Diffusion Dynamics of Fluctuations of Conserved Charges

Masakiyo Kitazawa (Osaka U.)

RHIC-BES Theory and Experiment on-line seminar on Sep. 8, 2020, online

Beam-Energy Scan Program in Heavy-Ion Collisions

Thermal Fluctuations

Observables are fluctuating even in an equilibrated medium.

The noise is the signal. R. Landauer 1998

Event-by-Event Fluctuations

Form of distribution reflects microscopic properties

Cumulants: $\langle \delta N_p^2 \rangle, \langle \delta N_p^3 \rangle, \langle \delta N_p^4 \rangle_c$

Event-by-Event Fluctuations

Form of distribution reflects microscopic properties

Cumulants:
$$\langle \delta N_p^2
angle, \langle \delta N_p^3
angle, \langle \delta N_p^4
angle_c$$

Higher Order Cumulants

□ Higher order cumulans have non-trivial enhancement and suppressions → signal of the QCD critical point?

Why Fluctuations?

A Coin Game

Same expectation value.

A Coin Game

Fluctuations in HIC: 2nd Order

Search for QCD CP Onset of QGP

Fluctuation **increases**

Fluctuation decreases

Stephanov, Rajagopal, Shuryak, 1998; 1999

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000

Shot Noise

$$S_{
m shot} \sim \langle \delta I^2
angle$$

 $S_{
m shot} = 2e^* \langle I
angle$
charge of quasi-particles

Superconductors
with Cooper Pairs
$$e^* = 2e$$

Jehl+, Nature 405,50 (2000)

Higher orders: 3rd: ex. Beenakker+, PRL90,176802(2003) up to 5th: Gustavsson+, Surf.Sci.Rep.**64**,191(2009)

Higher-order Cumulants

 $8\langle \mathbf{\epsilon}^4 \rangle_{\mathbf{c}} = \langle \mathbf{\epsilon}^4 \rangle$

Asakawa, MK, PPNP 90, 299 (2016)

Non-Gaussian Fluctuations

Onset of QGP

Fluctuation decreases

Ejiri, Karsch, Redlich, 2006

Search for QCD CP

Fluctuation increases

Stephanov, 2009

Sign of Higher-order Cumulants

Higher order cumulants can change sign near CP.

Sign of Higher-order Cumulants

Higher order cumulants can change sign near CP.

Asakawa, Ejiri, MK, 2009

Stephanov, 2011;

Friman, Karsch, Redlich, Skokov, 2011; ...

Various Issues

to compare exp. results with thermodynamics

Volume (initial) fluctuations

Dynamical evolution

Resonance decays

Measurement in momentum space

Difference b/w proton & baryon number flucts.

□ Efficiency/acceptance correction

□ ...

16

Event-by-Event Fluctuations

When are observed fluctuations generated? Observed fluc. ≠ fluc. at chemical freeze out Asakawa, MK, Muller, PRC (2020)

Time Evolution of Fluctuations

Thermal Distribution in y Space

distribution in rapidity space

• flat freezeout surface

∆y Dependence

Ohnishi, MK, Asakawa, PRC ('16)

m

pions

nucleons

 $w \simeq 1.5$

 $w \simeq 9$

 \mathcal{W}

At $\Delta y=1$, the effect is **not** well suppressed

Time Evolution

Variation of a conserved charge is achieved only through diffusion.

The larger $\Delta \eta$, the slower diffusion

Same physics as balance func. / 2-particle correlation Pratt, Steinhorst, 2008.08623

Low Energy Collisions

Large contribution of global charge conservation
 Violation of Bjorken scaling

Careful treatment is required to interpret fluctuations at low beam energies!

Detector-Response Correction

Correction assuming a binomial response

Bialas, Peschanski (1986); MK, Asakawa (2012); Bzdak, Koch (2012);

Correction for general case

Nonaka, MK, Esumi (2018)

Proton vs Baryon Cumulants

MK, Asakawa, 2012; 2012

Clear difference b/w proton and baryon # cumulants.

D Isospin randomization justifies the reconstruction of $\langle N_B^n \rangle_c$ via the binomial model.

D Similar problem on the **momentum cut**...

Fragile Higher Orders

Higher orders are more seriously affected by efficiency loss.
 Reconstruction of true cumulants is more desirable.
 Reliable analysis is more difficult for higher orders.

Pileup Correction

10⁶ Number of events $\alpha = 0.05$ pileup/tota α_{m} 0.3 10⁵ 0.2 true 10⁴ 100200 300 10³ 5-10% -5% pileup 10² Total 10 • Pileup True 200 100 300 400 500 m

Nonaka, MK, Esumi, NIM, in press, 2006.15809

"Pileup events"

Collisions with small spacetime interval identified as a single event.

Fluctuations are distorted by the pileup events.

Sonbun+ ('18); Garg, Mishra ('17)

 This effect can be corrected by a systematic procedure.
 Strong effects at the most central bin.

Fluctuations in Dynamically Expanding Systems

Thanks to: A. Chatterjee, M. Bluhm, S. Esumi, M. Nahrgang, T. Nonaka

2nd Order @ ALICE

Net charge fluctuation

Net proton fluctuation

Net-charge fluctuation has a suppression, but net-proton fluctuation does not. Why?? Earlier fluctuations or resonance decays?

What is the VOLUME?

 $\Box \chi_2 \rightarrow T^3 \text{ in the high } T \text{ limit}$ $\Box \text{ In HIC, } V \rightarrow 0 \text{ as } \tau \rightarrow \text{small}$

How do these effects compete in real evolution?

HotQCD, PRD86 ('12)

Revisiting AHM-JK's Argument

Asakawa-Heinz-Müller/Jeon-Koch ('00)

Hadronic OGP

System in a space-time rapidity ΔY

Entropy $S_{\Delta Y}$ is conserved in perfect hydro. expansion

 $S_{\Delta Y} = sV_{\Delta Y}$

$$\frac{\langle \delta N^2 \rangle_{\Delta Y}}{S_{\Delta Y}} = \frac{\chi_2}{s}$$

Described only by thermodynamic quantities

Baryon: Almost *T* independent
 Electric charge: suppression

Consistent with ALICE results

B & Q Cumulatns

Presentation by MK

RRTF, GSI, Apr. 2019

Δη dependence for tracing back the history!

Exp. Result @ STAR

PHYSICAL REVIEW C 100, 014902 (2019)

STAR, PRC100 ('19)

Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au + Au collisions

 $\langle \delta N_B^2 \rangle / \langle \delta N_Q^2 \rangle$ is directly calculable!

total particle numbers: private comm. with A. Chatterjee

Remarks:

□ Reconstructed baryon # cumulants are used.

 $\ensuremath{\square}$ a non-trivial factor to convert η to y

p_T cut correction is imposed

*p*_T-Cut Correction

Experimental measurement:

0.4<*p*₇<2.0 [GeV/c]

In the blast wave model,

54% of charged pions81% of protons

are observed @ $\sqrt{s_{NN}}$ =200 GeV

We try acceptance correction via binomial response.

B/Q: Lattice vs Exp. LATTICE STAR, 200GeV

Extracted "temperature" doesn't agree with thermal model.
 Observed charge fluctuation would be dominated by the effects of resonance decays.

D No direct evidence of primordial fluctuations at $\Delta \eta = 1.0$.

Diffusion of Higher-order Cumulants

in a simple diffusion model

Diffusion in Hadronic Stage Initial condition (uniform) cumulants: $\langle \bar{Q}^2 \rangle_c, \ \langle \bar{Q}^3 \rangle_c, \ \langle \bar{Q}^4 \rangle_c$ random walk diffusion master equation: MK+, PLB(2014) probabilistic argument: Ohnishi+, PRC(2016)

Baryons in Hadronic Phase

4th Order Cumulant

MK+ (2014) MK (2015)

40

4th Order Cumulant

MK+ (2014) MK (2015)

Cumulant at small $\Delta \eta$ is modified toward a Poisson value. Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Content of the second s

 Is non-monotonic Δη dependence already observed?
 Factorial cumulants will give us better understanding. Ling, Stephanov, PRC ('16); MK, Luo, PRC('17)
 Finite volume effects: Sakaida+, PRC90 (2015)

Evolution of Cumulant near QCD-CP

Evolution of Conserved-Charge Fluctuations

Equations describing transport of *n*:

Diffusion Equation $\frac{\partial n}{\partial t} = D\nabla^2 n$

t

Density

enhancement

 $\langle \xi(1)\xi(2)\rangle$

Stochastic Diffusion Equation (SDE)

$$\frac{\partial n}{\partial t} = D\nabla^2 n + \nabla \xi(x,t)$$

SDE with non-linear terms

$$\frac{\partial n}{\partial t} = \kappa \nabla^2 \frac{\delta \mathcal{F}}{\delta n} + \frac{\partial}{\partial x} \xi(x, t)$$

$$\mathcal{F} = \int dx \left(a\Delta n^2 + c(\nabla n)^2 + \lambda_3 \Delta n^3 + \cdots \right)$$

Evolution of baryon number density **Stochastic Diffusion Equation**

$$\partial_t n = D(t) \partial_x^2 n + \partial_x \xi$$

$$\langle \xi(x_1, t_1)\xi(x_2, t_2) \rangle = \frac{2D\chi_2}{\delta^{(2)}(1-2)}$$

 $D(t), \ \chi_2(t)$:parameters characterizing criticality

□ Analytic solution is obtained.

□ Study 2nd order cumulant & correlation function.

Parametrizing $D(\tau)$ and $\chi(\tau)$

Critical behavior

- 3D Ising (r,H)
- model H

Berdnikov, Rajagopal (2000)

Temperature dep.

2

1.5

1

0.5

0

00

Ð

r > 0 r = 0 (critical point)

 $- - - T_{\rm c} = 160 \, [{\rm MeV}]$

 $T \cdot \cdot \cdot \cdot T_0 = 220 \; [\text{MeV}]$

Signal of the critical enhancement can be clearer on a path away from the CP.

50 Away from the CP \rightarrow Weaker critical slowing down

SDE with Non-Linear Terms

$$\frac{\partial n}{\partial t} = \kappa \nabla^2 \frac{\delta \mathcal{F}}{\delta n} + \frac{\partial}{\partial x} \xi(x, t)$$
$$\mathcal{F} = \int dx \left(a \Delta n^2 + c (\nabla n)^2 + \lambda_3 \Delta n^3 + \cdots \right)$$

- Non-linear terms are necessary to intoruduce non-Gaussian fluctuations in equilibrium.
- No analytic solution
- Careful numerical implementation is needed.

Nahrgang, Bluhm, Schaefr, Bass, PRD99 ('19) Nahrgang, Bluhm, 2007.10371

SDE with Non-Linear Terms

□ Higher order cumulants

Pihan, Touroux, Nahrgang, Bluhm, Sami, MK, in prep.

Time evolution of 4th cumulant can be described.

1st order transition

Domain formation and peak structure in the correlation function are found.

Summary

- Comprehensive understanding of various order cumulants are needed to understand.
- 2nd-order cumulants already contain important physics.
- □ Fluctuations observed in HIC are not in equilibrium.
- Plenty of information encoded in rapidity window dependences.
- □ Future
 - □ Wider rapidity coverage
 - Evolution of fluctuations in realistic dynamical models

Resonance Decay

Resonance Decay

Slot Machine Analogy

Extreme Examples

Reconstructing Total Number

 $P_{0}(N_{0}) = \sum_{n} P_{0}(N_{n}) B_{1/2}(N_{0};N_{0})$

58 $B_p(k;N) = p^k (1-p)^{N-k} {}_k C_N$:binomial distr. func.

Non-Binomial Correction

Response matrix

$$\tilde{P}(n) = \sum_{N} \mathcal{R}(n; N) P(N)$$

Reconstruction for any R(n;N)

Nonaka, MK, Esumi (2018)

Example

multiplicity-dependent efficiency $\epsilon(N) = \epsilon_0 + (N - N_{ave})\epsilon'$

Confucius

Haste makes waste.

