...) \right)$

Flow observables

$$\left\langle \frac{dN_1}{d\phi d\eta dp_T} \frac{dN_2}{d\phi d\eta dp_T} \right\rangle \implies \left\langle V_n(p_{T1},\eta_1) V_n^*(p_{T2},\eta_2) \right\rangle \quad v_n \text{ from 2PC}$$

Multi-particle correlation function

Flow observables

$$\left\langle \frac{dN_1}{d\phi d\eta dp_T} \frac{dN_2}{d\phi d\eta dp_T} \right\rangle \implies \left\langle V_n(p_{T1}, \eta_1) V_n^*(p_{T2}, \eta_2) \right\rangle \quad v_n \text{ from 2PC}$$

Multi-particle correlation function

Examples

Single-flow cumulants

$$c_{n}\{2\} = \langle v_{n}^{2} \rangle \qquad n=1-7$$

$$c_{n}\{4\} = \langle v_{n}^{4} \rangle - 2 \langle v_{n}^{2} \rangle^{2}$$

$$c_{n}\{6\} = \langle v_{n}^{6} \rangle - 9 \langle v_{n}^{4} \rangle \langle v_{n}^{2} \rangle + 12 \langle v_{n}^{2} \rangle^{3}$$

- Symmetric cumulants $\operatorname{sc}_{n,m}\{4\} = \langle v_n^2 v_m^2 \rangle \langle v_n^2 \rangle \langle v_m^2 \rangle$ (n,m)=(2,3), (2,4)...
- Asymmetric cumulants (Event plane correlator)

$$\langle v_2^2 v_4 \cos 4(\Psi_2 - \Psi_4) \rangle \langle v_2^3 v_3^2 \cos 6(\Psi_2 - \Psi_3) \rangle \langle v_2 v_3 v_5 \cos (2\Psi_2 + 3\Psi_3 - 5\Psi_5) \rangle$$

• $\mathbf{v}_n - \mathbf{v}_0$ correlator $\langle v_n^2 N \rangle$, $\langle v_n^2 \delta p_T \rangle$... $\langle \delta p_{\rm T} \delta p_{\rm T} \rangle, \langle \delta p_{\rm T} \delta p_{\rm T} \delta p_{\rm T} \rangle \dots$

Success of hydrodynamics

Data-model comparison improves precision of transport parameters

- Multi-parameter adaptive fitting optimizes constraining power.
 - Differential information in the parameter space

...within a given model

Success of hydrodynamics

Data-model comparison improves precision of transport parameters

- Multi-parameter adaptive fitting optimizes constraining power.
 - Differential information in the parameter space ...within a given model

Power of flow fluctuations

Potential to further reduce model uncertainties

Challenge for understanding

Initial state t ≈ 0 fm/c	Pre-equilibrium t<0.5 fm/c	Hydrodynamics t ~ 0.5-5 fm/c
momentum anisotropy e.g. mini-jets, glasma Geometry-uncorrelated	Non-equilibrium transport <mark>Geometry</mark>	Collective expansion Response

Contributions from different stages are difficult to disentangle

- Initial geometry and Initial momentum anisotropy
- pre-equilibrium dynamics and entropy production
- $\eta/s(T)$, $\zeta/s(T)$, EOS, non-equilibrium dynamics
- Phase transition and hadronization
- Hadronic transport and Freezeout

Hard to experimentally vary one ingredient at a time

Initial state geometry

 By far the dominating source of fluctuations that we use to define the hydro response.

Linear response works well on average $v_{
m n}\propto\epsilon_n$

Consists with geometry-driven hydrodynamic response

Initial state geometry

- By far the dominating source of fluctuations that we use to define the hydro response.
- Linear response works well on average $v_{
 m n} \propto \epsilon_n$

What is the origin of these spreads?

70

Dissecting the hydro response

Leading ε_n does not capture everything about initial state

Subleading eccentricities from radial excitations

• Re-sum subleading ε_n and mode-mixing terms improves agreement

$$V_n(p_T) \approx \sum_{p=1}^{p_{\max}} \sum_{\{n',m'\}}^{\sum n'_i=n} \kappa^{(n)}_{\{n',m'\}}(p_T) \prod_{i=1}^p \epsilon_{n'_i,m'_i} + \mathcal{O}(\epsilon_{n,m_{\max}}) + \mathcal{O}(\epsilon^{p_{\max}+1})$$

How to characterize and understand the residual differences?

Understand the difference via flow fluctuations¹⁷

Often assumes:

L. Yan, J. Ollitrault arXiv:1312.6555 Giacalone, JNH, Ollitrault Phys.Rev. C95 (2017) no.5, 054910

Also not supported by data:

Role of initial-flow or final-state fluctuations?

Flow fluctuation in pp collisions

Hydro calculation yields positive c₂{4}, opposite to data.

Additional source of non-Gaussian fluctuations

What is missing in this hydro simulation?

 $\frac{\mathbf{v}_n\{4\}}{\mathbf{v}_n\{2\}} \stackrel{=}{\dashv}$

 $\frac{\varepsilon_n \{4\}}{\varepsilon \{2\}}$

Role of initial-flow in pA collisions

Hydrodynamics with subnucleonic fluctuations describe the data

Initial momentum anisotropy contribution alone could be large

Role of initial-flow in pA collisions

Initial-state $T^{uv}(x,y)$ tensor contains large momentum T^{0i} and stress T^{ij} \rightarrow source for initial flow

Geometry component of the T^{uv} dominates at large $N_{ch}.$ Momentum component of the T^{uv} dominates at low N_{ch}

Any direct experimental evidences for this ??

Pre-equilibrium dynamics in large system²¹

- Initial-flow is natural e.g. in bottom up thermalization 1506.06647 1605.04287
 - Interactions damp momentum-anisotropy, drive QGP towards local equilibrium
 - Necessary for rapid entropy production.

• Non-equilibrium effects important for v_n and spectra at $p_T > 2-3 \text{GeV/c}$

How to identify and quantify non-equilibrium effects and understand their role for bulk physics?

Hydro vs. non-equilibrium transport

• Non-equilibrium effects are naturally included in transport approach

P. Romatschke, R. Weller 1701.07145

Hydrodynamics ,, 0-5%

L.He, T.Edmonds, Z.Lin, F.Liu, D. Molnar and F. Wang 1502.05572, G. Ma and A Bzdak 1406.2804

AMPT transport

22

Both reflects final-state geometry response: $v_n = k_n \epsilon_n$ but different space-time dynamics

Hydro vs. non-equilibrium transport

• Non-equilibrium effects are naturally included in transport approach

P. Romatschke, R. Weller 1701.07145

Hydrodynamics ,, 0-5%

A Kurkela, U. Wiedemann, B.Wu 1905.05139, 1805.04081

Expect response coefficients k_n is smaller in transport $v_n = k_n \varepsilon_n$

23

Focus on short-range correlations!

Long-range reflects geometry response, $v_n \propto \epsilon_n$, hard to distinguish Short-range sensitive to the transport physics.

Break the boost-invariance

• The initial condition changes with rapidity

 $\langle \vec{\varepsilon}_n(\boldsymbol{\eta}_1^s) \vec{\varepsilon}_n^*(\boldsymbol{\eta}_2^s) \rangle \Longrightarrow \langle \vec{V}_n(\boldsymbol{\eta}_1) \vec{V}_n^*(\boldsymbol{\eta}_2) \rangle$ Flow decorrelation

 $\langle arepsilon_0(oldsymbol{\eta}_1^s)arepsilon_0(oldsymbol{\eta}_2^s)
angle$ $ightarrow \langle N(oldsymbol{\eta}_1)N(oldsymbol{\eta}_2)
angle$

Multiplicity/centrality decorrelation

Longitudinal flow decorrelations

- system-size dependence scales with N_{part}/2A, reflects overall shape not the size
- sensitive to nuclear deformation
- systematics not fully described by models See 2003.04340

Beam-energy scan and longitudinal dynamics²⁷

Nuclear overlap time becomes large at lower energies

Nucleons are decelerated with energy deposited over a larger space-time volume

Different stages no longer separated

Beam-energy scan and longitudinal dynamics²⁸

Nuclear overlap time becomes large at lower energies

Nucleons are decelerated with energy deposited over a larger space-time volume

Longitudinal dynamics as important as transverse dynamics

- Overlap between longitudinal stopping and transverse expansion
- Collective flow no-longer reflects only eccentricity.
- Nuclear stopping, baryon transport and importance of global vorticity
- EOS and transport properties are different
- Hadronic phase are more important

Description requires full 3+1D hydrodynamics or transport

Collective flow at low \sqrt{s}

Interplay between nuclear stopping and final-state collective motion Sideward flow

Elliptic flow

Higher-order flow harmonics

Flow results at HADES $\sqrt{s}=2.4$ GeV

all light nuclei. Theory calculations within a hydrodynamic framework adapted to the description of baryon dominated matter are needed to investigate the question whether this kind of matter really exhibits a hydrodynamical behavior, at least in the last stages of the collision prior to freeze-out. The high precision information on higher order flow coefficients is a major step forward in constraining the EOS.

Challenge to theory

2005.12217

- Complex interplay between longitudinal and transverse dynamics.
- Measured in Ψ₁→Large mode-coupling terms between different harmonics
- Interesting to measure v_n(Ψ_n) as well as EbyE fluctuations.

Look into the future

- Top \sqrt{s} : aim for precision in both dynamics and properties.
 - Easier with larger multiplicity and ~ boost invariance
- BES \sqrt{s} : more reliable modeling of the 3D dynamics
 - Identify observables with direct physics intuition
 - More measurements on flow fluctuations
- Improve understanding in
 - Initial state geometry
 - Early time dynamics
 - Final state dynamics and properties

New directions

- Collision System scan
- Rapidity scan

Flow in Ultra-central collisions

Bulk/shear viscosity and EOS 1408.0024,1502.04636, 1711.05207

May improves $v_2 v_3$ ordering but not sufficient

Nucleon-nucleon correlation

Improves v₂ v₃ ordering but not sufficient

0.04 0.03 0.03 0.03 0.03 0.025 0.03 0.025 0.02 0.025 0.02 0.025 0.02 0.025 0.02 0.025 0.02 0.025 0.02 0.025 0.02 0.025 0.02 0.03 0.03 0.025 0.02 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.03 0.025 0.02 0.02 0.02 0.02 0.03 0.025 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.05 0.03 0.03 0.03 0.04 0.05 0.3 GeV < P_T < 3 GeV 0.3 GeV 0.3 GeV < P_T < 3 GeV 0.3 GeV 0.5 GeV

Octupole deformation

2007.00780

Improves $v_2 v_3$ ordering but worsening description of v_3 {4}/ v_3 {2}

Volume fluctuation?

Goes opposite direction See 1904.04808

32

1406.7792

Flow in Ultra-central collisions

My bet: it is due to longitudinal dynamics

Large and non-linear decorrelation not yet reproduced by models

n

Analyze subleading flow including longitudinal fluctuations?

Likely some unknown 3D initial state effects amplified in UCC.

only transverse dynamics included so far

New handle on the initial state: $v_n - p_T$ correlation³

 $[p_T]$ anti-correlates with size

Fluctuation of radial size correlates with radial flow and harmonic flow

→ Strong v_n - p_T correlation, unique probe of the radial structures

sensitive to shape-size correlation

sensitive to nuclear deformation

New handle on the initial state: $v_n - p_T$ correlation³⁵

 $[p_T]$ anti-correlates with size

Fluctuation of radial size correlates with radial flow and harmonic flow

→ Strong v_n - p_T correlation, unique probe of the radial structures

sensitive to shape-size correlation

sensitive to nuclear deformation

Disentangle early-time dynamics

Initial state t ≈ 0 fm/c	Pre-equilibrium t<0.5 fm/c	Hydrodynamics t ~ 0.5-5 fm/c
eccentricity		
momentum anisotropy e.g. mini-jets, glasma Geometry-uncorrelated	Non-equilibrium transport <mark>Geometry</mark>	Collective expansion Response
Nucleon & subnucleon	nn/n	AuAu/PbPb

Extend lever-arm with symmetric small A+A collisions to disentangle different contributions

Why small A+A?

Collision System Scan

- Beam Energy Scan program has been vastly successful
 - Explore QCD Phase diagram
 - Bridge between high T and high $\mu_{\rm B}$ frontiers
- An extensive system-size scan could be equally fruitful
 - Detailed exploration of the initial state via hydrodynamics $v_n = k_n \varepsilon_n$
 - New tool for nuclear structure physics via $v_n v_n$, $v_n p_T$, $p_T p_T$ correlations

Nuclear deformation

Region 144<A<190 populated by large well-deformed nuclei.

Collision System Scan

- Beam Energy Scan program has been vastly successful
 - Explore QCD Phase diagram
 - Bridge between high T and high μ_B frontiers
- An extensive system-size scan could be equally fruitful
 - Detailed exploration of the initial state via hydrodynamics $v_n = k_n \varepsilon_n$
 - New tool for nuclear structure physics via $v_n v_n$, $v_n p_T$, $p_T p_T$ correlations

Alpha-clustering Analyzing ¹²C structure via collisions with a "disk" of Au:

Collision System Scan

- Scan doable during sPHENIX era 2023-2027!
 Beam Energy Scan program has been vastly successful
 - Explore QCD Phase diagram
 - Bridge between high T and high μ_B frontiers
- An extensive system-size scan could be equally fruitful
 - Detailed exploration of the initial state via hydrodynamics $v_2 = \kappa_2 \varepsilon_2$
 - New tool for nuclear structure physics via $v_n v_n$, $v_n p_T$, $p_T p_T$ correlations

Isobar-run demonstrates RHIC ability for controlled study of nuclei geometry

New frontier: Rapidity correlations

- Rapidity scan at fixed \sqrt{s} \iff Beam-Energy scan within same event
 - Similar properties but very different dynamics
 - More information, especially flow fluctuations \rightarrow more constrain on 3D hydrodynamics

- Rapidity scan at fixed \sqrt{s} \iff Beam-Energy scan within same event
 - Similar properties but very different dynamics
 - More information, especially flow fluctuations \rightarrow more constrain on 3D hydrodynamics

- Rapidity scan at fixed \sqrt{s} \iff Beam-Energy scan within same event
 - Similar properties but very different dynamics
 - More information, especially flow fluctuations \rightarrow more constrain on 3D hydrodynamics

- Rapidity scan at fixed \sqrt{s} \iff Beam-Energy scan within same event
 - Similar properties but very different dynamics
 - More information, especially flow fluctuations \rightarrow more constrain on 3D hydrodynamics

- A possibility with future detector upgrades
 - STAR forward upgrade $2.5 < \eta < 4$ with p_T and maybe some PID information
 - ATLAS/CMS forward upgrades with some PID capability
 - New hermetic HI detector with PID and $|\eta| < 4$
- LHC (a) lower \sqrt{s} and explore the rapidity correlations?

Summary

- Collective flow & hydrodynamics are most important tools to gain understanding on the dynamics and properties of HI
- Key challenge: how to disentangle different stages.
 - Initial geometry, initial flow and non-equilibrium dynamics
 - Longitudinal dynamics is crucial for BES
 - Comment: precision at high \sqrt{s} as baseline for modeling the more complex physics at low \sqrt{s} .
- Future opportunities
 - Need new approaches and observables to pinpoint initial state
 - Collision system scan to understand initial geometry and initial flow small A+A, deformation, alpha cluster
 - Rapidity scan as another handle on Phase diagram and longitudinal dynamics.

NCQ scaling

Higher-order flow fluctuations

$$(v_n\{4\})^4\equiv 2ig\langle v_n^2ig
angle^2-ig\langle v_n^4ig
angle$$

Peculiar sign change in v_4 fluctuations \rightarrow Not explained by non-linear effects

Significant dipolar flow fluctuations

Unreasonable success of hydro?

J₿∕

 In far from equilibrium region, hydro still fit the data, but gives wrong viscosity

$$T^{\mu\nu}_{\rm hydro} = (\epsilon + P_B)u^{\mu}u^{\nu} + P_Bg^{\mu\nu} - \eta_B\sigma^{\mu\nu}$$

Small gradients $\eta_B \sim \eta$ Large gradients $\eta_B \rightarrow 0$

Also A.Kurkela, U.Wiedemann, B. Wu 1805.04081

Different models for early-time dynamics have similar average hydro-field, but different differential distri., e.g shear tensor $\pi^{\mu\nu}(\mathbf{x})$.

Small system

- Current models can't simultaneously describe v_2 and v_3
 - iEBE-Vishnu underestimate v₃
 - CGC-Hydro over-estimate v_2 (driven mainly by initial flow).

Bjoern Schenke, Chun Shen, Prithwish Tribedy, 1908.06212, 2005.14682,

Compare RHIC and LHC

No difference between PbPb@LHC and AuAu@RHIC No difference between pPb@LHC and pAu@RHIC Will OO@LHC and OO@RHIC show consistent trend?

Agreement between two energies does not mean same viscous effects

Compare RHIC and LHC

No difference between PbPb@LHC and AuAu@RHIC No difference between pPb@LHC and pAu@RHIC Will OO@LHC and OO@RHIC show consistent trend? What about model prediction?

- predict 30% difference for OO
- predict no difference for pA
- predict small difference for AA

The O+O comparison provides strong constraints on these models