Experimental Overview on the QCD Critical Point Search in Heavy-ion Collisions at RHIC

- selected results from RHIC beam energy scan

Xiaofeng Luo Central China Normal University

Oct. 06, 2020

Phase Diagram: Water

How matter self-organized by varying external conditions.

Critical Point and Critical Phenomena

T. Andrews.Phil. Trans. Royal Soc., 159:575 (1869). https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1869.0021

First CP was discovered in 1869 for CO₂ by Andrews.

Explained by Van der Waals (1873) Nobel Prize 1910.

 $\left(P + a\frac{n^2}{V^2}\right)(V - nb) = nRT$

Reviewed by : J. C. Maxwell, Nature 10, 477 (1874)

Critical Phenomena :

- Singularity of EoS : divergence of correlation length (ξ), susceptibilities (χ), heat capacity (C_V), critical opalescence.
- Universality and critical exponents : determined by degree of freedom and symmetry of system. (Landau mean field theory, renormalization group theory)
- Finite size effects.

Theory of strong interaction : Quantum Chromodynamics (QCD)

The Nobel Prize in Physics 2004

"for the discovery of asymptotic freedom in the theory of the strong interaction"

 Asymptotic freedom: Quarks and Gluons weakly interacting
 1): when close together
 2): large momentum transfer.

Confinement: No free quarks and gluons observed in nature.

Can we free the quark and gluons from hadrons and create a new form of matter ?

QCD Thermodynamics (μ_B =0) : Lattice **QCD**

A. Bazavov, et al. (hotQCD), PRD 90, 094503 (2014)

Rapid rise of the energy density:

Rapid increase in degrees of freedom due to transition from hadrons to quarks and gluons.

S Borsanyi, et al. (WB), JHEP 1009, 073 (2010). T. Bhattacharya, et al (hotQCD), PRL 113, 082001 (2014); A. Bazavov *hotQCD),* PRD 85,054503 (2012); PLB 795, 15 (2019)

Chiral susceptibility peaks at T_c:

$$\chi_{\bar{\Psi}\Psi} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial m^2}$$

Transition at
$$\mu_B$$
=0 with T_c ~ 156 MeV ~ trillion °C (10¹²)

Big Bang

Heat matter to trillion (10¹²) °C

Quark-Gluon Plasma (QGP): a state of matter where the quarks and gluons are the relevant degrees of freedom, exist at few µs after the Big-Bang

Relativistic heavy-ion collisions are a unique tool to create and study hot QCD matter and its phase transition under controlled conditions

T. D. Lee and G. C. Wick, Phys. Rev. D 9, 2291 (1974). Vacuum stability and vacuum excitation in a spin-0 field theory.

Xiaofeng Luo

Little Bang

Scientists Serve Up "Perfect" Liquid

Quark matter studied in nuclear collisions, since 1987 at BNL/AGS (2.7-4.8 GeV), 1996 at CERN/SPS (6.2-17.3 GeV), since 2000 at BNL/RHIC (7.7-200 GeV), since 2010 at the CERN/LHC at $\sqrt{s_{NN}} = 2.76-5.02$ TeV.

Experimental observations support the formation of strongly couple and liquid like Quark- Gluon Plasma (sQGP) in Heavy-ion Collisions.

- Low viscosity
- Rapid thermalization
- Jet quenching and medium response
- Partonic collectivity
- Strong electromagnetic field and large vorticity

Jet Quenching

Partonic Collectivity v₂

Phys. Rev. Lett. 117, 212301 (2017).

QCD Phase Diagram

K. Fukushima and C. Sasaki, Prog. Part. Nucl. Phys, 72, 99 (2013).

A. Bzdak et al., Phys. Rep. 853, 1 (2020).

Key question : is there a QCD critical point at finite baryon density region?

Its confirmation will greatly enhance our understanding of the universe evolution and structure of visible matter.

Preliminary collection from Lattice, DSE, FRG and PNJL (2004-2020)

Large uncertainties for the estimation of CP location.

- 1. Scan the QCD phase diagram and use sensitive experimental observables.
- 2. Optimize the experimental methods to precisely measure the observables in heavy-ion collisions
- 3. Dynamical modeling heavy-ion collisions with critical fluctuations.
- 4. Understanding the experimental and/or physics background (non-CP) and extract the CP signal.

Need collaborative work between experimentalist and theorist

Invited Review : X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017)

Current and Future Facilities for exploring the QCD Phase Structure

STAR Detector System

RHIC Beam Energy Scan - I (2010-2017)

Au+Au Collisions

√s _{NN} (GeV)	Events (X10 ⁶)	Year	*μ _Β (MeV)	*Т _{СН} (MeV)
200	238	2010	25	166
62.4	46	2010	73	165
54.4	1200	2017	83	165
39	86	2010	112	164
27	30	2011	156	162
19.6	15	2011	206	160
14.5	13	2014	264	156
11.5	7	2010	315	152
7.7	3	2010	420	140

*(μ_B, T_{CH}) : J. Cleymans et al., PR**C73**, 034905 (2006) STAR, arXiv:1007.2613 <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493</u> https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Uniform acceptance at Mid-rapidity 7.7 GeV 39 GeV 200 GeV Au+Au 7.7 Ge TPC Au+Au 89 GeV Au+Au 200 GeV STAR Preliminary STAR Preliminar STAR Preliminar Transverse Momentum (GeV/c Q2.5 Au+Au 39 GeV TPC Au+Au 7,7 GeV Au+Au 200 GeV STAR Preliminan STAR Preliminar STAR Preliminar TPC Au+Au 39 Ge\ TPG Au+Au 7.7 GeV D Au+Au 200 GeV STAR Preliminar STAR Preliminary 3.5 STAR Preliminan р Rapidity Rapidity Rapidity **Particle Rapidity**

Access the QCD phase diagram: vary collision energies and/or system size. **RHIC BES-I : 25 < \mu_B < 420 \text{ MeV}**

Xiaofeng Luo

 \geq

Measurements

- 1. Particle Momentum (p_x , p_y , p_z) -> (p_T , y, ϕ)
- 2. Particle Identification (dE/dx, TOF etc.).

Probability Density Distributions in Momentum Space

Prob. = f(p_{x1} , p_{y1} , p_{z1} , p_{x2} , p_{y2} , $p_{z2, ..., } p_{xn}$, p_{yn} , p_{zn})

- > Particle multiplicity, p_T spectra, dN/dy etc.
- Multi-particle correlation functions (p_T , y, φ, mul.) : differential (HBT, C₂(ΔΦ, Δη), etc.) and integral (flow, cumulants, factorial moments etc.).

Due to unperfect of detector/methods, various corrections and uncertainties estimation – things that experimentalist spend much time to do.

Kinetic Freeze-out Dynamics : Collective Expansion

STAR: Phys. Rev. C 96, 044904 (2017).

 $E \frac{d^{3}N}{dp^{3}} \propto \int_{\sigma} e^{-(u^{\mu}p_{\mu})/T_{fo}} p d\sigma_{\mu} \Rightarrow$ $\frac{dN}{m_{T} dm_{T}} \propto \int_{0}^{R} r dr m_{T} K_{1} \left(\frac{m_{T} \cosh \rho}{T_{fo}}\right) I_{0} \left(\frac{p_{T} \sinh \rho}{T_{fo}}\right)$ $\rho = \tanh^{-1} \beta_{T} \qquad \beta_{T} = \beta_{S} \left(\frac{r}{R}\right)^{\alpha} \qquad \alpha = 0.5, \ 1, \ 2$

E. Schnedermann, J. Sollfrank, and U. Heinz, PRC 48,2462 (1993).

Expanding source is **assumed** to be:

- 1. Locally thermal equilibrated.
- 2. Boosted in radial direction.

Matters flow with the same velocity.

Fit p_T spectra to obtain parameters:

- > Thermal temperature : T_{f0} ,
- > Transverse velocity parameter: $<\beta_T>$

Chemical Freeze-out : Data Vs. Thermal Model

Phys. Comm. 180, 84 (2009)

$$\ln Z^{GC}(T, V, \{\mu_i\}) = \sum_{\text{species } i} \frac{g_i V}{(2\pi)^3} \int d^3 p \ln(1 \pm e^{-\beta(E_i - \mu_i)})^{\pm 1}$$

$$N_i^{GC} = T \frac{\partial \ln Z^{GC}}{\partial \mu_i} = \frac{g_i V}{2\pi^2} \sum_{k=1}^{\infty} (\mp 1)^{k+1} \frac{m_i^2 T}{k} K_2 \left(\frac{km_i}{T}\right) \times e^{\beta k\mu_i}$$

Andronic, Braun-Munzinger, Redlich, Stachel, Nature 561, 321 (2018).

Features of thermal model:

- > Non-interacting hadrons and resonances
- Thermodynamically equilibrium system

Dynamics characterized by: Temperature T_{ch} and baryon chemical potential μ_B

Chemical freeze-out and QCD phase boundary

By courtesy of Dr. N. Xu

- > The chemical freeze-out T and μ_B (GCE) are close to the phase boundary determined from Lattice QCD with μ_B < 300 MeV.
- > The peak of K⁺/ π^+ ratio around 8 GeV can be well described by thermal model, where the system start to enter into "high baryon density region". (< 8 GeV, μ_B > 420 MeV)

STAR : PRC96, 044904 (2017); PRC 102, 034909 (2020). ALICE : PRL 109, 252301 (2012), PRC 88, 044910 (2013). A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018). X. Luo, S. Shi, N. Xu and Y. Zhang, Particle 3, 278 (2020); K. Fukushima, B. Mohanty, N. Xu, arXiv: 2009.03006; J. Randrup et al., Phys. Rev. C74, 047901(2006).

Sensitive observables for QCD phase transition

In the vicinity of critical point and/or 1st order phase transition

Large density fluctuations and Baryon clustering

Higher moments of conserved charge (B, Q, S) distributions

light nuclei and hypernuclei production

Experimental Signatures:

Non-monotonic variation as a function of collision energy.

Light Nuclei production in high energy nuclear collisions

"Snowball in hell"?

- Light nuclei (d, t, ³He): loosely bond object with few MeV \geq binding energies can be produced in HIC.
- \triangleright Understanding the production mechanism of light nuclei in HIC will provide baseline to map the QCD phase boundary. coalescence, microscopic interactions, thermal production?

Braun-Munzinger, Dönigus, NPA 987, 144 (2019). Benjamin Dönigus, IJMPE 29, 2040001 (2020).

J. Chen, et al., Phys. Rep. 760, 1 (2018)

 $^{3}_{A}H$

- D. Oliinychenko, et al., Phys. Rev. C 99, 044907 (2019).
- Y. Oh, Z.W. Lin, C.M. Ko, Phys. Rev. C 80, 064902 (2009).

 1.6755 ± 0.0028

4.9

S. Sombun et al., Phys. Rev. C 99,014901 (2019).

Near first order P.T. or critical point : large density fluctuations and baryon clustering

Based on coalescence model:

$$\begin{split} N_{d} &= \frac{3}{2^{1/2}} \left(\frac{2\pi}{m_{0}T_{eff}} \right)^{3/2} N_{p} \langle n \rangle \big(1 + C_{np} \big) \\ N_{t} &= \frac{3^{\frac{3}{2}}}{4} \left(\frac{2\pi}{m_{0}T_{eff}} \right)^{3} N_{p} \langle n \rangle^{2} (1 + \Delta n + 2C_{np}) \end{split}$$

New observable : Yield ratio of light nuclei

$$N_t \cdot N_p / N_d^2 \approx g(1 + \Delta n)$$

Neutron density fluctuations $\Delta n = \langle (\delta n)^2 \rangle / \langle n \rangle^2$ g=0.29

Yield ratio of light nuclei is sensitive to the baryon density fluctuations and can be used to probe the signature of 1st order phase transition and/or critical point in heavy-ion collisions.

K.J. Sun, L.W. Chen, C.M. Ko, and Z.B. Xu, PLB 774, 103 (2017);
K.J. Sun, L.W. Chen, C.M. Ko, J. Pu, and Z.B. Xu, PLB781, 499 (2018)
Edward Shuryak, Juan M. Torres-Rincon, PRC 100, 024903 (2019); PRC 101, 034914 (2020); EPJA 56, 241 (2020).

Effects of 1st order phase transition : Yield ratio of light nuclei

First order phase transition : evolution of net-baryon number density at z=0

Particle Identification

Deuteron and triton production from BES-I at RHIC

Dash lines (blast-wave function fits) : $\frac{d^2N}{p_Tdp_Td_y} \propto \int_0^R rdrm_T I_0\left(\frac{p_Tsinh\rho}{T}\right) K_1\left(\frac{m_Tcosh\rho}{T}\right)$

E. Schnedermann, J. Sollfrank, and U. Heinz, PRC 48,2462 (1993).

STAR BES-I data : Deuteron, Phys. Rev. C 99, 064905 (2019). Triton : Dingwei Zhang (for STAR), QM2019 [arXiv : 2002.10677]; Hui Liu, Poster, QM2019.

Xiaofeng Luo

Deuteron and Triton dN/dy from RHIC BES-I

Deuteron

Triton

Increases with decreasing energy: baryon stopping.

 \succ Increases from peripheral to central collisions.

STAR BES-I data : Deuteron, Phys. Rev. C 99, 064905 (2019). Triton : Dingwei Zhang (for STAR), QM2019 [arXiv : 2002.10677]; Hui Liu, Poster, QM2019.

Energy dependence of d/p and t/p ratios

Thermal model inputs: $T_{CF} = T_{CF}^{lim} / (1 + \exp(2.60 - \ln(\sqrt{s_{NN}})/0.45)))$ $\mu_B = a / (1 + 0.288\sqrt{s_{NN}})$ With $\sqrt{s_{NN}}$ in GeV $T_{CF}^{lim} = 158.4$ MeV and a = 1307.5 MeV A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, PLB 697 (2011) 203.

Proton yield corrected for weak decay feed down based on a STAR paper using UrQMD + GEANT simulation : https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.121.032301

- The d/p ratios from LHC、RHIC down to AGS energies can be well described by thermal model.
- t/p and ³He/p ratios are significant deviation and below the thermal model expectations at RHIC and SPS energies.

ALICE data : Phys. Rev. C 93, 024917 (2016) STAR data : Deuteron, Phys. Rev. C 99, 064905 (2019). Triton : Dingwei Zhang (for STAR), QM2019 [arXiv : 2002.10677]; Hui Liu, Poster, QM2019.

Dingwei Zhang (STAR), QM2019 [arXiv: 2002.10677]

The yield ratio is related to neutron density fluctuations.

$$N_t \cdot N_p / N_d^2 = g(1 + \Delta n),$$

with g = 0.29

Proton yield corrected for weak decay feed down used in the left plot based on a STAR paper using UrQMD + GEANT simulation : https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.121.032301

A hybrid model treatment of proton weak decay correction and microscopic production of deuteron via pion catalysis : D. Oliinychenko, C. Shen and V. Koch, arXiv: 2009.01915

Yield ratio shows a non-monotonic dependence on collision energy in 0-10% Au + Au collisions, with a peak around 20-30 GeV.

> Flat energy dependence of yield ratio observed in JAM, AMPT, UrQMD, hybrid model.

JAM : H. Liu et al, Phys. Lett. B 805, 135452 (2020). AMPT : K. Sun, C. M. Ko, arXiv: 2005.00182. Hydro + transport + coal. : W. Zhao et al., arXiv: 2009.06959 UrQMD: X. G. Deng, Y. G. Ma, Phys. Lett. B 808, 135668 (2020)

Hypernucleus : A New Dimension to the World of Nuclei

Observation of an Antimatter Hypernucleus STAR, Science 328, 58 (2010)

Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton STAR, Nature Physics 16, 409 (2020)

Hypernucleus provides an indirect way to study Y-N interaction

Important to understand strong interaction and EoS of neutron stars

Production of hypernucleus and yield ratios

Thermal model

Strangeness population factor :

$$S_3 = {}^3_{\Lambda} \mathrm{H}/({}^3\mathrm{He} \times \Lambda/p)$$

PRL 95(2005) 182301, PRC 74(2006) 054901, PRD 73(2006)014004; S.Zhang et al., PLB 684 (2010) 224 Recently Proposed: $S_2 = \frac{N_{3\,H}^3}{N_{\Lambda}N_d}$

Sensitive to local baryon-strangeness correlation.

1. Fluctuations signals the QCD Critical Point.

M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998). M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. D 60, 114028 (1999).

Probe singularity of the equation of state: Divergence of the fluctuations.

2. Fluctuations signals the Quark Deconfinement.

S. Jeon and V. Koch, Phys. Rev. Lett. 85, 2076(2000). M. Asakawa, U. Heinz and B. Muller, Phys. Rev. Lett. 85, 2072 (2000).

Proposed experimental observables:

- 1. Pion multiplicity fluctuations.
- **2.** Mean p_T fluctuations.
- 3. Particle ratio fluctuations

Two-point correlation functions of magnetic moment:

$$G(\vec{r}) = \left\langle S(\vec{r})S(0) \right\rangle - \left\langle S(\vec{r}) \right\rangle \left\langle S(0) \right\rangle$$

 $S(\vec{r})$: Spatial Magnetic moment

Susceptibility

(2nd fluctuations)

t : reduced temperature

Correlation length

$$\chi \propto \int G(\vec{r}) d\vec{r} \propto \xi^2(t)$$

Higher Moments of Conserved Quantities (B, Q, S)

 Higher order cumulants/moments: describe the shape of distributions and quantify fluctuations. (sensitive to the correlation length (ξ))

$$\langle \delta N \rangle = N - \langle N \rangle$$

$$C_{1} = M = \langle N \rangle$$

$$C_{2} = \sigma^{2} = \langle (\delta N)^{2} \rangle$$

$$\langle (\delta N)^{3} \rangle_{c} \approx \xi^{4.5}, \quad \langle (\delta N)^{4} \rangle_{c} \approx \xi^{7}$$

$$C_{3} = S\sigma^{3} = \langle (\delta N)^{3} \rangle$$

$$C_{4} = \kappa \sigma^{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2}$$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009). M.Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009). M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).

2. Direct connect to the susceptibility of the system.

$$\chi_q^{(n)} = \frac{1}{VT^3} \times C_{n,q} = \frac{\partial^n (p/T \wedge 4)}{\partial (\mu_q)^n}, q = B, Q, S$$

S. Ejiri et al, Phys.Lett. B 633 (2006) 275. Cheng et al, PRD (2009) 074505. B. Friman et al., EPJC 71 (2011) 1694. F. Karsch and K. Redlich , PLB 695, 136 (2011).S. Gupta, et al., Science, 332, 1525(2012). A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13)

Event-by-Event Distribution

Signals of QCD Critical Point : Theory/Model

1

()

M. Stephanov, PRL107, 052301 (2011); J. Phys. G 38, 124147 (2011).
Schaefer et al., PRD 85, 034027 (2012); W. Fu et al., PRD 94, 116020 (2016).
J.W. Chen, J. Deng, et al., PRD 93, 034037 (2016). PRD 95,014038 (2017).
W. K. Fan, X. Luo, H.S. Zong, IJMPA 32, 1750061 (2017);
G. Shao et al., EPJC 78, 138 (2018); Z. Li et al., EPJC 79, 245 (2019).
A. Bzdak et al., Phys. Rep. 853, 1(2020). D. Mroczek et al, arXiv: 2008.04022.

Caveats : Non-equilibrium, finite size/time effects

M. Asakawa, M. Kitazawa, B. Müller, PRC 101, 034913 (2020). S Mukherjee, R. Venugopalan, Y Yin, PRL 117, 222301 (2016). S. Wu, Z. Wu, H. Song, PRC 99, 064902 (2019).

 $\kappa\sigma^2 = 1$ (Poisson Fluctuations)

Characteristic signature of CP: Non-monotonic energy dependence

"Oscillation Pattern" Especially the Peak at low energies

(Anti-) Proton PID and Acceptance

Extend the phase space coverage by TOF. Doubled the accepted number of proton/anti-proton

 $\begin{array}{l} |y| < 0.5, \ \ 0.4 < p_T \, (GeV/c) < 0.8 \ (Low \ p_T, \ TPC \ PID) \\ 0.8 < p_T \, (GeV/c) < 2 \ \ (High \ p_T, \ TPC + TOF \ PID) \end{array}$

> Purity of proton and anti-proton identification > 97%.

Event-by-Event Net-Proton Distributions (0-5%)

Efficiency uncorrected.

Mean values increase when decreasing energy: STAR, arXiv: 2001.02852 Interplay between baryon stopping and pair production.

Volume Fluctuations

Glauber model: M. L. Miller et al., Ann.Rev.Nucl.Part.Sci.57, 205 (2007)

- The quantities (b, Npart, Ncoll) cannot be directly measured.
- Even at fix impact parameters, the number of participant and binary collisions still show large fluctuations.

Centrality Determination and Resolution : UrQMD simulation

Volume fluctuations are much smaller for most central collisions than mid-central and peripheral collisions.
 At forward region, the mixture of spectator and produced particles will lower the centrality resolution.

В

 \overrightarrow{b}

Effects of Volume Fluctuations on Multiplicity Cumulants

- Even for fixed N_{ch}, impact parameter b still show event-by-event fluctuations.
 - Cumulants can be affected by events mixed with different initial impact parameters/participants (volume fluctuations).

P. Zhuang, Lianshou Liu, Phys. Rev. D 42, 848(1990).
Skokov et al., Phys. Rev. C 88, 034911 (2013).
M. Zhou, J. Jia, Phys. Rev. C 98, 044903 (2018).

Centrality Bin Width Correction (CBWC)

Assumption: Independent and Identical emission sources

 $C_1(N) = \langle N_W \rangle C_1(n)$ $C_2(N) = \langle N_W \rangle C_2(n) + \langle n \rangle^2 C_2(N_W)$ $C_3(N) = \langle N_W \rangle C_3(n) + 3 \langle n \rangle C_2(n) C_2(N_W) + \langle n \rangle^3 C_3(N_W)$ $C_4(N) = \langle N_W \rangle C_4(n) + 4 \langle n \rangle C_3(n) C_2(N_W) + 3C_2^2(n) C_2(N_W)$ + $6 \langle n \rangle^2 C_2(n) C_3(N_W) + \langle n \rangle^4 C_4(N_W)$

Results from both CBWC and VFC methods are consistent.

T. Sugiura et al., Phys. Rev. C 100, (2019) 044904 Braun-Munzinger et al., Nucl. Phys. A 960 (2017)114-130 Skokov et al., Phys. Rev. C88 (2013) 034911

62.4

√s_{NN} (GeV)

Self-correlations

- Correlations between particles used in centrality definition and fluctuations. Methods to suppress/avoid self-correlations:
 - kinematic separation : use particle in different kinematic regions to define centrality. Net-charge fluctuations: STAR, PRL 113, 092301 (2014). Off-diagonal 2nd order cumualnts: STAR, PRC100, 014902 (2019). Net-Lambda fluctuations : STAR, PRC102, 014903 (2020).
 - 2) Exclude particles used in fluctuation analysis from the centrality definition net-proton and net-kaon fluctuations : STAR, PRL 112, 032302 (2014); arXiv: 2001.02852; PLB 785, 551 (2018).

Centrality determination at lower energies

- At low energies, centrality resolution obtained from charge particle multiplicities is very poor and CBWC is not efficient.
- New methods, such as machine learning technique could be helpful.
 - F. P. Li et al., J. Phys. G 47, 115104 (2020). M. O. Kuttan et al., arXiv : 2009.01584
- Volume fluctuations corrections ?

T. Sugiura et al., Phys. Rev. C 100, (2019) 044904; Braun-Munzinger et al., Nucl. Phys. A 960 (2017)114-130 Skokov et al., Phys. Rev. C88 (2013) 034911; HADES, PRC 102, 024914 (2020)

Efficiency Correction

Single variable and constant efficiency case.

$$B(n; N, \varepsilon) = \frac{N!}{n!(N-n)!} \varepsilon^n (1-\varepsilon)^{N-n}$$

$$< N >= \frac{< n >}{\mathcal{E}}$$

$$\sigma_N^2 = \frac{\sigma_n^2 + (\varepsilon - 1) < n >}{\varepsilon^2}$$

$$S_N \sigma_N^3 = \frac{S_n \sigma_n^3 + 3(\varepsilon - 1)\sigma_n^2 + (\varepsilon - 1)(\varepsilon - 2) < n > \varepsilon^3}{\varepsilon^3}$$

$${}_{n}\sigma_{N}^{4} = \frac{\kappa_{n}\sigma_{n}^{4} + 6(\varepsilon - 1)S_{n}\sigma_{n}^{3} + (7\varepsilon - 11)(\varepsilon - 1)\sigma_{n}^{2} + (\varepsilon - 1)(\varepsilon^{2} - 6\varepsilon + 6) < n > \varepsilon^{4}}{\varepsilon^{4}}$$

A. Bzdak and V. Koch, PRC86, 044904 (2012) STAR, PRL105, 022302 (2010); PRL 112, 032302 (2014) X. Luo, Phys. Rev. C 91, 034907 (2015).

Xiaofeng Luo

Momentum Dependent Efficiency Correction

Proton and anti-proton : Low p_T : TPC High p_T : TPC+ TOF

Factorial Moments -> Central Moments

$$\begin{split} m_n(N_p - N_{\bar{p}}) &= < (N_p - N_{\bar{p}})^n > = \sum_{i=0}^n (-1)^i \binom{n}{i} < N_p^{n-i} N_{\bar{p}}^i > \\ &= \sum_{i=0}^n (-1)^i \binom{n}{i} \left[\sum_{r_1=0}^{n-i} \sum_{r_2=0}^i s_2(n-i,r_1) s_2(i,r_2) F_{r_1,r_2}(N_p,N_{\bar{p}}) \right] \\ &= \sum_{i=0}^n \sum_{r_1=0}^{n-i} \sum_{r_2=0}^i (-1)^i \binom{n}{i} s_2(n-i,r_1) s_2(i,r_2) F_{r_1,r_2}(N_p,N_{\bar{p}}) \end{split}$$

Central Moments -> Cumulant

$$C_r(N_p - N_{\bar{p}}) = m_r(N_p - N_{\bar{p}}) - \sum_{s=1}^{r-1} \binom{r-1}{s-1} C_s(N_p - N_{\bar{p}})m_{r-s}(N_p - N_{\bar{p}})$$

A. Bzdak and V. Koch, PRC91, 027901 (2015) X. Luo, Phys. Rev. C 91, 034907 (2015).

Track-by-track efficiency method (based on factorial cumulant):

- 1. T. Nonaka et al., PRC95, 064912 (2017).
- 2. M. Kitazawa and X. Luo, PRC96, 024910 (2017).
- 3. X. Luo and T. Nonaka, PRC99, 044917 (2019).

Test of non-binomial effects and unfolding

STAR, arXiv: 2001.02852 Esumi et al, arXiv:2002.11253

> The results from binomial method and unfolding method are consistent.

Conclusion : non-binomial effects are not significant for current analysis

Statistical Uncertainties in Higher Moments Analysis

Statistical errors:

- Central > Peripheral (due to width of distribution)
- Higher-order > lower order
- Delta theorem method are consistent with Bootstrap method.

STAR : PRL 112, 032302 (2014) ; arXiv: 2001.02852. X. Luo, J. Phys. G39, 025008 (2012); Phys. Rev. C 91, 034907 (2015); Pandav et al, Nucl. Phys. A991, 121608 (2019) $error(\kappa\sigma^2) \propto \frac{\sigma^2}{\varepsilon^2} \frac{1}{\sqrt{N_{evts}}}$

Efficiency and CBWC corrections applied.

STAR: arXiv: 2001.02852 (short version)

A long paper is prepared and under review process within collaboration.

- 1) Net-p, proton and anti-proton cumulants
- 2) Correlation functions of protons and anti-protons
- 3) Energy, Centrality, acceptance dependence (p_T, y) .
- 4) Compare the data with various model results .

- > Cumulants of net-proton distributions from 0-5% central and 70-80% peripheral collisions.
- Mean values increase when energy decreases due to baryon stopping.
- Cumulants can be decomposed into various order correlation functions, which will provide additonal information for underlying physics.

- HRG (GCE) and transport model predicted monotonical energy dependence. Suppression at low energy due to conservation.
- Observe a non-monotonic energy dependence (7.7-62.4 GeV) in 0-5% net-proton κσ² with a significant of 3.1σ

HADES, PRC 102, 024914 (2020) STAR, arXiv: 2001.02852

Is there a peak structure below 20 GeV ? Need precise measurement at STAR (BES-II), CBM, NICA etc.

Comparison between model calculations and exp. data

- PBM et al. proposed the Canonical Ensemble (CE) for describing the system at high baryon density (baryon number conservation). Their calculations are consistent with transport model results.
- Excluded volume (EV) approach also leads to suppression at high baryon region.
 'repulsive force' suppress the fluctuations. 'Attractive' of protons at the 7.7 GeV collisions ?
- Goodness of the description between data and model results are evaluated with the p values obtained from χ² test.

PBM et al., arXiv: 2007.02463, S. He et al., PLB 762 296 (2016). J.H. Fu, PLB 722, 144 (2013), A. Bhattacharyya et al., PRC 90, 034909(2014). HRG+VDW: Vovchenko et al., PRC92,054901 (2015); PRL118,182301 (2017). RMF: K. Fukushima, PRC91 044910 (2015) p values from χ^2 test below 27 GeV

[Moments	HRG GCE	HRG EV	HRG CE	UrQMD
			(r = 0.5 fm)		
	Sσ	< 0.001	< 0.001	0.0754	< 0.001
	κσ ²	0.00553	0.0450	0.0145	0.0221

Non-critical contributions: transport model studies

UrQMD, JAM, AMPT : Dominated by baryon number conservations at low energies

- > Effects of weak decay and hadronic scattering are not significant within uncertainties.
- No significant effects observed for mean field potential and attractive scattering (to simulate softening of EoS)

Z. Feckova, et al., PRC92, 064908(2015); J. Xu, et. al., PRC94, 024901(2016); X. Luo et al., NPA931, 808(14), P.K. Netrakanti et al., NPA947, 248(2016), P. Garg et al. PLB 726, 691(2013). S. He, et. al., PLB762, 296 (2016); PLB 774, 623 (2017). J. Li et al, PRC 97,014902 (2018). H. J. Xu, PLB 765, 188 (2017); Y. X. Ye et al., PRC 98, 054620 (2018). C. Zhou, et al., PRC 96, 014909 (2017). Y. Zhang, et al. PRC101, 034909 (2020). L. Jiang et al., PRC94, 024918 (2016); M. Bluhm, EPJC77, 210 (2017).

Net-charge and Net-kaon Fluctuations

STAR Data

NJL Model calculations

W. Fan, X. Luo, H.S. Zong, IJMPA 32, 1750061 (2017).

Critical signals: B>Q>S (Due to the mass of strange quark is much larger than u,d quarks, $m_s >> m_{u,d}$)

$$error(\kappa\sigma^2) \propto \frac{\sigma^2}{\varepsilon^2} \frac{1}{\sqrt{N_{evts}}}$$

- STAR : Phys. Rev. Lett. 113 092301 (2014). Phys. Lett. B 785, 551 (2018).
 - 1) Within errors, the results of net-Q and net-Kaon show flat energy dependence.
 - 2) More statistics are needed, especially at low energies (BES-II will help).

Propose to take the data of Au+Au collisions at 17.1 GeV

STAR: arXiv: 2001.02852

Dingwei Zhang (STAR), QM2019 [arXiv: 2002.10677]

- 1. Value jumps between 19.6 and 14.5 GeV in both net-proton flu. and light nuclei yield ratio.
- 2. STAR has proposed to take a new energy point in 2021 (Run 21) : 17.1 GeV ($\mu_B \sim 235$ MeV) with μ_B lie between 14.5 ($\mu_B \sim 266$ MeV) and 19.6 GeV ($\mu_B \sim 205$ MeV).

Model calculations trying to explain both observations : Pre-cluster at chemical freeze-out due to attractive *NN* potential : Edward Shuryak, Juan M. Torres-Rincon, PRC 100, 024903 (2019); PRC 101, 034914 (2020); EPJA 56, 241 (2020).

2.5 Weeks with ~250 million events.

Higher-order baryon number fluctuations: PQM+FRG Model

Higher-order fluctuations are more sensitive to QCD phase transition.

At µ_B = 0, C₆ ~ 0 or negative, and C₈ become negative when chemical freeze-out temperature close to Tc.

-> could serve as experimental evidence of chiral crossover.

Wei-jie Fu et al., In preparation.

Net-proton C₆ measurement

Results from three energies are consistent in peripheral collisions.

> C_6/C_2 > 0 at 54.4 GeV and C_6/C_2 < 0 at 200 GeV in 0-40% central collisions.

BES-II at RHIC (2019-2021)

√s _{NN} (GeV)	Events (10 ⁶)	BES II / BES I
19.6	538	2019 / 2011
14.6	325	2019 / 2014
11.5	230	2020 / 2010
9.2	160	2020 / 2008
7.7	100	2021 / 2010
17.1	250	2021 (proposed)

STAR, arXiv: 2001.02852

- BES-II: 10-20 times higher statistics than BES-I.
- > FIX-target mode : $\sqrt{s_{NN}} = 3-7.7$ GeV (2018-2021).

iTPC, ETOF, EPD upgrade completed.

- > Enlarge Acceptance : η coverage from 1.0 to 1.5
- Improve dE/dx and forward PID
- Improve centrality/event plane determination

BES-I & II at RHIC (2010-2017, 2019-2021)

Collider mode Au+Au Collisions **BES II / BES I Events** Тсн √S_{NN} μΒ (MeV) (GeV) (10^{6}) (MeV) 200 238 2010 25 166 62.4 46 2010 73 165 54.4 1200 2017 165 83 39 86 2010 112 164 27 30 (560) 2011/2018 156 162 19.6 **538** / 15 2019/2011 206 160 325 / 13 14.5 2019/2014 264 156 11.5 230 / 7 2020/2010 315 152 160 / 0.3 9.2 2020/2008 140 355 7.7 100 / 3 2021/2010 420 140 17.1* 2021 230 158 250

√s _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	μ _B (MeV)	Т _{СН} (MeV)
7.7	50+112	2019+2020	420	140
6.2	118	2020	487	130
5.2	103	2020	541	121
4.5	108	2020	589	112
3.9	117	2020	633	102
3.5	116	2020	666	93
3.2	200	2019	699	86
3.0	259	2018	720	80
3.0*	2000	2021	720	80

FXT mode

 T_{ch} and μ_B from J. Cleymans et al. PRC73, 034905 (2006) *New Proposed Energy in Beam User Request 2020/2021.

BES-II Program:

- > Precisely map the QCD phase diagram $200 < \mu_B < 420$ MeV
- The FXT program extends µ_B coverage up to 720 MeV (3 GeV)

Xiaofeng Luo

Future Facilities for Heavy-Ion Collisions

X. Luo, N. Xu, Nucl. Sci. Tech. 28, 112 (2017).

X. Luo, S. Shi, N. Xu and Y. Zhang, Particle 3, 278 (2020)

A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, N. Xu Phys. Rep. 853, 1 (2020).

K. Fukushima, B. Mohanty, N. Xu, arXiv: 2009. 03006

Exploring the QCD phase structure at high baryon density region

Higher moments of conserved quantities and light nuclei production are sensitive observables of CP (large density fluctuations and long range correlations)

- Yield ratio of light nuclei and fourth order net-proton fluctuations (C₄/C₂) in central Au+Au collisions shows non-monotonic energy dependence, which could serve as important experimental basis for critical point search.
- Hypernuclei production is important to study Y-N interactions and probe baryonstrangeness correlations, which can be enhanced near CP or 1st order P. T.
- > C_6 and C_8 can be used to probe the chiral crossover at $\mu_B=0$. Large statistics are needed to conduct precise measurements.
- Need to study the background/non-equilibrium contributions carefully and buildup dynamical modeling of heavy-ion collisions with critical fluctuations.
- > Explore the QCD phase structure at high baryon density with high precision:
 - (1) RHIC BES-II : Collider ($\sqrt{s_{NN}}$ =7.7 19.6 GeV) and FXT ($\sqrt{s_{NN}}$ = 3 7.7 GeV) mode.
 - (2) Future Facilities ($\sqrt{s_{NN}} = 2 11 \text{ GeV}$): FAIR/CBM, NICA/MPD, HIAF/CEE, JPARC-HI.

Acknowledgements :

Thanks to the members of the STAR Collaboration and the kind invitation from the organizers.

Thank you for your attention ! Stay safe and take care