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Trajectory of a heavy ion collision in the phase diagram

µ

T

Broken chiral symmetry

QGP with chiral symmetry

Chiral symmetry plays no role in the “Standard Model” of heavy ions . . .
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Chiral symmetry and O(4) scaling in lattice QCD: Hot QCD, PRL 2019
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Figure 3. Quark mass dependence of the chiral susceptibility on lattices with temporal extent N⌧ = 8 for several
values of the light quark masses. The spatial lattices extent N� is increased as the light quark mass decreases:
N� = 32 (H�1 = 20, 27), 40 (H�1 = 40), 56 (H�1 = 80, 160). Black symbols mark the points
corresponding to 60% of the peak height. Figure is taken from13.
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Figure 4. Volume dependence of the chiral susceptibility on lattices with temporal extent N⌧ = 8 for three
different spatial lattice sizes at H = 1/80. Black symbols mark the points corresponding to 60% of the peak
height. Figure is taken from13.

2.2 Results

We show results for �M in Fig. 3, on lattices with temporal extent N⌧ = 8 for 5 different
values of the quark mass ratio, H = ml/ms, and the largest lattice available for each H .
The increase of the peak height, �max

M , with decreasing H is consistent with the expected
behavior, �max

M ⇠ H1/��1 + const., with � ' 4.8 within rather large uncertainty which
restricts a precise determination of �.

In Fig. 4 we show the volume dependence of �M for H = 1/80 on lattices with tem-

5

O(4) Scaling predictions

Pseudo critical point:

The QCD lattice knows about the O(4) = SUL(2)×SUR(2) critical point!



QCD and the Chiral limit and Broken Symmetry:

Son hep-ph/9912267; Son and Stephanov hep-ph/020422

1. The approximately conserved quantities Ĵµa = ψ̄γ5γµτaψ

Tµν︸︷︷︸
stress

JµB︸︷︷︸
Baryon number

Jµa︸︷︷︸
isovector

and Ĵµa︸︷︷︸
iso-axial vector

2. There is the phase of the chiral condensate and pion field: ϕa = πa/F

Σ = σ · U = σ · Phase of 〈q̄q〉 ≡ σ · eiτaϕa

3. The pion ϕa is like T , ~u, µI , and µ̂ in the constitutive relations

4. Include a mass term so the Goldstone fields decay at large distances

Need to write down a theory of superfluid hydro for ϕ (Son ’99)

Near the critical point the σ(t,x) should be included too!
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Picture for T . Tc Son,Stephanov hep-ph020422

I Work in the regime

k � mπ � πT ∼ πΛQCD

superfluid modes k ∼ mπ

hadron gas k ∼ 3T

(including hard poins)

equilbriated hydro modes k ≪ mπ

How do these superfluid modes contribute to pressure and viscosities,
and the diffusion rate of isovector charge ?
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Picture for T ∼ Tc Son,Stephanov hep-ph020422

I Work in the regime:

k � m ∼ mσ � πTC ∼ πΛQCD

σ

QCD medium k ∼ 3T

(hadron-quark mix)

critical modes k ∼ m ∼ mσ

equilbriated hydro modes k ≪ m

(ϕ, µ̂)

How do these superfluid modes contribute to pressure and viscosities,
and the diffusion rate of isovector charge ?
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The pressure from soft pion modes:

I Use 3D dimensionally reduced chiral perturbation theory:

ZQCD = eβp0(T,µ̂)V︸ ︷︷ ︸
from hard modes p ∼ T

×
∫ Λ

[Dϕ] exp

(
−β
∫
d3xLeff

)
︸ ︷︷ ︸

from soft modes p ∼ mπ

where using U = eiϕaτa

Leff '
f2(T )

4
Tr ~∇U · ~∇U†+f2m2(T )

2
Re Tr U ⇒ f2

2
(∇ϕa)2 +

f2m2

2
ϕ2
a

The parameters have universal dependence near the O(4) critical point:

f2m2 ∝ mq

〈
ψ̄ψ
〉
∝ mqt

β t ≡ (T − Tc)/Tc
f2 ∝ tν(d−2)

Can compute f2(T ) and m2(T ) the real world lattice QCD with precision!
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Stress and Current for Superfluids: Son; Jensen et al 1203.3556, Bhattacharya et al

The pressure in the presence of the phase is pϕ

pϕ(T,∇ϕ,ϕ2) = p0(T ) +
1

2
χ̂µ̂2 − f2

2

(
(∇ϕ)2 +m2ϕ2

)
I Derive the ideal stress and current from pressure W =

∫
d4x
√
gpϕ

Tµν =
2√−g

δW

δgµν
=(eϕ + pϕ)uµuν + ηµνpϕ + f2∂µϕ∂νϕ︸ ︷︷ ︸

super fluid stress

Ĵµa =
1√−g

∂W

∂Aµ
= n̂au

µ︸ ︷︷ ︸
normal fluid

+ f2∂µϕa︸ ︷︷ ︸
super fluid current

I In an extension of the formalism coming from [q̄RqL, H − µN ] = 0

−uµ∂µϕa = µ̂a︸ ︷︷ ︸
Josephson constraint

and ∂µĴ
µ
a = f2m2ϕa︸ ︷︷ ︸
PCAC
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The Josephson constraint:

〈q̄RqL〉 is stable

I The phase U is related to µ̂, since Σ ≡ q̄RqL = σU is stationary:

[Σ, H − µL ·QL − µR ·QR] = 0

using the transformation properties e.g. [Σ, QaL] = −itaΣ, we find:

i∂tUU
†︸ ︷︷ ︸

(minus) deriv of phase

= µL − UµRU †︸ ︷︷ ︸
the axial chem µ̂

I In linearized form:
−∂tϕ = µ̂︸ ︷︷ ︸

Josephson constraint



Dissipative corrections to EOM Son, Stephanov hep-ph/020422 + a bit by us

∂tĴ
0 +∇ · Ĵ = f2m2ϕ︸ ︷︷ ︸

PCAC

and −∂tϕa = µ̂a︸ ︷︷ ︸
Josephn’s constraint

I Then expand the current in gradients

Ĵ = f2∇ϕ︸ ︷︷ ︸
ideal current

− λ0∇µ̂︸ ︷︷ ︸
axial conductivity

+ ~ξJ︸︷︷︸
noise

and the josephson constraint

−∂tϕ = µ̂︸︷︷︸
ideal fluid

+−κ2∇2ϕ+ κ1m
2ϕ︸ ︷︷ ︸

visc correction

+ ξS︸︷︷︸
noise

I To reach the equilibrium fluctuations we must have:〈
ξiJξ

j
J

〉
= 2Tλ0 δ

ijδ4(x− x′) 〈ξSξS〉 = 2Tλm δ
4(x− x′)
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Long wavelength pion (superfluid) modes: Son, Stephanov hep-ph/020422 + a bit by us

ϕ(t,x)

I Linearizing the equation of motion ϕ = Ce−iωt+iq·x one finds

ϕ(t, q) = Ce−(Γ/2)te−iωqt ⇐ This is second sound!

I The quasi-particle energy is:

ω2
q ≡ v2

0(q2 +m2) v2
0(T ) ≡ f2

χ̂
⇐ pion velocity

I The damping rate is set by two diffusion coefficients, DA and Dm:

Γ ≡ DAq
2 +Dmm

2

DA = (λ0/χ̂) + f2λm ⇐ Axial charge diffusion coefficient

Dm = f2λm ⇐ Axial damping coefficient
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Interpretation of the pion velocity Son, Stephanov hep-ph/020422

I The ideal massless pion equation of motion: (f2
t ≡ χ̂ and f2

s ≡ f2)

−∂t(χ̂∂tϕ)︸ ︷︷ ︸
∂t(axial-chrg)

+ ∂x(f2∂xϕ)︸ ︷︷ ︸
∂x(super-current)

= 0

The conserved charge is

J0 = χ̂∂tϕ︸ ︷︷ ︸
total axial-chrg

= f2∂tϕ︸ ︷︷ ︸
super component

+ ∆χ̂ ∂tϕ︸ ︷︷ ︸
normal component

So the pion velocity has a simple interpretation

v2
0 ≡

f2

χ̂
=

f2

f2 + ∆χ̂
=

super

super + normal
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v2
0 ≡

f2

χ̂
=

f2

f2 + ∆χ̂
=

super

super + normal
→ 0 near Tc
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Drive the system with gravity hij(ω) = he−iωtδij

weakly non-equilibrated
hadron gas

weakly non-equilbriated hydro

weakly non-equilbrated superfluid

Superfluid fluctns and shorter are absorbed into the transport coefficients

1
3

〈
δT ii

〉︸ ︷︷ ︸
non-equil. stress

= +i3
2ωhζ = −ζ ∇ · u︸ ︷︷ ︸

cov-d

Let’s evolve the phase-space density of the stochastic superfluid with
(hydro) kinetics
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Developing hydro-kinetics – linearized stochastic hydro

1. Evolve fields of linearized super fluid hydro:

φa(k) ≡
(
ϕ(k), Ĵ0

)
2. The stochastic EOM are matrix versions of Brownian motion:

dφa(k)

dt
= Lab(k)︸ ︷︷ ︸

ideal

φb(k) + Dabφb︸ ︷︷ ︸
damping

+ ξa︸︷︷︸
noise

3. Break up the equations into eigen modes of Lab, and analyze:

I The eigenmodes of the superfluid equations are the propagating pions:

φ̂± =
Ĵ0 ± iωk χ̂ ϕ√

2
with ωk,± = ±(v2

0 (k2 +m2))1/2︸ ︷︷ ︸
eigen-vals
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The hydro-kinetic equations

1. Find the evolution of the phase-space density of 2nd sound modes:

Ŵ++(t,x, q) ≡
∫
dy e−iq·y

〈
φ̂∗+(t,x + y/2)φ̂+(t,x− y/2)

〉
The phase space density is W++ ≡ χωqfπ(t,x, q).

2. The phase-space distribution evolution follows the Boltzmann eqn:(
∂t +

∂ωq
∂q
· ∂fπ
∂x
− ∂ωq
∂x
· ∂fπ
∂q

)
=−(DAq

2 +Dmm
2)
[
fπ − T

ωq

]
︸ ︷︷ ︸

damping to equilibrium

3. The particles stream with effective 4D Hamiltonian An,Basar,Yee,Stephanov

H = 1
2G

µνqµqν + 1
2f

2m2 Gµν = −uµuν + v2
0∆µν︸ ︷︷ ︸

fluid metric

i.e. q̇µ = −∂H/∂xµ etc. with particles onshell H = 0.
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Final kinetic theory expression for bulk viscosity

1. Expression

ζ = ζ(0)(Λ) +

∫ Λ d3q

(2π)3

T

DA q2 +Dmm2

[
q

ωq
· ∂ωq
∂q
− c2

s

ωq

∂(βωq)

∂β

]2

2. Definitions characterizing the dispersion curve, m2
p ≡ v2

0m
2

ṽ2
0 = v2

0 − T 2 ∂v
2
0

∂T 2︸ ︷︷ ︸
thermal velocity (euclidean!)

and m̃2
p = m2

p − T 2
∂m2

p

∂T 2︸ ︷︷ ︸
thermal mass (euclidean!)

3. Find, with r ≡
√
Dm/DA, the first correction to the chiral limit:

ζ =ζ(0) +
3Tm

8πDA

[(
c2s

1 + r

m̃2
p

m2
p

− 1 + 2r

1 + r

(
1
3
− c2s

ṽ2
0

v2
0

))2

− (4 + 2r)

(
1
3
− c2s

ṽ2
0

v2
0

)2
]
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Final formulas: (in terms of superfluid parameters DA and r =
√
Dm/DA)

r =
√
Dm/DA is an order one number: r2 = 3/4 in χPT .

ζ 'ζ(0) +
3Tm

8πDA

((
c2s

1 + r

m̃2
p

m2
p

− 1 + 2r

1 + r

(
1
3
− c2s

ṽ2
0

v2
0

))2

− (4 + 2r)

(
1
3
− c2s

ṽ2
0

v2
0

)2
)

η =η(0) − Tm

40πDA

[
2r3 + 4r2 + 6r + 3

(1 + r)2

]

σI =
T

12πmDA

[
1 + 2r

(1 + r)2

]
+ σ

(0)
I

These show how chiral phase flucts modify transport coeffs:

What happens near the O(4) critical point when σ is active?

Σ ≡ 〈q̄RqL〉︸ ︷︷ ︸
order parameter

= σ︸︷︷︸
amplitude

× U︸︷︷︸
phase
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The pressure from the critical modes:

I The eff. Lagrangian near the critical point is a Landau-Ginzburg type

ZQCD = eβp0(T,µ̂)V︸ ︷︷ ︸
from hard modes p ∼ T

×
∫ Λ

[Dϕ] exp

(
−β
∫
d3xLeff

)
︸ ︷︷ ︸

from soft modes p ∼ mc

where using Σ = σeiϕaτa , where σ and ϕ now fluctuate:

pΣ = p0(T ) +
χ0

2
tr(µ2

L + µ2
R)−

(
tr

4
∂iΣ∂iΣ

† +
m2

0(T )

2
σ2 +

λ

4
σ4

)
+
H

4
tr(Σ + Σ†)

with m0 ∝ (T − Tc)/Tc.
We will work with a mean field approximation

Σ ' σ̄︸︷︷︸
mean field

+ δσ + iσ̄~ϕ · ~τ︸ ︷︷ ︸
flucts

Teaney 23 / 39



Mean field approximation

I The mean order parameter, or EOS, takes takes the scaling form

σ̄ = h1/3fG(z) z = th−2/3

where h = H/λ and t = m2
0(T )/λ with fG(0) = 1.

I The action for the quadratic fluctuations takes the forms

pΣ = p0(T ) +
1

2
χ0tr(µ2

L + µ2
R)− 1

2

(
∇δσ · ∇δσ +m2

σδσ
2
)
−

1

2
χ0v

2(T )
(
∇ϕa · ∇ϕa +m2ϕaϕa

)
Relating the pion m2(z) and sigma screening masses to the EOS, e.g.

m2(z)︸ ︷︷ ︸
pion screening mass

=
H

σ̄(z)
=

m2
c

fG(z)
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Screening masses and magnetic EOS compared to lattice

Lattice: Engels, Vogt 0911.1939. Engels, Karsch 1105.0584
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General trends are reproduced by mean field analysis
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Screening masses and magnetic EOS compared to lattice
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Stochastic hydrodynamic equations Wilczek-Rajagopal hep-ph/9210253

Given the pressure, we go find the hydro equations for Σ = σeiϕaτa

I For example: the equation of the phase is, with ~L ≡ −i∇UU†

(−i
2
∂tUU

†)︸ ︷︷ ︸
phase deriv

= − 1
2
(µL − UµRU†)︸ ︷︷ ︸

joseph constraint

+
Dm
σ2

[
∇ · (σ2

2
~L) +

Hσ

4
i(U − U†)

]
︸ ︷︷ ︸

viscous correction

+ξ

And are coupled to the partially conserved currents, e.g.

∂µJ
µ
L = −iH

8

(
Σ− Σ†

)
with ~JL = σ2

4
~L+ λ0

~∇µL︸ ︷︷ ︸
diffusion

+ ξ︸︷︷︸
noise

and the pion contribution to the current

σ2~L =
i

2
(Σ~∇Σ† − ~∇ΣΣ†)︸ ︷︷ ︸

pion current

I And a similar equation for σ, e.g. ∂tσ = Dm (δS/δσ) + ξ.
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Iso-axial denisty-density correlator and pions from stochastic EOM:

ρAA(ω, q)

ω
=

1

T

∫ ∞
−∞

d4x e−iωt+iq·x
〈
Ĵ0
a (x)Ĵ0

a (0)
〉

�=��

�=-��

�/��=�
�=-��…��

-� -� -� -� � � � � �
���

���

���

���

���

���

���

���

Can see the transition from QGP to propagating pions from the EOM.
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Hydro loops:

Drive the system with gravity hij(t)

weakly non-equilbriated hydro
weakly non-equilbrated critical modes

weakly non-equilibrated
hadrons/quarks

 Hydro Loops

T ijh

R

The retarded propagators are given by the linearized stochastic EOM.
Integrate out (ϕ, µ̂), σ to find its influence on hydro
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The conductivity through Tc

σ = σreg + ∆σI︸︷︷︸
crit. part

-�� -� � � ��
���

���

���

���

���

�

Pion kinetic theory

Estimate of the absolute magnitude for σpc
I∞ with Tpc ' 155 MeV

∆DI =

(
∆σI
χ

)
=

0.50

2πT
×
(

1.3

mpc/T

)(
0.4

χQ/T 2

)(
3.0

2πTDm

)
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The shear through Tc

η = ηreg + ∆η︸︷︷︸
crit. part

-�� -� � � ��
-���

-���

-���

-���

�

ηpc
∞ = − Tmσ

8πDm

∣∣∣∣
z=zpc

Estimate of the absolute magnitude for ηpc
∞ with Tpc ' 155 MeV

4πη/s = −0.30×
(

5.3

s/T 3

)(
mσ/T

1.6

)(
3.0

2πTDm

)
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The bulk through Tc

ζ = ζreg + ∆ζ︸︷︷︸
crit. part

-�� -� � � ��

-���

-���

-���

-���

-���

-���

���

�

ζpc
∞ = −140

32
· Tmσ

πDm

(
c2sm̃

2
p

m2
p

)2
∣∣∣∣∣
z=zpc

Estimate of the absolute magnitude for ζpc
∞ with Tpc ' 155 MeV

4πζ

s
= −3.5×

(
c2s
0.2

)2(
d ln 〈q̄q〉 /d lnT 2

2.8

)2(
5.4

s/T 3

)(
mσ/T

1.6

)(
3.0

2πTDm

)
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The bulk through Tc

ζ = ζreg + ∆ζ︸︷︷︸
crit. part
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Evidence for the chiral crossover in the heavy ion data?
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Figure 3. Top: The best fit for ⇡, K, p spectra compared to the experimental data in five centrality classes

in Pb–Pb collisions at
p

sNN = 2.76 TeV. Bottom: The data to model ratios. The shaded areas correspond

to the sum in quadrature of the statistical and systematic experimental uncertainties.

While hpTi of kaons agrees very well with the experimental measurements, the hpTi of pions and

protons show some residual deviations. For the pions this is a reflection of the deviation between

model and data in the transverse momentum spectrum below pT = 0.5 GeV/c, which results in

a slightly larger hpTi for pions in our model. As for the protons, the slight discrepancy could be

due to the absence of an hadronic phase between chemical and kinetic freeze-out in our model. We

note that similar discrepancies are observed in other hydrodynamic simulations [40, 46] and none

appears able to reproduce data within the very small experimental uncertainties.

To our best knowledge no recent heavy-ion simulations (including our own presented here) are

able to produce a uniformly good description of identified particle spectra from central to mid-

central nucleus-nucleus collisions if experimental uncertainties are taken seriously. The pioneering

studies of [52] showed excellent agreement of identified particle spectra measured at RHIC with ideal

hydrodynamic simulations, but the agreement worsened when e↵ects of viscosity were included. In

the EKRT model [53], pion spectra are described well at the expense of over-predicted kaon and

proton yields, which is in line with our finding when we attempt to fit only the pion spectra.

In Ref. [40] where the e↵ect of both bulk viscosity and hadronic rescattering were studied, the

data to model agreement is arguably on the same level as in our work, although we employ a

single freeze-out approximation. We note here that the extensive Bayesian analyses of refs. [22, 41]

have concentrated on momentum integrated observables. In summary, the excellent quality of

experimental data of identified particle spectra indicates the need of including additional physics

in hydrodynamic simulations of heavy-ion collisions.

4.2 Strange, multi-strange and energy dependence of particle spectra

Having found the optimal parameters of our model, many other observables, not used in the fit,

can be directly predicted. This is an important step in validating the physics picture behind the

– 12 –

 A recent ordinary hydro fit from Devetak et al 1909.10485

typical pt

Because the pions are the Goldstones expect an enhancement at low pT

n(ωq) =
1

evq/T − 1
' T

vq
⇒∞, Since at Tc the velocity ⇒ 0 !
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Estimate of dispersion curve

The velocity v0 ≡ v(0) and pole mass m2
p = v2m2 scale with 〈q̄q〉

E2
p = v2(p)p2 +m2

p(p)

and are reduced for T ' Tpc.
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Estimate of dispersion curve

The velocity v0 ≡ v(0) and pole mass m2
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Estimate of soft pion enhancement at Tpc ' 155MeV

With the modified dispersion curve Ep predict the yields

n(Ep) =
1

eEp/T − 1
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Figure 3. Top: The best fit for ⇡, K, p spectra compared to the experimental data in five centrality classes

in Pb–Pb collisions at
p

sNN = 2.76 TeV. Bottom: The data to model ratios. The shaded areas correspond

to the sum in quadrature of the statistical and systematic experimental uncertainties.

While hpTi of kaons agrees very well with the experimental measurements, the hpTi of pions and

protons show some residual deviations. For the pions this is a reflection of the deviation between

model and data in the transverse momentum spectrum below pT = 0.5 GeV/c, which results in

a slightly larger hpTi for pions in our model. As for the protons, the slight discrepancy could be

due to the absence of an hadronic phase between chemical and kinetic freeze-out in our model. We

note that similar discrepancies are observed in other hydrodynamic simulations [40, 46] and none

appears able to reproduce data within the very small experimental uncertainties.

To our best knowledge no recent heavy-ion simulations (including our own presented here) are

able to produce a uniformly good description of identified particle spectra from central to mid-

central nucleus-nucleus collisions if experimental uncertainties are taken seriously. The pioneering

studies of [52] showed excellent agreement of identified particle spectra measured at RHIC with ideal

hydrodynamic simulations, but the agreement worsened when e↵ects of viscosity were included. In

the EKRT model [53], pion spectra are described well at the expense of over-predicted kaon and

proton yields, which is in line with our finding when we attempt to fit only the pion spectra.

In Ref. [40] where the e↵ect of both bulk viscosity and hadronic rescattering were studied, the

data to model agreement is arguably on the same level as in our work, although we employ a

single freeze-out approximation. We note here that the extensive Bayesian analyses of refs. [22, 41]

have concentrated on momentum integrated observables. In summary, the excellent quality of

experimental data of identified particle spectra indicates the need of including additional physics

in hydrodynamic simulations of heavy-ion collisions.

4.2 Strange, multi-strange and energy dependence of particle spectra

Having found the optimal parameters of our model, many other observables, not used in the fit,

can be directly predicted. This is an important step in validating the physics picture behind the
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typical pt

Encouraging, but this is just direct pions for a bath at rest.
Nevertheless, I think this is it!
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Summary

1. Wrote down the appropriate SUL(2)× SUR(2) superfluid theory

Included non-linear forms, viscous and mass corrections, noise etc.

2. Determined how the ordinary transport parameters depend on mπ

Solved the driven kinetic equation, or integrating out the hydro loops

3. Determined a kinetic equation for soft pions from the hydro EOM

This can be used for the real world! It is on the right track!

4. Developed the O(4) scaling theory in hydro with Σ = σeiϕ field

Thank you and stay safe!

Teaney 39 / 39


