Experimental overview on chirality and polarization

$$
\text { Sergei A. Voloshin } \begin{array}{cc}
\text { Warve STAE } \\
\text { UNNEESTYY }
\end{array}
$$

Parity violation study with 3 particle correlations

Looking for the effect of
D. Kharzeev, hep-ph/0406125

Mixed harmonic technique or 3-particle corretations
hep-ph/0406311

$a>0 \rightarrow$ preferential emission along the angular momentum The sign can vary event by event, $a \sim Q / N_{\pi}$, where Q is the topological charge, $|Q|=1,2$,...
\rightarrow at $d N / d y \sim 100,|a| \sim 1 \%$.

Note a cartoon from a discussion of the global polarization

And using only one particle instead of the event flow vector

$$
\begin{aligned}
& \left\langle\cos \left(\varphi_{a}-\varphi_{c}\right) \cos \left(\varphi_{b}-\varphi_{c}\right)-\sin \left(\varphi_{a}-\varphi_{c}\right) \sin \left(\varphi_{b}-\varphi_{c}\right)\right\rangle= \\
& =\left\langle\cos \left(\varphi_{a}+\varphi_{b}-2 \varphi_{c}\right)\right\rangle=\left(v_{1, a} v_{1, b}-a_{a} a_{b}\right) v_{2, c}
\end{aligned}
$$

Only (semi-)qualitative predictions from theory: charge separation along the magnetic field

- The data seems to agree with that; background possible.
- Still true today (?)

CME and "Gamma" correlator

D. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys. Lett. B 633, 260 (2006).

Charge separation along \mathbf{B} direction
S. A. Voloshin, Parity violation in hot QCD: How to detect it, Phys. Rev. C 70, 057901 (2004).

Effective particle distribution

$$
\begin{aligned}
\frac{d N_{ \pm}}{d \phi} & \propto 1+2 v_{1} \cos (\Delta \phi)+2 v_{2} \cos (2 \Delta \phi)+\ldots \\
& +2 a_{1, \pm} \sin (\Delta \phi)+\ldots ; \quad \Delta \phi=\phi-\Psi_{\mathrm{RP}}
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{\alpha, \beta} & \equiv\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{\mathrm{RP}}\right\rangle\right. \\
& =\left\langle\cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta}\right\rangle-\left\langle\sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta}\right\rangle \\
& =\left[\left\langle v_{1, \alpha} v_{1, \beta}\right\rangle+B_{\mathrm{in}}\right]-\left[\left\langle a_{1, \alpha} a_{1, \beta}\right\rangle+B_{\mathrm{out}}\right]
\end{aligned}
$$

The sign of the correlations is sensitive to the "direction" (in- or out-of-plane), the background is suppressed $\left(B_{i n}-B_{\text {out }}\right)$ at least by a factor of $v_{2}<10^{-1}$.

2008-2010

Probe for the (strong interaction) parity violation effects in
heavy ion collisions with three particle correlations

> QM2008 - first public showing of STAR results

Sergei A. Voloshin
Nuclear Physics A 827 (2009) 377c-382c

Suggestion of using isobar beams
 ${ }_{44}^{96} \mathrm{Ru}+{ }_{44}^{96} \mathrm{Ru}$ and ${ }_{40}^{96} \mathrm{Zr}+{ }_{40}^{96} \mathrm{Zr}$

to disentangle CME signal from BG

QM2009

Experimental study of spontaneous strong parity violation
in heavy ion collisions at RHIC

Strong parity violation at STAR: Quantifying background effects with Monte-Carlo event generators and detector effects study
Ilya Selyuzhenkov (Indiana University) for the STAR Collaboration

Strong parity violation at STAR:

STAR Evaluating experimental measurement technique and estimating background contributions from multi-particle production

Charged-Particle Correlations and Possible Local Strong Parity Violation PHYSICAL REVIEW C 81, 054908 (2010)

Observation of charge-dependent azimuthal correlations and possible local strong

 parity violation in heavy-ion collisions
Types of the background

$$
\begin{aligned}
& \text { I. Physics (RP dependent). } \\
& \text { (Can not be suppressed) } \\
& \begin{aligned}
\gamma_{\alpha, \beta} & \equiv\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{\mathrm{RP}}\right\rangle\right. \\
& =\left\langle\cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta}\right\rangle-\left\langle\sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta}\right\rangle \\
& =\left[\left\langle v_{1, \alpha} v_{1, \beta}\right\rangle+B_{\mathrm{in}}\right]-\left[\left\langle a_{1, \alpha} a_{1, \beta}\right\rangle+B_{\mathrm{out}}\right]
\end{aligned}
\end{aligned}
$$

"Flowing clusters" (including LCC) charge dependent directed flow.

Global polarization (including vector mesons); Note: in 2007 limits on the global polarization and spin alignment were obtained.

LCC:

Pratt, arXiv:1002.1758v1[nucl-th]

- Correlations only between opposite charges
- To be consistent with data must be combined with (negative) charge independent correlations (e.g. momentum conservation).
- No event generator exhibits such strong correlations as predicted by the Blast Wave model

HIJING+v2 = added "afterburner" to generate flow MEVSIM: flow as in experiment, number of resonances maximum what is consistent with experiment

RP independent background is dominant in peripheral collisions !

The main reason why this analysis was not done in pp and pAu

FIG. 4 (color). $\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{\text {RP }}\right)\right\rangle$ results from 200 GeV $\mathrm{Au}+\mathrm{Au}$ collisions are compared to calculations with event generators HIJING (with and without an "elliptic flow afterburner"), URQMD (connected by dashed lines), and MEVSIM. Thick lines represent HIJING reaction-plane-independent background.

FIG. 7. (Color online) $\left\langle\cos \left(\phi_{a}+\phi_{\beta}-2 \Psi_{\mathrm{RP}}\right)\right\rangle$ in $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$ calculated using Eq. (7). The error bars show the statistical errors. The shaded areas reflect the uncertainty in the elliptic flow values used in calculations, with lower (in magnitude) limit obtained with elliptic flow from twoparticle correlations and upper limit from four-particle cumulants. For details, see Sec. IV. Thick solid $(\mathrm{Au}+\mathrm{Au})$ and dashed $(\mathrm{Cu}+\mathrm{Cu})$ lines represent possible non-reaction-plane-dependent contribution from many-particle clusters as estimated by HIJING (see Sec. VII A).

LHC vs RHIC

[^0]
CME: Signal vs background

Goal: identification of the presence or the lack of the CME signal
at the level of $\sim 5 \%$ of the measured gamma correlator value

> At hand: Signal depends on the magnetic field/vorticity the background depends on anisotropic flow

Event Shape Engineering

ESE - a technique to select events with large(r)/small(er) flow within the same centrality range

Application to the CME search: BG ~ v_{2}, Signal - much weaker dependence (mostly
due to decorrelations between \mathbf{B} and Ψ_{2})

1. Select events based on q_{n}-vector in one momentum region ("subevent")
2. Perform an analysis of these events in another region ("subevent")

$$
\begin{aligned}
& X_{n}=\sum_{i=1}^{M} \cos \left(n \phi_{i}\right) ; \quad Y_{n}=\sum_{i=1}^{M} \sin \left(n \phi_{i}\right) \\
& Q_{n}=\left\{X_{n}, i Y_{n}\right\} ; \quad q_{n}=\left|Q_{n}\right| / \sqrt{M}
\end{aligned}
$$

ESE with cutting on q_{2} : variation of flow values up to factor of ~ 2

Jürgen Schukraft ${ }^{\text {a }}$, Anthony Timmins ${ }^{\text {b }}$, Sergei A. Voloshin ${ }^{\text {c, }}$, Physics Letters B 719 (2013) 394-398

MC Glauber, with parameters tuned to LHC multiplicity and flow, $0<\eta_{a}<0.8$

FIG. 1. (color online) Mean elliptic and triangular flow values in a-subevent as function of the corresponding q_{n} magnitude in b-subevent.

Pseudo-ESE

PHYSICAL REVIEW C 89, 044908 (2014)
Measurement of charge multiplicity asymmetry correlations in high-energy nucleus-nucleus
collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$

v2obs (used for "ESE") and the signal are measured with the same particles (in the same pseudorapidity region)

Results are dominated by statistical fluctuations. No possibility to correct for the reaction plane resolution.
Uninterpretable.

ESE, almost there

PHYSICAL REVIEW C 97, 044912 (2018)

Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in $\mathbf{p P b}$ and PbPb collisions at the CERN Large Hadron Collider

$$
\Delta \gamma_{112}=a v_{2}+b
$$

upper limit on the v_{2}-independent traction of the three-particle correlator, or the possible CME signal contribution (assumed independent of v_{2} within the same narrow multiplicity or centrality range), is estimated to be 13% for $p \mathrm{~Pb}$ data and 7% for PbPb data at a 95% confidence level. The data presented in

> | Does it make sense to talk about 95% CL, |
| :--- |
| not including uncertainty on the assumptions? |

> CME signal is not totally v_{2} independent, the real limit is larger than 7%

FIG. 12. The difference of the OS and SS three-particle correlators γ_{112} averaged over $|\Delta \eta|<1.6$ as a function of v_{2} evaluated in each q_{2} class, for the multiplicity range $185 \leqslant N_{\text {trk }}^{\text {offline }}<250$ in $p \mathrm{~Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=8.16 \mathrm{TeV}$ and PbPb collisions at 5.02 TeV (upper), and for different centrality classes in PbPb collisions at 5.02 TeV (lower). Statistical and systematic uncertainties are indicated by the error bars and shaded regions, respectively. A one standard deviation uncertainty from the fit is also shown.

ALICE: Event shape engineering

Constraining the magnitude of the Chiral Magnetic Effect with Event
 Shape Engineering in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$

ALICE Collaboration / Physics Letters B 777 (2018) 151-162

Fig. 6. (Colour online.) Centrality dependence of the CME fraction extracted fron the slope parameter of fits to data and MC-Glauber [51], MC-KLN CGC [53,54] an EKRT [55] models, respectively (see text for details). The dashed lines indicate th physical parameter space of the CME fraction. Points are slightly shifted along th horizontal axis for better visibility. Only statistical uncertainties are shown.

Signal dependence on v_{2} (due to decorrelation between the EP and magnetic field direction): almost no model dependence

For mid-central collision the CME fraction $\lesssim 20 \%$

Small systems I

PRL 118, 122301 (2017) PHYSICAL REVIEW LETTERS

Observation of Charge-Dependent Azimuthal Correlations in $\boldsymbol{p}-\mathbf{P b}$ Collisions and Its Implication for the Search for the Chiral Magnetic Effect
V. Khachatryan et al.*
(CMS Collaboration)

These results challenge the CME interpretation for the observed charge-dependent azimuthal correlations in nucleus-nucleus collisions at RHIC and the LHC.

similarly

Charge-dependent pair correlations relative to a third particle in $p+\mathrm{Au}$ and $d+\mathrm{Au}$ collisions at RHIC

STAR Collaboration / Physics Letters B 798 (2019) 134975

Fig. 4. The $\Delta \gamma \times d N_{\mathrm{ch}} / d \eta / v_{2}$ in $p+\mathrm{Au}$ and $d+\mathrm{Au}$ collisions as a function of multiplicity, compared to that in $\mathrm{Au}+\mathrm{Au}$ collisions [18,19,21]. The data points connected by solid lines are measured using $\Delta \eta$ gap of 1.0 in $v_{2}\{2\}$. Dashed lines represent the results using $v_{2, c}$ with η gaps of $0,0.5$ and 1.4.

Small systems II

Charge-dependent pair correlations relative to a third particle in $p+\mathrm{Au}$ and $d+\mathrm{Au}$ collisions at RHIC
STAR Collaboration / Physics Letters B 798 (2019) 134975

Fig. 4. The $\Delta \gamma \times d N_{\mathrm{ch}} / d \eta / v_{2}$ in $p+\mathrm{Au}$ and $d+\mathrm{Au}$ collisions as a function of multiplicity, compared to that in $\mathrm{Au}+\mathrm{Au}$ collisions [18,19,21]. The data points connected by solid lines are measured using $\Delta \eta$ gap of 1.0 in $v_{2}\{2\}$. Dashed lines represent the results using $v_{2, c}$ with η gaps of $0,0.5$ and 1.4.

What is the "contribution" of the RP independent background to the measurement?
Answer-100\%. HIJING describes very well quantitatively both, " $\Delta \gamma$ " and " V_{2} " (simulations done by the authors - not included in the paper).

My view - until such a background is kept well under control, no meaningful conclusion can be made.
It is misleading not to include HIJING results in the paper.

Double/mixed harmonics I

Voloshin, Prog.Part.Nucl.Phys. 67541 (2012)
$\left\langle\cos \left(\phi_{a}+\phi_{b}-2 \Psi_{2}\right)\right\rangle=\left\langle\cos \left(\phi_{a}-\Psi_{2}\right) \cos \left(\phi_{b}-\Psi_{2}\right)\right\rangle-\left\langle\sin \left(\phi_{a}-\Psi_{2}\right) \sin \left(\phi_{b}-\Psi_{2}\right)\right\rangle$

Charge dependent part:

- contribution from CME
- "flowing cluster" background

$\left\langle\cos \left(2 \phi_{a}+2 \phi_{b}-4 \Psi_{4}\right)\right\rangle=\left\langle\cos \left(2 \phi_{a}-2 \Psi_{4}\right) \cos \left(2 \phi_{b}-2 \Psi_{4}\right)\right\rangle-\left\langle\sin \left(2 \phi_{a}-2 \Psi_{4}\right) \sin \left(2 \phi_{b}-2 \Psi_{4}\right)\right\rangle$
- NO contribution from CME.
- "flowing cluster" background ($\sim \mathrm{V}_{4}$ instead of $\sim \mathrm{v}_{2}$)

$$
\frac{\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{2}\right)\right\rangle=\left\langle\cos \left[\left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)+\left(2 \phi_{c}-2 \Psi_{2}\right)\right]\right\rangle \approx\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)\right\rangle v_{2, c}}{\left\langle\left\langle\cos \left(2 \phi_{\alpha}+2 \phi_{\beta}-4 \Psi_{2}\right)\right\rangle=\left\langle\cos \left[\left(2 \phi_{\alpha}+2 \phi_{\beta}-4 \phi_{c}\right)+\left(4 \phi_{c}-4 \Psi_{2}\right)\right]\right\rangle \approx\left\langle\cos \left(2 \phi_{\alpha}+2 \phi_{\beta}-4 \phi_{c}\right)\right\rangle v_{4, c}\right.}
$$

Quite different kinematic factors!

$$
\left\langle\cos \left(2 \phi_{\alpha}+2 \phi_{\beta}-4 \phi_{c}\right)\right\rangle \text { vs }\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)\right\rangle
$$

Requires detail knowledge of the nature of the background
Not suitable for precise estimates

Mixed harmonics II (also $\Delta \gamma, \Delta \delta ; H, F, \kappa$)

PHYSICAL REVIEW C 97, 044912 (2018)

Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations

 in $\mathbf{p P b}$ and PbPb collisions at the CERN Large Hadron Collider$$
\begin{aligned}
& \text { A. M. Sirunyan et al.* } \\
& \text { (CMS Collaboration) }
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{112} & \equiv\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{2}\right)\right\rangle \\
\gamma_{112}^{\mathrm{bkg}} & =\kappa_{2}\left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle\left\langle\cos 2\left(\phi_{\beta}-\Psi_{\mathrm{RP}}\right)\right\rangle=\kappa_{2} \delta v_{2} . \\
\gamma_{123} & \equiv\left\langle\cos \left(\phi_{\alpha}+2 \phi_{\beta}-3 \Psi_{3}\right)\right\rangle, \\
\gamma_{123}^{\mathrm{bkg}} & =\kappa_{3}\left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle\left\langle\cos 3\left(\phi_{\beta}-\Psi_{3}\right)\right\rangle \\
& =\kappa_{3} \delta v_{3},
\end{aligned}
$$

APPENDIX A: GENERAL RELATION OF v_{n} HARMONICS AND TWO- AND THREE-PARTICLE AZIMUTHAL CORRELATIONS

In Sec. I, Eq. (5) can be derived in a way similar to Eq. (3), with details which can be found in Ref. [24]. Here, a general

$$
\begin{aligned}
\gamma_{1, n-1 ; n}= & \frac{1}{2 N^{2}} \int \rho_{0}\left(x_{\alpha}\right) \rho_{0}\left(x_{\beta}\right) \delta\left(x_{\alpha}, x_{\beta}\right) \\
& \times\left[v_{n}\left(x_{\alpha}\right)+v_{n}\left(x_{\beta}\right)\right] d x_{\alpha} d x_{\beta} \\
& \text { where } N=\int \rho_{0}(x) d x
\end{aligned}
$$

Therefore, this general form of $\gamma_{1, n-1 ; n}$ can be applied to any order n and decomposed into the two-particle correlator δ and the nth order harmonic v_{n}, where $n=2$ and 3 are studied in detail in Sec. V A.
[24] A. Bzdak, V. Koch, and J. Liao, Charge-dependent correlations in relativistic heavy ion collisions and the chiral magnetic effect, Lect. Notes Phys. 871, 503 (2013).

$$
\begin{aligned}
& \mid\left\langle\cos \left(\phi_{a}+\phi_{b}-2 \Psi_{2}\right)\right\rangle=\left\langle\cos \left[\left(\phi_{a}-\phi_{b}\right)+\left(2 \phi_{b}-2 \Psi_{2}\right)\right]\right\rangle \neq\left\langle\cos \left(\phi_{a}-\phi_{b}\right)\right\rangle\left\langle\cos \left(2 \phi_{b}-2 \Psi_{2}\right)\right\rangle \\
& \hline\left\langle\cos \left(\phi_{a}-3 \phi_{b}+2 \Psi_{2}\right)\right\rangle=\left\langle\cos \left[\left(\phi_{a}-\phi_{b}\right)-\left(2 \phi_{b}-2 \Psi_{2}\right)\right]\right\rangle \neq\left\langle\cos \left(\phi_{a}-\phi_{b}\right)\right\rangle\left\langle\cos \left(2 \phi_{a}-2 \Psi_{2}\right)\right\rangle \\
& \text { A better way to address it: } \\
& \left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{2}\right)\right\rangle=\left\langle\cos \left[\left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)+\left(2 \phi_{c}-2 \Psi_{2}\right)\right]\right\rangle \approx\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)\right\rangle v_{2, c} \\
& \hline\left\langle\cos \left(\phi_{\alpha}-3 \phi_{\beta}+2 \Psi_{2}\right)\right\rangle=\left\langle\cos \left[\left(\phi_{\alpha}-3 \phi_{\beta}+2 \phi_{c}\right)-\left(2 \phi_{c}-2 \Psi_{2}\right)\right]\right\rangle \approx\left\langle\cos \left(\phi_{\alpha}-3 \phi_{\beta}+2 \phi_{c}\right)\right\rangle v_{2, c} \\
& \hline
\end{aligned}
$$

$$
\Delta \gamma, \Delta \delta ; H, F, \kappa
$$

To be be precise requires detailed knowledge of the background. Not that useful.

Mixed harmonics, III

$\left\langle\cos \left(\phi_{a}+\phi_{b}-2 \Psi_{2}\right)\right\rangle=\left\langle\cos \left[\left(\phi_{a}-\phi_{b}\right)+\left(2 \phi_{b}-2 \Psi_{2}\right)\right]\right\rangle \neq\left\langle\cos \left(\phi_{a}-\phi_{b}\right)\right\rangle\left\langle\cos \left(2 \phi_{b}-2 \Psi_{2}\right)\right\rangle$
$\left\langle\cos \left(\phi_{a}-3 \phi_{b}+2 \Psi_{2}\right)\right\rangle=\left\langle\cos \left[\left(\phi_{a}-\phi_{b}\right)-\left(2 \phi_{b}-2 \Psi_{2}\right)\right]\right\rangle \neq\left\langle\cos \left(\phi_{a}-\phi_{b}\right)\right\rangle\left\langle\cos \left(2 \phi_{a}-2 \Psi_{2}\right)\right\rangle$

P Tribedy, QCD@HighDensity 2019

Delta-gamma vs invariant mass

Correlations wrt participant and spectator planes

Testing "background scenario"

"Background scenario":

Note that for these calculations no need for separate "resolution" calculations (simplify statistical error calculations)

$$
\frac{\Delta\langle\cos (\alpha+\beta-2 c)\rangle}{\langle\cos (2 a-2 c)\rangle} / \frac{\Delta\left\langle\cos \left(\alpha+\beta-\Psi_{1, \mathrm{SPA}}-\Psi_{1, \mathrm{SPB}}\right)\right\rangle}{\left\langle\cos \left(2 a-\Psi_{1, \mathrm{SPA}}-\Psi_{1, \mathrm{SPB}}\right)\right\rangle}=1 \quad \quad a=\alpha, \beta \quad \quad \begin{aligned}
& \text { The ratio can be calculated with any/all } \\
& \text { possible EPs }
\end{aligned}
$$ but to get the real fraction of the signal requires additional assumptions

$$
\text { Ratio }=1+\frac{1}{\Delta \gamma_{P P}}\left[\operatorname{CME}_{\mathrm{SP}} \frac{v_{2}\{2\}}{v_{2}\{\mathrm{ZDC}\}}-\mathrm{CME}_{\mathrm{PP}}\right]
$$

Exact under only
one, "main", assumption: BG $\propto v_{2}$

Getting the CME fraction

$$
\text { Ratio }=1+\frac{1}{\Delta \gamma_{P P}}\left[\mathrm{CME}_{\mathrm{SP}} \frac{v_{2}\{2\}}{v_{2}\{\mathrm{ZDC}\}}-\mathrm{CME}_{\mathrm{PP}}\right]
$$

Exact under only one, "main", assumption"

Requires no "non-flow" contribution, correctly treats flow fluctuations
Possible further
assumptions:

$$
\mathrm{CME}_{\mathrm{SP}}=\mathrm{CME}_{\mathrm{PP}} \frac{v_{2}\{2\}}{v_{2}\{\mathrm{ZDC}\}}
$$

$$
\frac{\left(\Delta \gamma / v_{2}\right)_{\mathrm{SP}}}{\left(\Delta \gamma / v_{2}\right)_{\mathrm{c}}}=1+f_{\mathrm{PP}}^{\mathrm{CME}}\left(\frac{\left\langle v_{2, \mathrm{PP}}^{2}\right\rangle}{\left(v_{2}\left\{\Psi_{1, \mathrm{SP}}\right\}\right)^{2}}-1\right)
$$

If magnetic field is 100\% correlated with the SP. "Working" hypothesis.
J. Zhao (STAR collaboration). NPA 982 (2019) 535

Possible non-flow in v_{2} Real fraction can be lower
"Precision" of this method likely could be as low as 5\%.
Requires careful removal of non-flow and account for flow fluctuations

$$
\text { Possible CME } \Delta \gamma \text { / inclusive } \Delta \gamma
$$

Isobar collisions

"Double ratio" in analysis of isobar collisions
[instead of two different event planes - different isobar datasets

$$
\left(\Delta \gamma / v_{2}\right)_{T P C}=\frac{\Delta\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)\right\rangle}{\left\langle\cos \left(2 \phi_{\alpha}-2 \phi_{c}\right)\right\rangle}
$$

$$
\frac{\left(\Delta \gamma / v_{2}\right)_{A A}}{\left(\Delta \gamma / v_{2}\right)_{B B}}=1+f_{C M E}^{B B}\left[\left(H_{A A} / H_{B B}\right)^{2}-1\right]
$$

Note that the calculation of $\left(\Delta \gamma / v_{2}\right)$ quantities does not require knowledge of the reaction plane resolution [1]. It also "normalizes" the gamma correlator to the elliptic flow value and thus can be used for a direct comparison of the signals in different isobar collisions, even if the values of elliptic flow is slightly different in the two samples.

> For isobar "double ratio", non-flow is much less of a problem!

Chiral Magnetic Wave

3 particle correlator

Adam et al. (ALICE Collaboration), Charge-dependent flow and the search for the chiral magnetic wave in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$, Phys. Rev. C 93, 044903 (2016).

Three particle correlator

$\left\langle c_{3}\right\rangle=\frac{N_{+}-N_{-}}{N_{+}+N_{-}}$
$A_{\mathrm{ch}}=\left(N_{+}-N_{-}\right) /\left(N_{+}+N_{-}\right)$

$$
\left\langle\left\langle\cos \left[n\left(\phi_{1}-\Psi_{n}\right)\right] c_{3}\right\rangle\right\rangle \equiv\left\langle\cos \left[n\left(\phi_{1}-\Psi_{n}\right)\right] c_{3}\right\rangle-\left\langle\cos \left[n\left(\phi_{1}-\Psi_{n}\right)\right]\right\rangle\left\langle c_{3}\right\rangle_{1}
$$

$\left\langle c_{3}\right\rangle_{1}$-- mean charge of particle " 3 " under condition of particle " 1 " being observed

- is tracking efficiency independent
 - allows differential studies
 - can be used for direct comparison between different experiments

In the integral form the correlator is "equivalent" to the slope of $\Delta \mathrm{v}_{2}$ vs A (=slope*sigma^2_A)
S. A. Voloshin and R. Belmont, Measuring and interpreting charge dependent anisotropic flow, Nucl. Phys. A 931, 992 (2014).

Clear signal, qualitatively consistent with expectations for CMW, pseudorapidity dependence similar to that of gamma correlator

Higher harmonics

Cross-correlations:

Larger radial flow narrows pair distribution in azimuth as well as in pseudorapidity

Could serve as a good test for the background nature

Final remarks CME/CMW search

Current limit on the "CME fraction" is about < 15\%
With isobars, ESE, SP/PP we will know it at the level $\sim 5 \%$
Getting anything better than that seems to be difficult
"New" directions:

PID? 2Nf|Q| quark interaction? many-particle correlation?

Glasma: do we have long range correlations in rapidity? Multiparticle?

Vorticity and polarization

Brief history (~ 20 years in 60 seconds)

1987... +E 896, NA57

2003 STAR mtng in Prague -first ideas

2004 Idea goes "on-shell"

2007 Fist measurements
Relation to directed flow
First ideas on local vorticity

2013 ALICE Physics Week in Padova

2017 STAR measurements in BES

SQM - anisotropic flow -> zPol

2019/20 Ξ and Ω measurements
M. Jacob, J. Rafelski: Phys. Lett. 190 B (1987) 173 LONGITUDINAL $\overline{\text { I }}$ POLARIZATION, \bar{E} ABUNDANCE AND QUARK-GLUON PLASMA FORMATION
[nucl-th/0410079] Globally Polarized Quark-gluon Plasma in Non-central A+A Collisions
Authors: Zuo-Tang Liang (Shandong U), Xin-Nian Wang (LBNL)
(Submitted on 18 Oct 2004 (v1), last revised 7 Dec 2005 (this version, v5))

prediction $\mathrm{P} \sim 0.3$

[nucl-th/0410089] Polarized secondary particles in unpolarized high energy hadron-hadro...

Authors: Sergei A. Voloshin

- Spin alignment -> V2
- Relation to single spin asymmetries?
B. I. Abelev et al. (STAR Collaboration), Global polarization measurement in Au+Au collisions, Phys. Rev. C 76, 024915 (2007); 95, 039906(E) (2017).
$P_{H}=\frac{8}{\pi \alpha_{H}}\left\langle\sin \left(\Psi_{\mathrm{RP}}-\phi_{p}\right)\right\rangle$
Λ global polarization $<2 \%$
B. Betz, M. Gyulassy, and G. Torrieri, Polarization probes of vorticity in heavy ion collisions, Phys. Rev. C 76, 044901 (2007).
F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Relativistic distribution function for particles with spin at local thermodynamical equilibrium, Annals Phys. 338, 32 (2013).

STAR Collaboration, L. Adamczyk et al., "Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid", Nature 548 (2017) 62-65,
S. A. Voloshin, "Vorticity and particle polarization in heavy ion collisions (experimental perspective)", arXiv:1710.08934 [nucl-ex]. [EPJ Web Conf.17,10700(2018)].

STAR Collaboration, J. Adam et al., "Global polarization of Λ hyperons in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV} "$, Phys. Rev. C98 (2018) 014910,

$$
P_{z}=\frac{3}{\alpha_{H}}\left\langle\cos \theta_{p}^{*}\right\rangle
$$

Non-relativistic statistical mechanics

F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Annals Phys. 338, 32 (2013), 1303.3431 Ren-hong Fang, ${ }^{1}$ Long-gang Pang, ${ }^{2}$ Qun Wang, ${ }^{1}$ and Xin-nian Wang ${ }^{3,4}$ arXiv:1604.04036v1	
$\Pi_{\mu}(p)=\epsilon_{\mu \rho \sigma \tau} \frac{p^{\tau}}{8 m} \frac{\int \mathrm{~d} \Sigma_{\lambda} p^{\lambda} n_{F}\left(1-n_{F}\right) \partial^{\rho} \beta^{\sigma}}{\int \mathrm{d} \Sigma_{\lambda} p^{\lambda} n_{F}}$	$n_{F}=\frac{1}{\mathrm{e}^{\beta(x) \cdot p-\mu / T}+1} . \quad \beta^{\mu}=u^{\mu} / T$
	$\omega_{\mu \nu}=\frac{1}{2}\left(\partial_{\nu} u_{\mu}-\partial_{\mu} u_{\nu}\right)$
$\Pi_{\mu}=W_{\mu} / m=-\frac{1}{2} \varepsilon_{\mu \rho \sigma} S^{\rho \sigma} \frac{p^{\tau}}{m}$	$\tilde{\omega}_{\mu \nu}=\frac{1}{2}\left[\partial_{\nu}\left(u_{\mu} / T\right)-\partial_{\mu}\left(u_{\nu} / T\right)\right]$
$W_{\mu}-$ Pauli-Lubanski pseudovector	
$S^{\mu \nu}=\varepsilon^{\mu \nu \tau} S_{\tau}$ Rest frame: $\Pi_{\mu}=(0, \mathbf{s})$	$\omega^{\alpha}=\frac{1}{2} \varepsilon^{\alpha \mu \nu \sigma} u_{\mu} \omega_{\sigma \nu}$

F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and S. Voloshin, "Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down", Phys. Rev. C95 no. 5, (2017) 054902, arXiv:1610.02506 [nucl-th]

$$
\begin{array}{|l|}
\hline \text { Nonrelativistic statistical mechanics } \\
\hline \hline p\left(T, \mu_{i}, \mathbf{B}, \boldsymbol{\omega}\right) \propto \exp \left[\left(-E+\mu_{i} Q_{i}+\boldsymbol{\mu} \cdot \mathbf{B}+\boldsymbol{\omega} \cdot \mathbf{J}\right) / T\right]
\end{array}
$$

$$
\mathbf{S} \approx \frac{S(S+1)}{3} \frac{\omega}{T}
$$

[28] L. D. Landau and E. M. Lifshits, Statistical Physics, 2nd Ed. Pergamon Press, 1969
[29] A. Vilenkin, "Quantum Field Theory At Finite Temperature In A Rotating System," Phys. Rev. D 21, 2260 (1980). doi:10.1103/PhysRevD.21.2260

applicable for any spin

Question for theorists: what is the nonrelativisic limit for polarization due to temperature gradient and acceleration?

Global polarization vs $\sqrt{s_{N N}}$

Several model have rather satisfactory description of the energy dependence

Empirically the energy dependence follows closely $d v_{1} / d \eta$ dependence. predicting polarization values at LHC about 3 to 6 times smaller than at top RHIC energy

Pb-Pb 15-50\%
$0.5<\mathrm{p}_{\mathrm{T}}<5.0 \mathrm{GeV} / c$
$|y|<0.5$
$\Lambda \quad \bar{\Lambda}$
\square O STAR
Au-Au 20-50\%
$0.5<\mathrm{p}_{\mathrm{T}}<6.0 \mathrm{GeV} / \mathrm{c}$
$|\eta|<0.8$

LHC18 data, in progress Stat. errors ~30\% smaller

Directed flow: tilted source \oplus dipole flow

ALICE Collaboration, B. Abelev et al., "Directed Flow of Charged Particles at Midrapidity Relative to the Spectator Plane in $\mathrm{Pb}-\mathrm{Pb}$ Collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ ", Phys. Rev. Lett. 111 no. 23, (2013) 232302, arXiv:1306.4145 [nucl-ex].

STAR Collaboration, L. Adamczyk et al., "Azimuthal anisotropy in $\mathrm{Cu}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=$
200 GeV", Phys. Rev. C98 no. 1, (2018) 014915, arXiv:1712.01332 [nucl-ex].

\leftarrow idea of directed flow as a combination of "tilted source" and dipole flow

$$
\frac{1}{\left\langle p_{T}\right\rangle} \frac{d\left\langle p_{x}\right\rangle}{d \eta} \approx 1.5 \alpha_{t s} \frac{d v_{1}}{d \eta}
$$

$$
\alpha_{t s} \text { - fraction of "tilted source" contribution to } v_{1}
$$

- For mid-central collisions (20\%-40\%) tilted source contribution is about $2 / 3$, its fraction increases in more peripheral collisions.
- At LHC energies "tilted sources" contribution is smaller, about 1/3
\rightarrow polarization at LHC $\sim 1 / 6$ of that at RHIC 200 GeV

FIG. 5. (Color online) Charged particle "conventional" (left) and "fluctuation" (right) components of directed flow v_{1} and momentum shift $\left\langle p_{x}\right\rangle /\left\langle p_{T}\right\rangle$ as a function of η in $10 \%-40 \%$ centrality for $\mathrm{Cu}+\mathrm{Au}, \mathrm{Au}+\mathrm{Au}$, and $\mathrm{Pb}+\mathrm{Pb}$ collisions. Thick solid and dashed lines show the hydrodynamic model calculations with $\eta / s=0.08$ and 0.16 , respectively, for $\mathrm{Cu}+\mathrm{Au}$ collisions [31].

Directed flow and vorticity

According to this naive "extrapolation" yield polarization at LHC about $1 / 3$ of that at highest RHIC energy

But, the directed flow has different components. "tilted source", 'dipole flow"..
F. Becattini, G. Inghirami, V. Rolando, A. Beraudo, L. Del Zanna, A. De Pace, M. Nardi, G. Pagliara, and V. Chandra, Eur. Phys. J. C75, 406 (2015), arXiv:1501.04468 [nucl-th]

Good description of directed flow requires accounting for vorticity!

Slope, $\mathrm{dv}_{1} / \mathrm{dn}$ proportional to ω ?

gPolarization and magnetic field

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$
\begin{aligned}
& P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T}+\frac{\mu_{\Lambda} B}{T} \\
& P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega_{\|}^{\prime}}{T}-\frac{\mu_{\Lambda} B}{T} \\
& \mu_{\wedge}: \wedge \text { magnetic moment }
\end{aligned}
$$

L. McLerran, V. Skokov / Nuclear Physics A 929 (2014) 184-190

Fig. 1. Magnetic field for static medium with Ohmic conductivity, σ_{Ohm}.

gPolarization differentially

STAR, PRC98, 014910 (2018)

Hopefully available at LHC in Run 3

Feed-down and polarization transfer

F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and S. Voloshin, "Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down", Phys. Rev. C95 no. 5, (2017) 054902, arXiv:1610.02506 [nucl-th].

- $\sim 60 \%$ of measured \wedge are feed-down from $\Sigma^{*} \rightarrow \wedge \pi, \Sigma^{0} \rightarrow \wedge \gamma, \Xi \rightarrow \wedge \pi$
- Polarization of parent particle R is transferred to its daughter \wedge (Polarization transfer could be negative!)

Decay	
parity-conserving: $1 / 2^{+} \rightarrow^{1 / 2^{+}} 0^{-}$	$-1 / 3$
parity-conserving: $1 / 2^{-} \rightarrow^{1 / 2} 2^{+} 0^{-}$	1
parity-conserving: $3 / 2^{+} \rightarrow^{1 / 2} 2^{+} 0^{-}$	$1 / 3$
parity-conserving: $3 / 2^{-} \rightarrow^{1 / 2^{+}} 0^{-}$	$-1 / 5$
$\Xi^{0} \rightarrow \Lambda+\pi^{0}$	+0.900
$\Xi^{-} \rightarrow \Lambda+\pi^{-}$	+0.927
$\Sigma^{0} \rightarrow \Lambda+\gamma$	$-1 / 3$

$$
\mathbf{S}_{\Lambda}^{*}=C \mathbf{S}_{R}^{*}
$$

$\mathrm{C}_{\wedge \mathrm{R}}$: coefficient of spin transfer from parent R to \wedge S_{R} : parent particle's spin
μ_{R} : magnetic moment of particle R

TABLE I. Polarization transfer factors C (see eq. (36)) for important decays $X \rightarrow \Lambda(\Sigma) \pi$

Primary \wedge polarization is diluted by 15\%-20\% (model-dependent) This also suggests that the polarization of daughter particles can be used to measure the polarization of its parent! e.g. $\bar{\Xi}, \Omega$

Measuring Ξ and Ω polarization

P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, $083 \mathrm{C01}$ (2020)

	Mass ($\mathrm{GeV} / \mathrm{c}^{2}$)	$\left\lvert\, \begin{aligned} & \mathrm{ct} \\ & (\mathrm{~cm}) \end{aligned}\right.$	decay mode	decay Qter parameter	magnetic moment $\left(\mu_{N}\right)$	spin
\wedge (uds)	1.115683	7.89	$\begin{aligned} & \Lambda->\pi p \\ & (63.9 \%) \end{aligned}$	0.732 ± 0.014	-0.613	1/2
E- (dss)	1.32171	4.91	$\begin{aligned} & \equiv-->\wedge \pi^{-} \\ & (99.887 \%) \end{aligned}$	-0.401 ± 0.010	-0.6507	1/2
$\Omega^{-}(\mathrm{sss})$	1.67245	2.46	$\begin{aligned} & \Omega->\wedge K- \\ & (67.8 \%) \end{aligned}$	0.0157 ± 0.002	-2.02	$3 / 2$

- Different spin, magnetic moments, quark structure
- Less feed-down in \equiv and Ω compared to \wedge
- Freeze-out at different time?

$$
\frac{d N}{d \Omega^{*}}=\frac{1}{4 \pi}\left(1+\alpha_{H} \mathbf{P}_{H}^{*} \cdot \hat{\boldsymbol{p}}_{B}^{*}\right)
$$

Smaller α, more difficult to measure P
T.D. Lee and C.N. Yang, Phys. Rev.108.1645 (1957)

$$
\mathbf{P}_{\Lambda}^{*}=\frac{\left(\alpha_{\Xi}+\mathbf{P}_{\Xi}^{*} \cdot \hat{\boldsymbol{p}}_{\Lambda}^{*}\right) \hat{\boldsymbol{p}}_{\Lambda}^{*}+\beta_{\Xi} \mathbf{P}_{\Xi}^{*} \times \hat{\boldsymbol{p}}_{\Lambda}^{*}+\gamma_{\Xi} \hat{\boldsymbol{p}}_{\Lambda}^{*} \times\left(\mathbf{P}_{\Xi}^{*} \times \hat{\boldsymbol{p}}_{\Lambda}^{*}\right)}{1+\alpha_{\Xi} \mathbf{P}_{\Xi}^{*} \cdot \hat{\boldsymbol{p}}_{\Lambda}^{*}}
$$

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=1
$$

$\alpha: \mathrm{P}$-violation
$\beta: \mathrm{CP}$ violation

Ω, spin $3 / 2, \gamma$ not known $\gamma_{\Omega} \approx \pm 1$

$$
\begin{aligned}
& \mathbf{P}_{\Lambda}^{*}=C_{\Xi-\Lambda} \mathbf{P}_{\Xi}^{*}=\frac{1}{3}\left(1+2 \gamma_{\Xi}\right) \mathbf{P}_{\Xi}^{*} \\
& C_{\Xi-\Lambda}=\frac{1}{3}(2 \times 0.89+1)=+0.927
\end{aligned}
$$

$$
\mathbf{P}_{\Lambda}^{*}=C_{\Omega^{-} \Lambda} \mathbf{P}_{\Omega}^{*}=\frac{1}{5}\left(1+4 \gamma_{\Omega}\right) \mathbf{P}_{\Omega}^{*}
$$

$$
C_{\Omega^{-}} \approx 1 \text { or } C_{\Omega^{-} \Lambda} \approx-0.6
$$

Possibility to determine γ_{Ω} under assumption of the global polarization

Measuring Ξ and Ω polarization

T. Niida (STAR) talk at RHIC/AGS Users meeting, 2020

CSE and global polarization

Chiral Separation Effect (CSE) - separation of the axial charge along the magnetic field

!!: 1/2 of the CMW phenomenon

STAR, PRC98, 014910 (2018)

T. Niida, QCD Chirality Workshop 2017

- $\mathrm{A}_{\text {ch }}$ dependence observed
- Slopes of \wedge and anti- \wedge seem to be opposite ($\sim 2 \sigma$ level)
- Possible contribution from axial charge or
- Quark vector chemical potential may explain the data

SQM2017 S. A. Voloshin, "Vorticity and particle polarization in heavy ion collisions (experimental perspective)", arXiv:1710.08934 [nucl-ex]. [EPJ Web Conf.17,10700(2018)].

Anisotropic flow $\Rightarrow \omega_{z}$ z \quad_{4}^{y}

Plot not included in the paper
F. Becattini and I. Karpenko, "Collective Longitudinal Polarization in Relativistic Heavy-Ion Collisions at Very High Energy", Phys. Rev. Lett. 120 no. 1, (2018) 012302, arXiv:1707. 07984

Blast Wave:

a_{n}, b_{n} of the order of a few percent

zPolarization

Most models can not describe the sign/absolute value of P_{z}, but describe reasonably well the global polarization

- F. Becattini and I. Karpenko, PRL. 120.012302 (2018)
- X. Xia et al., PRC98. 024905 (2018)
- Y. Sun and C.-M. Ko, PRC99, 011903(R) (2019)
- Y. Xie, D. Wang, and L. P. Csernai, Eur. Phys. J. C (2020) 80:39
- W. Florkowski et al., Phys. Rev. C 100, 054907 (2019)
- H.-Z. Wu et al., Phys. Rev. Research 1, 033058 (2019)

HYDRO, AMPT: It was noticed that the "kinematic non-relativistic vorticity" fits data well, but is (much) smaller than that including contributions from acceleration and temperature gradients

Centrality and p_{T} dependence

$$
\begin{aligned}
\left\langle\omega_{z} \sin (2 \phi)\right\rangle & =\frac{\int d \phi_{s} \int r d r I_{2}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right) \omega_{z} \sin \left(2 \phi_{b}\right)}{\int d \phi_{s} \int r d r I_{0}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right)} \\
\omega_{z} & =\frac{1}{2}\left(\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right)
\end{aligned}
$$

zPolarization, ALICE

Plans to release preliminary:
D. Sarkar (ALICE), IS2021

Make predictions!

Spin alignment in vector meson decays

Strong decays of vector mesons in to two (pseudo)scalar particles

$K^{* 0} \rightarrow \pi+K$
$\phi \rightarrow K^{-}+K^{+}$

$$
\frac{d N}{d \cos \theta^{*}} \propto\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}
$$

$$
\rho_{00}=w_{0}-\text { probability for } s_{z}=0
$$

$$
\rho_{00}=\frac{1}{3}-\frac{4}{3}\left\langle\cos \left[2\left(\phi_{p}^{*}-\Psi_{\mathrm{RP}}\right)\right]\right\rangle
$$

$$
\frac{d N}{d \cos \theta^{*}} \propto w_{0}\left|Y_{1,0}\right|^{2}+w_{+1}\left|Y_{1,1}\right|^{2}+w_{-1}\left|Y_{1,-1}\right|^{2} \propto w_{0} \cos ^{2} \theta^{*}+\left(w_{+1}+w_{-1}\right) \sin ^{2} \theta^{*} / 2
$$

$$
V \rightarrow l^{+} l^{-}
$$

$$
W(\theta, \phi) \propto \frac{1}{3+\lambda_{\theta}}\left(1+\lambda_{\theta} \cos ^{2} \theta+\lambda_{\phi} \sin ^{2} \theta \cos 2 \phi+\lambda_{\theta \phi} \sin 2 \theta \cos \phi\right)
$$

$$
\begin{aligned}
& \text { Unlike } K^{0^{*}} \rightarrow K \pi \\
& \text { and } \phi \rightarrow K^{+} K^{-} \text {, the daughters } \\
& \text { in } J / \psi \rightarrow l^{+} l^{-} \text {have spin } 1 / 2
\end{aligned}
$$

$K^{* 0}$ and ϕ spin alignment

STAR, QM18, QM19

Large deviation from 1/3, which cannot be explained in the vorticity picture: $\quad \rho_{00}=\frac{1}{3+(\omega / T)^{2}}$
The deviations from 1/3 are different

- K^{*} and φ at RHIC
- LHC and RHIC for φ

$$
\begin{aligned}
& \text { Thermal model: } \\
& \rho_{00}=0.15 \Rightarrow w\left(s_{z}=+1\right)=0.82 \\
& w(0)=0.15, w(-1)=0.03
\end{aligned}
$$

RHIC: Mean field of φ meson plays a role? Does it change from RHIC to LHC?
X. Sheng, L. Oliva, and Q. Wang, PRD101.096005(2020)
X. Sheng, Q.Wang, and X. Wang, PRD102. 056013 (2020)

Summary

- Polarization measurements are very valuable for understanding of the QGP dynamics, hadronization, hadron spin structure
- RHIC: STAR $27 \mathrm{GeV} \Lambda, \bar{\Lambda}$
- BES II

LHC: High statistics Run3 data will bring many more possibilities

- Precision measurements of the global polarization
- more differential measurements of zPolarization
- measurements of other local polarization effects
- Measurement of Ξ and Ω polarization

Thank you for your attention!

EXTRA SLIDES, χ

Preprehistory also exists..

\mathcal{P}-odd domains in heavy ion collisions

Efremov, Kharzeev, PLB366:311(1996)
Kharzeev, Pisarsky, Tytgat, PRL81:512(1998)
Kharzeev, Pisarsky, PRD61:111901(2000)
Voloshin, PRC62:044901(2000)
Kharzeev, Krasnitz, Venugopalan, PLB545:298(2002)
Finch, Chikanian, Longacre, Sandweiss, Thomas, PRC65:014908(2002)
D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Phys. Rev.

Lett. 81, 512 (1998).

$$
J=\sum_{\pi^{+}, \pi^{-}} \frac{\left(\vec{p}_{\pi^{+}} \times \vec{p}_{\pi^{-}}\right)_{z}}{p_{\pi^{+}} p_{\pi^{-}}}
$$

Sergei A. Voloshin
PHYSICAL REVIEW C, VOLUME 62, 044901

Difference in the orientation of the event plane determined with positive or negative particles!
$\sigma_{\sin (\Delta \phi), \text { nonstat }} \approx \alpha(1-3) \times 10^{-3}$.
where α is the fraction of particles orioinatino from the $\mathcal{P}_{\text {-odd }}$ domain
S. Voloshin and the NA49 Collaboration, "Search for parity violation in minimum bias $\mathrm{Pb}-\mathrm{Pb}$ collisions at SPS," LBNL 1998 annual report, http://ie.lbl.gov/nsd1999/mnc/RNC.htm, report R10

Cross correlations: CVE x CME comparison

(identified particle correlations)

Zero Lambda-pion correlations might be in contradiction to "CVE" and "CME" effect explanation

RP independent background II

XXVIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions Quark Matter 2017)

Disentangling flow and signals of Chiral Magnetic Effect in $\mathrm{U}+\mathrm{U}, \mathrm{Au}+\mathrm{Au}$ and $\mathrm{p}+\mathrm{Au}$ collisions

Prithwish Tribedy (for the STAR Collaboration)

Can be checked,
Might be important for interpretation

RHIC BES results

- Again, the signal is surprisingly "stable" over the wide range of energies
- Disappears at 7 GeV ?

LHC vs RHIC, II

Signed BF

XXVIIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2019)

Measurement of the charge separation along the magnetic field with Signed Balance Function in 200 GeV Au + Au collisions at STAR

Yufu Lin for the STAR Collaboration

based on:

Probe Chiral Magnetic Effect with Signed Balance Function

> A. H. Tang

- Chin.Phys.C 44 (2020) 5, 054101

Fig. 5. (Color online) $r_{\text {rest }}, r_{\text {lab }}$ and R_{B} as a function of centrality from $\mathrm{Au}+\mathrm{Au} 200 \mathrm{GeV}$ at STAR.

If both $r_{\text {rest }}$ and R_{B} are larger than unity, then it can be regarded as a case in favor of the existence of CME. In Au+Au collisions at 200 GeV , $r_{\text {rest }}, r_{\text {lab }}$ and R_{B} are found to be larger than unity, and larger than AVFD model calculation with no CME implemented. Our results are difficult to be explained by a background-only scenario.

Idea:

Particles get small impulses due to CME. Let us analyze the change in momentum, instead of azimuth. Count the signs of the relative momentum (y component) for each pair, in the lab frame and in the pair rest frame.

Might be slightly more "sensitive" that gamma, but effect is likely small
Needs further investigations. More difficult to calculate

FIG. 1. Comparison of the $R(\Delta S)$ correlators for (a) backgrounddriven charge separation $\left(a_{1}=0\right)$ in $30-40 \% \mathrm{Au}+\mathrm{Au}$ collisions $\left(\sqrt{s_{N N}}=200 \mathrm{GeV}\right)$ obtained with the AMPT and AVFD models, and (b) the combined effects of background- and CME-driven ($a_{1}=$ 1.0%) charge separation in $\mathrm{Au}+\mathrm{Au}$ collisions obtained with the AVFD model at the same centrality and beam energy.

> N. N. Ajitanand, Roy A. Lacey, A. Taranenko, and J. M. Alexander
PHYSICAL REVIEW C 97, 061901(R) (2018)

$$
\begin{gathered}
R_{\Psi_{2}}(\Delta S)=C_{\Psi_{2}}(\Delta S) / C_{\Psi_{2}}^{\perp}(\Delta S) \\
C_{\Psi_{m}}(\Delta S)=\frac{N_{\text {real }}(\Delta S)}{N_{\text {Shuffled }}(\Delta S)} \\
\Delta S=\frac{\sum_{1}^{p} \sin \left(\frac{m}{2} \Delta \varphi_{m}\right)}{p}-\frac{\sum_{1}^{n} \sin \left(\frac{m}{2} \Delta \varphi_{m}\right)}{n}
\end{gathered}
$$

The correlation functions $C_{\Psi_{m}}^{\perp}(\Delta S)$, used to quantify charge separation perpendicular to the \vec{B} field, are constructed with the same procedure outlined for $C_{\Psi_{m}}(\Delta S)$, but with Ψ_{m} replaced by $\Psi_{m}+\pi / m . \sin () \longrightarrow \cos ()$ in the Eq. above

The shape of the ratio (concave, convex) depends on the widths of the distributions in the denominator and numerator. Those widths are determined by the value of 2-particle correlations (sin-sin or cos-cos). The it is simpler and much more transparent to compare those directly (as done in gamma correlator).
Does not seem to bring anything new
Difficult for quantitative analysis, e,g. what should be the relative contribution of the signal and background for the ratio to be flat?

Centrality/energy dependence

CMW and LCC : Hydro

Fig. 4. The charge asymmetry dependence of π^{+}and π^{-}elliptic flow coefficients in the hydrodynamic model followed by statistical emission with local charge conservation. We obtained $r=0.012 \pm 0.004$ compared with the preliminary STAR data, $r_{\exp } \approx 0.03$.

$$
\begin{array}{|l}
\hline \text { LCC = local charge conservation. } \\
\text { The results indicates that LCC plays a } \\
\text { significant role (even though in this } \\
\text { particular calculations it might } \\
\text { underestimate the 'signal' by a factor of 3) } \\
\hline
\end{array}
$$

CME vs background. U+U

FIG. 1 (color online). Schematic view of central $U+U$ collisions: (a) tip-tip and (b) body-body.
In both cases the magnetic field is small, but elliptic flow is large in body-body. A way to disentangle two effects!

FIG. 2 (color online). Event distributions in v_{2} for $\mathrm{Au}+\mathrm{Au}$ and $U+U$ collisions in event samples with the number of spectators $N_{\text {sp }}<20$.

FIG. 3 (color online). Elliptic flow and the magnetic field (in arbitrary units) as a function of q, the magnitude of the flow vector, in events with the number of spectators $N_{\text {sp }}<20$

Note that one can use a similar trick with $A u+A u$, but there, one would "play" on fluctuations, not nuclear shape

EXTRA SLIDES, ω

Local vorticity

Vortex induced by jet

Y. Tachibana and T. Hirano, NPA904-905 (2013) 1023
B. Betz, M. Gyulassy, and G. Torrieri, PRC76.044901 (2007)

Local vorticity induced by collective flow

L.-G. Pang, H. Peterson, Q. Wang, and X.-N. Wang, PRL117, 192301 (2016)
F. Becattini and I. Karpenko, PRL120.012302 (2018)
S. Voloshin, EPJ Web Conf.171, 07002 (2018)
X.-L. Xia et al., PRC98. 024905 (2018)

Disagreement in P_{z} sign

Opposite sign

- UrQMD IC + hydrodynamic model
F. Becattini and I. Karpenko, PRL.120.012302 (2018)
- AMPT
X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Same sign

- Chiral kinetic approach
Y. Sun and C.-M. Ko, PRC99, 01 1903(R) (2019)
- High resolution (3+1)D PICR hydrodynamic model Y. Xie, D. Wang, and L. P. Csernai, EPJC80. 39 (2020)
- Blast-wave model
S. Voloshin, EPJ Web Conf.171, 07002 (2018), STAR, PRL123.13201

Partially (one of component showing the same sign)

- Glauber/AMPT IC + (3+1)D viscous hydrodynamics H.-Z. Wu et al., Phys. Rev. Research 1, 033058 (2019)
- Thermal model
W. Florkowski et al., Phys. Rev. C 100, 054907 (2019)

Hydrodynamic model

Chiral kinetic approach
Au+Au @ 200 GeV, 30-40\%

PICR mode
$\Pi_{0 z}\left(p_{x}, p_{y}\right)$

Slopes and intercepts

FIG. 5. (Color online) Charged particle "conventional" (left) and "fluctuation" (right) components of directed flow v_{1} and
 $=200 \mathrm{GeV}$. The solid line shows the center-of-mass rapidity in $\mathrm{Cu}+\mathrm{Au}$ collisions calculated by Cu and Glauber model. Open boxes show systematic uncertainties.

$$
y_{\mathrm{CM}} \sim \frac{1}{2} \ln \left(N_{\mathrm{part}}^{\mathrm{Au}} / N_{\mathrm{part}}^{\mathrm{Cu}}\right)
$$

- For mid-central collisions (20\%-40\%) tilted source contribution is about 2/3, its fraction increases in more peripheral collisions.
- At LHC energies "tilted sources" contribution is smaller, about $1 / 3$
\rightarrow polarization at LHC $\sim 1 / 6$ of that at RHIC 200 GeV

[^0]: RHIC and LHC results -- surprisingly close!

 - 20% difference in $\Delta \eta$ window !
 - (CME) no effect of the change in the magnetic field lifetime (?)
 - (Bkg \& CME) no effect of almost 3 times higher multiplicity density (?)

