Charm Production and Flow at RHIC

Xin Dong

Lawrence Berkeley National Laboratory

Oct. 27, 2020

Online Seminar "RHIC Beam Energy Scan"

Xin Dong / LBNL

Outline

- Heavy Quarks Uniqueness in Probing sQGP Properties
- Recent Experimental Achievements at RHIC
 - R_{AA} suppression parton energy loss
 - Collectivity sQGP transport coefficient
 - Hadrochemistry hadronization
- Summary & Future Heavy Flavor Program at RHIC

Quantitative Measure of sQGP

Uniqueness of Heavy Flavor Quarks

Heavy Flavor Quark Transport in sQGP

Heavy quark transport – to probe QGP with comprehensive p_T coverage - unique insights to both perturbative and non-perturbative regimes

Oct. 27, 2020

Heavy Quark Diffusion Coefficient

rrrr

To determine HQ diffusion coefficient Precision measurement of D⁰ production (R_{AA} and v₂), particularly at low p_T

$$D^0 \to K^- \pi^+$$
 $c\tau \sim 123 \mu m$
 $\Lambda_c^+ \to p K^- \pi^+$ $c\tau \sim 60 \mu m$

Big Challenge

Combinatorial background in heavy-ion collisions

Silicon pixel detector to separate secondary decay vertex – STAR Heavy Flavor Tracker (HFT) upgrade – PHENIX VTX/FVTX upgrade

6

STAR Heavy Flavor Tracker (HFT)

G. Contin et al, NIMA 907 (2018) 60

Detector	Radius (cm)	Pitch Size R/φ - Ζ (μm - μm)	Thickness
Silicon Strip Detector	22	95 / 40000	1% X ₀
Intermediate Silicon Tracker	14	600 / 6000	1.3%X ₀
DiVol	8	20.7 / 20.7	0.5%X ₀
FINEL	2.8	20.7 / 20.7	0.4%X ₀ *

- First application of Monolithic Active Pixel Sensor (MAPS) at a collider experiment
- MAPS technology widely used/planned in NP experiments
 ALICE ITS2/ITS3, sPHENIX MVTX, CBM MVD, EIC R&D

Oct. 27, 2020

rrrr

Monolithic Active Pixel Sensor (MAPS)

MAPS pixel cross-section (not to scale)

Properties:

- Standard commercial CMOS technology
- Sensor and signal processing are integrated in the same silicon wafer
- Signal is created in the low-doped epitaxial layer (typically ~10-15 µm) → MIP signal is limited to <1000 electrons
- Charge collection is mainly through thermal diffusion (~100 ns), reflective boundaries at p-well and substrate

MAPS and competition	MAPS	Hybrid Pixel	CCD
Granularity	+	-	+
Small material budget	+	-	+
Readout speed	+	++	-
Radiation tolerance	+	++	-

MAPS - particularly chosen for measuring HF hadron decays in heavy ion collisions

PXL Detector Performance

- R_{AA} Suppression \rightarrow Parton Energy Loss
- Collectivity \rightarrow Transport parameter D_s
- Hadrochemistry \rightarrow Hadronization

R_{AA} Suppression \rightarrow Parton Energy Loss

Collectivity \rightarrow Transport parameter D_s

Hadrochemistry \rightarrow Hadronization

D⁰ Meson p_T Spectra

.....

BERKELEY L

D⁰ Meson R_{AA}/R_{CP} in A+A Collisions

Comparison to Models

Oct. 27, 2020

BERKELEY LAB

Bottom Suppression at Low p_T

- LHC: $R_{AA}(J/\psi_B) \sim R_{AA}(D_B) > R_{AA}(D)$ at $p_T < 10$ GeV/c
- RHIC: hint of $R_{AA}(e_B) < R_{AA}(e_D)$ at 3–8 GeV/c (3 σ)

Evidence of mass hierarchy of parton energy loss

Oct. 27, 2020

rrrr

R_{AA} Suppression \rightarrow Parton Energy Loss

Collectivity \rightarrow Transport parameter D_s

Hadrochemistry \rightarrow Hadronization

Radial Flow

STAR, PRC 99 (2019) 034908

D⁰ Radial Flow

D⁰ v₂ at RHIC

- Mass ordering at $p_T < 2$ GeV/c (hydrodynamic behavior)
- $v_2(D)$ follows the (m_T-m_0) NCQ scaling as light hadrons below 1 GeV/c²

Evidence of charm quarks flowing with the medium

Oct. 27, 2020

.....

D⁰ v₂ Compared with Models

- Large D⁰ v₂ ordinated from charm quark diffusion in QGP
- 3D viscous hydro consistent with $D^0 v_2$ data up to 4 GeV/c

Oct. 27, 2020

.....

D⁰ v₂ Compared with pQCD Calculation

D⁰ v₂ Compared with T-Matrix F-pot./Weak pot.

T-Matrix with F-pot./weak-pot. underpredicts D-meson v₂
 heavy quarkonium R_{AA} data disfavors F-pot.

Oct. 27, 2020

.....

BERKELEY L

D⁰ v₂ Compared with Models

STAR, PRL 118 (2017) 212301

XD, Y-J Lee & R. Rapp, Ann. Rev. Nucl & Part. Sci. 69 (2019) 417

- State-of-the-art model calculations from various approaches reasonably describe D⁰ meson v₂ data at RHIC
- Charm quark $2\pi TD_s \sim 2-5$ at near Tc
 - consistent with quenched lattice calculations
 - Iarger uncertainty in temperature dependence

Oct. 27, 2020

Charm Spatial Diffusion Coefficient

<u>2015</u>

<u>2019</u>

Strongly interacting QGP!

Oct. 27, 2020

$2\pi TD_s$ vs. $4\pi\eta/s$

charm vs. bottom universality? momentum/temperature dependence?

Oct. 27, 2020

D⁰ v₁ - New Insight to sQGP Properties

S. Chatterjee & P. Bozek, PRL 120 (2018) 192301

Oct. 27, 2020

Online Seminar "RHIC Beam Energy Scan"

Xin Dong / LBNL

*D*⁰ v₁ - New Insight to sQGP Properties

Online Seminar "RHIC Beam Energy Scan"

rrrr

BERKELEY LAB

Oct. 27, 2020

Xin Dong / LBNL

D^0/\overline{D}^0 v₁ difference - Access to Initial B Field

Current experimental uncertainty >> predicted signal

More precise measurements are required in order to access the initial B field signal

rrrr

BERKELEY LAB

- R_{AA} Suppression \rightarrow Parton Energy Loss
- Collectivity \rightarrow Transport parameter D_s
- Hadrochemistry \rightarrow Hadronization

Charm Hadrochemistry in ee/ep

ZEUS, JHEP 1309 (2013) 058

$$2\sigma_{c\bar{c}} = D^0 + D^+ + D_s^+ + \Lambda_c^+ + \text{c.c.}$$
60.8% 24.0% 8.0% 6.2% *Lisovyi, et. al. EPJ C 76 (2016) 397*

•••••

D+ and D*+ Production in Au+Au Collisions

- D+/D⁰, D*/D⁰ ratios consistent with PYTHIA model calculations
- No significant modification to charm-light meson production in A+A collisions

.....

D_s^+/D^0 Enhancement in Au+Au Collisions

Oct. 27, 2020

Λ_c Reconstruction in Heavy-Ion Collisions

Oct. 27, 2020

Baryon-to-Meson Ratios in Au+Au Collisions

- Λ_c/D^0 ratio comparable to light/strange hadrons in A+A collisions
- Λ_c/D^0 enhancement w.r.t the PYTHIA predictions (w/ and w/o CR)

Oct. 27, 2020

Λ_c Enhancement Compared to Models

• Coalescence models qualitatively reproduce the large Λ_c/D^0 ratio

.....

BERKELEY LAB

Statistical Hadronization

Feeddown contribution to Λ_c						
r_i	D^+/D^0	D^{*+}/D^0	D_s^+/D^0	Λ_c^+/D^0		
PDG(170)	0.4391	0.4315	0.2736	0.2851		
RQM(170)	$0.4450 \\ 0.4391$	0.4229 0.4315	$0.2624 \\ 0.2726$	$0.2404 \\ 0.5696$		
RQM(160)	0.4450	0.4229	0.2624	0.4409		

M. He & R. Rapp, PLB 795 (2019) 117

SHM: $\Lambda_c/D^0 \sim 0.25-0.3$ (PDG states)

However, ratio can be doubled when including charm baryon resonances

- existence of unmeasured charm baryon resonances supported by Lattice QCD calculation

A. Bazavov et al, PLB 737 (2014) 210

A. Andronic et al., arXiv:0710.1851

Oct. 27, 2020

O

rrrrr

Total Charm Production Cross Section

Charm H	Hadron	Cross Section do/dy (µb)			
Au+Au 200 GeV (10-40%)	D^0	41 ± 1 ± 5			
	D^+	18 ± 1 ± 3			
	D_s^+	15 ± 1 ± 5			
	Λ_c^+	78 ± 13 ± 28 *			
	Total	152 ± 13 ± 29			
p+p 200 GeV	Total	130 ± 30 ± 26			

* extracted from 10-80%

- Total charm cross section follows ~ N_{bin} scaling from p+p to Au+Au
- However, charm hadrochemistry changes considerably!

Oct. 27, 2020

nnn

Connection to Confinement/sQGP Properties?

Coalescence

Confinement

sQGP

Oct. 27, 2020

Summary

Significant charm hadron flow -> 2πTD_s~ 2-5@T_c -> T-dependence, c vs. b universality, relation to η/s etc.

Large D_s/D⁰ and Λ_c/D⁰ enhancement -> coalescence hadronization -> precise heavy baryon, relation to color confinement

Prospective Heavy Flavor Program in Future

	2014	2015	2016	2017	2018	2019	2020	2021	2022+
RHIC	HF Phase-I		рр	CME	BES-II		HF Phase-II		
LHC	LS1	I Run-2			LS2		Run-3		

Next generation MAPS pixel detectors: ITS2@ALICE, MVTX@sPHENIX Precision open bottom Heavy flavor baryons and correlations

.....

BERKELEY LAB

MAPS-based VTX (MVTX) @ sPHENIX

SPHENIX: dedicated fast detector for hard probes at RHIC (data taken: 2023-)

Oct. 27, 2020

Future sPHENIX Heavy Flavor Program

Impact on Charm Diffusion Coefficient

Bayesian analysis to constrain HQ diffusion coefficient - Weiyao Ke (Duke), HF Workshop, LBNL, 2019

BERKELEY LAB

Theory Uncertainties

Rapid developments among theorists to resolve/understand trivial/non-trivial differences between different models

EMMI Rapid Reaction Task Force Jet-HQ Working Group

- R. Rapp et al., NPA 979 (2018) 21
- S.S. Cao et al., PRC 99 (2019) 054907

HEAVY-FLAVOR TRANSPORT IN QCD MATTER

26 April 2021 — 30 April 2021

(was scheduled on Feb. 24-28, 2020)

ECT* - Villa Tambosi

Strada delle Tabarelle, 286 Trento - Italy

Quantitative Measure of sQGP

BERKELEY LAB

Backup

Molecule Diffusion and Einstein's Theory

5. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen; • von A. Einstein.

In dieser Arbeit soll gezeigt werden, daß nach der molekularkinetischen Theorie der Wärme in Flüssigkeiten suspendierte Körper von mikroskopisch sichtbarer Größe infolge der Molekularbewegung der Wärme Bewegungen von solcher Größe ausführen müssen, daß diese Bewegungen leicht mit dem Mikroskop nachgewiesen werden können. Es ist möglich, daß die hier zu behandelnden Bewegungen mit der sogenannten "Brown schen Molekularbewegung" identisch sind; die mir erreichbaren Angaben über letztere sind jedoch so ungenau, daß ich mir hierüber kein Urteil bilden konnte.

Wenn sich die hier zu behandelnde Bewegung samt den für sie zu erwartenden Gesetzmäßigkeiten wirklich beobachten läßt, so ist die klassische Thermodynamik schon für mikroskopisch unterscheidbare Räume nicht mehr als genau gültig anzusehen und es ist dann eine exakte Bestimmung der wahren Atomgröße möglich. Erwiese sich umgekehrt die Voraussage dieser Bewegung als unzutreffend, so wäre damit ein schwerwiegendes Argument gegen die molekularkinetische Auffassung der Wärme gegeben.

§ 1. Über den suspendierten Teilchen zuzuschreibenden osmotischen Druck.

Im Teilvolumen \mathcal{V}^* einer Flüssigkeit vom Gesamtvolumen \mathcal{V} seien z-Gramm-Moleküle eines Nichtelektrolyten gelöst. Ist das Volumen \mathcal{V}^* durch eine für das Lösungsmittel, nicht aber für die gelöste Substanz durchlässige Wand vom reinen Lösungs-

Robert Brown, 1827

Albert Einstein, 1905

- Brownian Motion jittery motion of pollen grains in water
- Einstein's 1905 paper mathematically explained the Brownian motion

$$\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2} \qquad \left\langle x^2(t) \right\rangle - \left\langle x^2(0) \right\rangle \sim Dt$$

D – diffusion coefficient

• Validated by Jean Perrin's experiment in 1909 (awarded Nobel Prize in 1926)

.....

BERKELEY LAB

Color Reconnection in PYTHIA 8.2

Missing Charm Baryon Resonances

Quark Model predictions

BERKELEY LAB

50

D⁰ Total Cross Section and Radial Flow

- D⁰ p_T-integrated X-sec. suppressed in central Au+Au collisions
 D⁰ box(D⁰ > 1 (amoll doviation but aignificant)
- D⁰bar/D⁰ > 1 (small deviation but significant)

Oct. 27, 2020

.....

BERKELEY LAB

Modeling of HQ Propagation in sQGP

Oct. 27, 2020

Bottom Quark: Cleaner Measure of HQ Diffusion

Is charm quark heavy enough?

Bayesian Analysis to Extract HQ Diffusion Coefficient

Y. Xu et al, PRC 97 (2018) 014907

rrrr

BERKELEY LAB

Coalescence Hadronization

Coalescence hadronization Strangeness enhancement -> D_s enhancement Baryon enhancement -> Λ_c enhancement

Uniqueness of using HQ to study hadronization: produced through initial hard scatterings -> identity preserved through medium evolution

Oct. 27, 2020

rrrrr

Charm Hadron v₂ at LHC

CMS, PRL 120 (2018) 202301; ALICE, PRL 120 (2018) 102301

- Significant *D*-meson v₂ at 5.02 TeV Pb+Pb collisions
- *D*⁰ v₂ follows the same trend as light hadrons at LHC

New Λ_c Result in Pb+Pb

Oct. 27, 2020

rrrrr

BERKELEY LAB

Brief Summary of Charm Hadron v2 and RAA

Oct. 27, 2020

BERKELEY LAB