Experimental overview on chirality and polarization

Sergei A. Voloshin

Chirality:

- Brief history / introduction
- Some old and new results
- Assumptions, and assumptions, realistic and not realistic
- New approaches
- Current limits and near future

Mostly on CME; CMW, CVE, only in passing

WAYNE STATE UNIVERSITY

Vorticity:

- Intro, one page of history
- + Global polarization: Λ , Ξ, Ω polarization
- Local, "z" polarization
- Spin alignment
- What is next

correlations

CME and "Gamma" correlator

D. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys. Lett. B 633, 260 (2006).

S. A. Voloshin, Parity violation in hot QCD: How to detect it, Phys. Rev. C 70, 057901 (2004).

Effective particle distribution

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2v_1 \cos(\Delta\phi) + 2v_2 \cos(2\Delta\phi) + ... + 2a_{1,\pm} \sin(\Delta\phi) + ...; \quad \Delta\phi = \phi - \Psi_{2}$$

$$\gamma_{\alpha,\beta} \equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP} \rangle$$

$$= \langle \cos \Delta\phi_{\alpha} \cos \Delta\phi_{\beta} \rangle - \langle \sin \Delta\phi_{\alpha} \sin \phi_{\alpha} \sin \phi_{\alpha}$$

The sign of the correlations is sensitive to the "direction" (in- or out-of-plane), the background is suppressed (B_{in} - B_{out}) at least by a factor of $v_2 < 10^{-1}$.

2008-2010

Types of the background

I. Physics (RP dependent). (Can not be suppressed)

$$\begin{split} \widehat{\gamma_{\alpha,\beta}} &\equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{\rm RP} \rangle \\ &= \langle \cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta} \rangle - \langle \sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta} \rangle \\ &= [\langle v_{1,\alpha} v_{1,\beta} \rangle + B_{\rm in}] - [\langle a_{1,\alpha} a_{1,\beta} \rangle + B_{\rm out}] \end{split}$$

"Flowing clusters" (including LCC) charge dependent directed flow.

Global polarization (including vector mesons); Note: in 2007 limits on the global polarization and spin alignment were obtained.

LCC:

- Correlations only between opposite charges
- (negative) charge independent correlations (e.g. momentum conservation).
- as predicted by the Blast Wave model

II. Measurements (RP independent). (depends on method, in principle can be reduced)

 $\langle \cos(\phi_a + \phi_b - 2\phi_c) \rangle \xrightarrow{\mathbf{f}} \langle \cos(\phi_a + \phi_b - 2\Psi_2) \rangle v_{2,c}$

IRK MATTER 2009

- To be consistent with data must be combined with

- No event generator exhibits such strong correlations

First PRL, PRC (2009)

FIG. 4 (color). $\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{\rm RP}) \rangle$ results from 200 GeV Au + Au collisions are compared to calculations with event generators HIJING (with and without an "elliptic flow afterburner"), URQMD (connected by dashed lines), and MEVSIM. Thick lines represent HIJING reaction-plane-independent background.

Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy-ion collisions

FIG. 7. (Color online) $\langle \cos(\phi_a + \phi_\beta - 2\Psi_{\rm RP}) \rangle$ in Au + Au and Cu + Cu collisions at $\sqrt{s_{NN}} = 200$ GeV calculated using Eq. (7). The error bars show the statistical errors. The shaded areas reflect the uncertainty in the elliptic flow values used in calculations, with lower (in magnitude) limit obtained with elliptic flow from twoparticle correlations and upper limit from four-particle cumulants. For details, see Sec. IV. Thick solid (Au + Au) and dashed (Cu + Cu)lines represent possible non-reaction-plane-dependent contribution from many-particle clusters as estimated by HIJING (see Sec. VII A).

LHC vs RHIC

CME: Signal vs background

Goal: identification of the presence or the lack of the CME signal at the level of ~5% of the measured gamma correlator value

At hand: Signal depends on the magnetic field/vorticity the background depends on anisotropic flow

- Collision energy dependence, Beam energy scan (signal should disappear at lower energies)
- Event Shape Engineering (increase/decrease background)
- Isobar collisions (vary magnetic field keeping the same background)
- $(\Delta \gamma / v_2)$ with different Event Planes (Participant, Spectators)
- Higher/mixed harmonic correlators (background, no signal)
- Small system collisions (background, no signal)
- U+U (body-body vs tip-tip)
- Correlations with identified particles (e.g. for the next bullet)
- Cross-correlation of different observables, CME X CMW X CVE
- New(er) ideas/observables

Studies of the EM fields

The measurements are likely dominated by the "background" (LCC?).

invariant mass, R-correlator, signed BF, Helicity correlations)

Event Shape Engineering

ESE - a technique to select events with large(r)/small(er) flow within the same centrality range

Application to the CME search: BG ~ v_2 , Signal - much weaker dependence (mostly due to decorrelations between **B** and Ψ_2)

> 1. Select events based on *q_n*-vector in one momentum region ("subevent") 2. Perform an analysis of these events in another region ("subevent").

$$X_n = \sum_{i=1}^{M} \cos(n\phi_i); \quad Y_n = \sum_{i=1}^{M} \sin(n\phi_i)$$

$$Q_n = \{X_n, iY_n\}; \ q_n = |Q_n|/\sqrt{M}$$

ESE with cutting on q_2 : variation of flow values up to factor of ~2

Pseudo-ESE

PHYSICAL REVIEW C 89, 044908 (2014)

Measurement of charge multiplicity asymmetry correlations in high-energy nucleus-nucleus

v2obs (used for "ESE") and the signal are measured with the same particles (in the same pseudorapidity region)

Results are dominated by statistical fluctuations. No possibility to correct for the reaction plane resolution. Uninterpretable.

RHIC-BES seminar, December 1, 2020 page 10

S.A. Voloshin

ESE, almost there

PHYSICAL REVIEW C 97, 044912 (2018)

Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in *p*Pb and PbPb collisions at the CERN Large Hadron Collider

FIG. 12. The difference of the OS and SS three-particle correlators γ_{112} averaged over $|\Delta \eta| < 1.6$ as a function of v_2 evaluated in each q_2 class, for the multiplicity range $185 \leq N_{trk}^{offline} < 250$ in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV and PbPb collisions at 5.02 TeV (upper), and for different centrality classes in PbPb collisions at 5.02 TeV (lower). Statistical and systematic uncertainties are indicated by the error bars and shaded regions, respectively. A one standard deviation uncertainty from the fit is also shown.

$$\Delta \gamma_{112} = a v_2 + b,$$

upper limit on the v_2 -independent fraction of the three-particle correlator, or the possible CME signal contribution (assumed independent of v_2 within the same narrow multiplicity or centrality range), is estimated to be 13% for *p*Pb data and 7% for PbPb data at a 95% confidence level. The data presented in

Does it make sense to talk about 95% CL, not including uncertainty on the assumptions?

CME signal is not totally v₂ independent, the real limit is larger than 7%

page 11 RHIC-BES seminar, December 1, 2020

ALICE: Event shape engineering

page **12** RHIC-BES seminar, December 1, 2020 agnetic Effect with Event $\overline{NN} = 2.76 \text{ TeV}$ '7 (2018) 151–162

Fig. 6. (Colour online.) Centrality dependence of the CME fraction extracted fron the slope parameter of fits to data and MC-Glauber [51], MC-KLN CGC [53,54] and EKRT [55] models, respectively (see text for details). The dashed lines indicate the physical parameter space of the CME fraction. Points are slightly shifted along the horizontal axis for better visibility. Only statistical uncertainties are shown.

Signal dependence on v₂ (due to decorrelation between the EP and magnetic field direction): almost no model dependence

For mid-central collision the CME fraction $\leq 20\%$

Small systems I

These results challenge the CME interpretation for the observed charge-dependent azimuthal correlations in nucleus-nucleus collisions at RHIC and the LHC.

similarly

Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC

STAR Collaboration / Physics Letters B 798 (2019) 134975

Fig. 4. The $\Delta \gamma \times dN_{ch}/d\eta/v_2$ in p + Au and d + Au collisions as a function of multiplicity, compared to that in Au + Au collisions [18,19,21]. The data points connected by solid lines are measured using $\Delta \eta$ gap of 1.0 in v_2 {2}. Dashed lines represent the results using $v_{2,c}$ with η gaps of 0, 0.5 and 1.4.

S.A. Voloshin WAYNE STATE

Small systems II

Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC

STAR Collaboration / Physics Letters B 798 (2019) 134975

Fig. 4. The $\Delta \gamma \times dN_{\rm ch}/d\eta/v_2$ in p + Au and d + Au collisions as a function of multiplicity, compared to that in Au + Au collisions [18,19,21]. The data points connected by solid lines are measured using $\Delta \eta$ gap of 1.0 in v_2 {2}. Dashed lines represent the results using $v_{2,c}$ with η gaps of 0, 0.5 and 1.4.

My view - until such a background is kept well under control, no meaningful conclusion can be made. It is misleading not to include HIJING results in the paper.

What is the "contribution" of the RP independent background to the measurement? Answer - 100%. HIJING describes very well quantitatively both, " $\Delta \gamma$ " and "v₂" (simulations) done by the authors - not included in the paper).

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_2) \rangle = \langle \cos[(\phi_{\alpha} + \phi_{\beta} - 2\phi_c) + (2\phi_c - 2\phi_c)] \rangle$$

Mixed harmonics II (also $\Delta \gamma$, $\Delta \delta$; H, F, κ)

PHYSICAL REVIEW C 97, 044912 (2018)

Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in *p*Pb and PbPb collisions at the CERN Large Hadron Collider

> A. M. Sirunyan *et al.** (CMS Collaboration)

$$\begin{split} \gamma_{112} &\equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{2}) \rangle \\ \gamma_{112}^{\text{bkg}} &= \kappa_{2} \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle \langle \cos 2(\phi_{\beta} - \Psi_{\text{RP}}) \rangle = \kappa_{2} \, \delta \, v_{2} \\ \gamma_{123} &\equiv \langle \cos(\phi_{\alpha} + 2\phi_{\beta} - 3\Psi_{3}) \rangle, \\ \gamma_{123}^{\text{bkg}} &= \kappa_{3} \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle \langle \cos 3(\phi_{\beta} - \Psi_{3}) \rangle \\ &= \kappa_{3} \, \delta \, v_{3}, \end{split}$$

 $\langle \cos(\phi_a + \phi_b - 2\Psi_2) \rangle = \langle \cos[(\phi_a - \phi_b) + (2\phi_b - 2\Psi_2)] \rangle \neq \langle \cos(\phi_a + \phi_b - 2\Psi_2) \rangle$ $\left\langle \cos(\phi_a - 3\phi_b + 2\Psi_2) \right\rangle = \left\langle \cos[(\phi_a - \phi_b) - (2\phi_b - 2\Psi_2)] \right\rangle \neq \left\langle \cos(\phi_a - \phi_b) - (2\phi_b - 2\Psi_2) \right\rangle$ A better way to address it: $\left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_2) \right\rangle = \left\langle \cos[(\phi_{\alpha} + \phi_{\beta} - 2\phi_c) + (2\phi_c - 2\phi_c)] \right\rangle$ $\left\langle \cos(\phi_{\alpha} - 3\phi_{\beta} + 2\Psi_2) \right\rangle = \left\langle \cos[(\phi_{\alpha} - 3\phi_{\beta} + 2\phi_c) - (2\phi_c - 4\phi_c) + 2\phi_c] \right\rangle$

APPENDIX A: GENERAL RELATION OF v_n HARMONICS **AND TWO- AND THREE-PARTICLE AZIMUTHAL CORRELATIONS**

In Sec. I, Eq. (5) can be derived in a way similar to Eq. (3), with details which can be found in Ref. [24]. Here, a general

$$\gamma_{1,n-1;n} = \frac{1}{2N^2} \int \rho_0(x_\alpha) \rho_0(x_\beta) \delta(x_\alpha, x_\beta)$$
$$\times [v_n(x_\alpha) + v_n(x_\beta)] dx_\alpha dx_\beta,$$
where $N = \int \rho_0(x) dx$.

Therefore, this general form of $\gamma_{1,n-1;n}$ can be applied to any order *n* and decomposed into the two-particle correlator δ and the *n*th order harmonic v_n , where n = 2 and 3 are studied in detail in Sec. VA.

> [24] A. Bzdak, V. Koch, and J. Liao, Charge-dependent correlations in relativistic heavy ion collisions and the chiral magnetic effect, Lect. Notes Phys. 871, 503 (2013).

$$\langle s(\phi_a - \phi_b) \rangle \langle \cos(2\phi_b - 2\Psi_2) \rangle$$

$$\cos(\phi_a - \phi_b)\rangle \langle \cos(2\phi_a - 2\Psi_2)\rangle$$

$$\Delta \gamma, \Delta \delta; H, F, T$$

To be be precise requires detailed knowledge of the background. Not that useful.

$$(2\Psi_2)]\rangle \approx \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_c)\rangle v_{2,c}$$

$$(2\Psi_2)]\rangle \approx \langle \cos(\phi_{\alpha} - 3\phi_{\beta} + 2\phi_c)\rangle v_{2,c}$$

RHIC-BES seminar, December 1, 2020 page 16

S.A. Voloshin

Mixed harmonics, III

$$\langle \cos(\phi_a + \phi_b - 2\Psi_2) \rangle = \langle \cos[(\phi_a - \phi_b) + (2\phi_b - 2\Psi_2)] \rangle \neq \langle \cos(\phi_a - \phi_b) \rangle \langle \cos(2\phi_b - 2\Psi_2) \rangle$$
$$\langle \cos(\phi_a - 3\phi_b + 2\Psi_2) \rangle = \langle \cos[(\phi_a - \phi_b) - (2\phi_b - 2\Psi_2)] \rangle \neq \langle \cos(\phi_a - \phi_b) \rangle \langle \cos(2\phi_a - 2\Psi_2) \rangle$$

P Tribedy, QCD@HighDensity 2019

Delta-gamma vs invariant mass

based on:

J. Zhao (STAR collaboration). NPA 982 (2019) 535

Isolating the chiral magnetic effect from backgrounds by pair invariant mass Eur. Phys. J. C (2019) 79:168 Jie Zhao^{1,a}, Hanlin Li^{1,2}, Fuqiang Wang^{1,3,b} https://doi.org/10.1140/epjc/s10052-019-6671-1 looking in the region where no resonance contribution is measured assuming no dependence of the "CME part" of Delta-gamma on inv.mass Both assumptions/approaches are far from being realistic. The obtained limits has little value. In general it is a valid method, similar to other differential (vs pT, Delta-eta) measurements. Requires theoretical input on dependence of the signal on the invariant mass.

Correlations wrt participant and spectator planes

Fig. 1. The definitions of the RP and PP coordinate systems.

Assumption: spectator flow plane defines the magnetic field direction

PHYSICAL REVIEW C 98, 054911 (2018)

Estimate of the signal from the chiral magnetic effect in heavy-ion collisions from measurements relative to the participant and spectator flow planes

Sergei A. Voloshin Wayne State University, 666 West Hancock, Detroit, Michigan 48201, USA

Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision^{*}

Hao-Jie Xu (徐浩洁)¹, Jie Zhao (赵杰)², Xiao-Bao Wang (王小保)¹, Han-Lin Li (李汉林)³, Zi-Wei Lin (林子威)^{4,5}, Cai-Wan Shen (沈彩万)¹ and Fu-Qiang Wang (王福强)^{1,2} Published 1 July 2018 • © 2018 Chinese Physical Society and the Institute of High Energy

Chinese Physics C, Volume 42, Number 8

Decorrelation is strong enough to measure the difference in the CME signal

RHIC-BES seminar, December 1, 2020 page 19

S.A. Voloshin

Testing "background scenario"

Note that for these calculations **no need** for separate "resolution" calculations (simplify statistical error calculations)

$$\frac{|PB\rangle}{|PB\rangle} = 1$$

$$a = \alpha, \beta$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$
The ratio can be calculated with a possible EPs
$$\frac{|PB\rangle}{|PB\rangle} = 1$$

RHIC-BES seminar, December 1, 2020

Getting the CME fraction

RHIC-BES seminar, December 1, 2020

Isobar collisions

"Double ratio" in analysis of isobar collisions [instead of two different event planes — different isobar datasets

 $(\Delta \gamma / v_2)_{TPC} = \frac{\Delta \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{\alpha}) \rangle}{\langle \cos(2\phi_{\alpha} - 2\phi_{\alpha}) \rangle}$

 $\frac{(\Delta \gamma / v_2)_{AA}}{(\Delta \gamma / v_2)_{BB}} = 1 + f_{CME}^{BB} [(H_{AA} / H_{BB})^2 - 1]$

Note that the calculation of $(\Delta \gamma / v_2)$ quantities does not require knowledge of the reaction plane resolution [1]. It also "normalizes" the gamma correlator to the elliptic flow value and thus can be used for a direct comparison of the signals in different isobar collisions, even if the values of elliptic flow is slightly different in the two samples.

For isobar "double ratio", non-flow is much less of a problem!

PP/SP planes still can be used for individual isobar datasets to evaluate the CME fraction in each of them

$$\frac{2\phi_c)\rangle}{c}$$

Subscripts "AA", "BB" == Ru, Zn

Double ratio is "assumption free", insensitive to small differences in flow, centrality determination, nonflow,

Chiral Magnetic Wave

For a given sign of $\mu_V \propto A_{\pm}$, the difference in v₂ for positive and negative particles is uniquely predicted

$$v_2^{\pm} = v_2 \mp \frac{rA_{\pm}}{2}$$

 $A_{\pm} \equiv (\bar{N}_+ - \bar{N}_-)/(\bar{N}_+ + \bar{N}_-)$

PRL 107, 052303 (2011)

L. Adamczyk et al. (STAR Collaboration), Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions, Phys. Rev. Lett. 114, 252302 (2015).

J. Adam et al. (ALICE Collaboration), Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 93, 044903 (2016).

3 particle correlator

Three particle correlator

S. A. Voloshin and R. Belmont, Measuring and interpreting charge dependent anisotropic flow, Nucl. Phys. A 931, 992 (2014).

$$\langle c_3 \rangle = \frac{N_+ - N_-}{N_+ + N_-}$$
 $A_{\rm ch} = (N_+ - N_-)/(N_+ + N_-)$

 $\langle \langle \cos[n(\phi_1 - \Psi_n)] c_3 \rangle \rangle \equiv \langle \cos[n(\phi_1 - \Psi_n)] c_3 \rangle - \langle \cos[n(\phi_1 - \Psi_n)] \rangle \langle c_3 \rangle_1$

-- mean charge of particle "3" under condition $\langle c_3 \rangle_1$ of particle "1" being observed

- is tracking efficiency independent
- allows differential studies
- can be used for direct comparison between different experiments

5, 0.1−

¢

In the integral form the correlator is "equivalent" to the slope of Δv_2 vs A (=slope*sigma^2_A)

pseudorapidity dependence similar to that of gamma correlator

RHIC-BES seminar, December 1, 2020 page 24

S.A. Voloshin WAYNE STATE

Higher harmonics

CMW: v2 vs Ach, 3 pt correlator

Can be difficult for quantitative interpretation similarly to the CME search

Cross-correlations:

S.A. Voloshin, R. Belmont, Nuclear Phys. A 931 (2014) 992. arXiv:1408.0714

Final remarks CME/CMW search

Current limit on the "CME fraction" is about < 15% With isobars, ESE, SP/PP we will know it at the level ~ 5%

Getting anything better than that seems to be difficult

"New" directions:

PID? 2N_f|Q| quark interaction? many-particle correlation?

	dQ	$_5/dt$	\propto]	E•	B	
	S.C		22	ĊĊ,		
				-	-	
7	0.5					

Glasma: do we have long range correlations in rapidity? Multiparticle?

RHIC-BES seminar, December 1, 2020 page 27

S.A. Voloshin

Vorticity and polarization

Vorticity:

- + Intro, one page of history
- + Global polarization: Λ , Ξ, Ω polarization
- Local, "z" polarization
- Spin alignment

Brief history (~20 years in 60 seconds)

1987...

+E 896, NA57 2003 STAR mtng in Prague -first ideas

2004 Idea goes "on-shell"

2007 Fist measurements Relation to directed flow

First ideas on local vorticity

2013 ALICE Physics Week in Padova

2017 STAR measurements in BES

SQM - anisotropic flow -> zPol

2019/20 Ξ and Ω measurements

LONGITUDINAL $\overline{\Lambda}$ POLARIZATION, $\overline{\Xi}$ ABUNDANCE M. Jacob, J. Rafelski: Phys. Lett. 190 B (1987) 173 AND QUARK-GLUON PLASMA FORMATION

[nucl-th/0410079] Globally Polarized Quark-gluon Plasma in Non-central A+A Collisions Authors: <u>Zuo-Tang Liang</u> (Shandong U), <u>Xin-Nian Wang</u> (LBNL) (Submitted on 18 Oct 2004 (v1), last revised 7 Dec 2005 (this version, v5))

Authors: Sergei A. Voloshin (Submitted on 21 Oct 2004)

B. I. Abelev et al. (STAR Collaboration), Global polarization measurement in Au+Au collisions, Phys. Rev. C 76, 024915 (2007); **95**, 039906(E) (2017).

B. Betz, M. Gyulassy, and G. Torrieri, Polarization probes of vorticity in heavy ion collisions, Phys. Rev. C 76, 044901 (2007).

F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Relativistic distribution function for particles with spin at local thermodynamical equilibrium, Annals Phys. 338, 32 (2013).

STAR Collaboration, L. Adamczyk et al., "Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid", Nature 548 (2017) 62–65, S. A. Voloshin, "Vorticity and particle polarization in heavy ion collisions (experimental perspecarXiv:1710.08934 [nucl-ex]. [EPJ Web tive)",

Conf.17,10700(2018)].

prediction $P \sim 0.3$

[nucl-th/0410089] Polarized secondary particles in unpolarized high energy hadron-hadro...

$$\rho^{0} \rightarrow \pi^{+}\pi^{-}$$

$$s_{y} = 1 \rightarrow l_{y} = 1$$

$$- Spin alignment -> v_{2}$$

$$- Relation to single spin asymmetry$$

$$P_H = \frac{8}{\pi \alpha_H} \langle \sin(\Psi_{\rm RP} - \phi_p) \rangle$$

 Λ global polarization < 2%

STAR Collaboration, J. Adam et al., "Global polarization of Λ hyperons in Au+Au collisions at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ ", *Phys. Rev.* **C98** (2018) 014910,

$$P_z = \frac{3}{\alpha_H} \langle \cos \theta_p^* \rangle$$

RHIC-BES seminar, December 1, 2020 page **29**

Non-relativistic statistical mechanics

$$p(T, \mu_i, \mathbf{B}, \boldsymbol{\omega}) \propto \exp[(-E + \mu_i Q_i + \boldsymbol{\mu} \cdot \mathbf{B} + \boldsymbol{\omega} \cdot \mathbf{J})/T]$$

$$\mathbf{S} \approx \frac{S(S+1)}{3} \frac{\boldsymbol{\omega}}{T}$$

applicable for any spin

Question for theorists: what is the nonrelativisic limit for polarization due to temperature gradient and acceleration?

 $\partial E = \frac{1}{T}$; $\partial C = \partial E \left(-\frac{L_2}{T}\right) =$ $\partial E = \frac{1}{T}$; $\partial C = \partial E \left(-\frac{L_2}{T}\right) =$

 $-E_1/_T + \omega_2 S_2/_T$

 $\nabla_2 = \nabla_2^{(0)} + \frac{\nabla \nabla}{\nabla E} \Delta E_2 + \frac{\nabla \nabla}{\partial L} \Delta L_2$

2ª - thermal bath

probability pare 2

1

P

X

RHIC-BES seminar, December 1, 2020 page **30**

S.A. Voloshin WAYNE STATE

Global polarization vs $\sqrt{s_{NN}}$

Several model have rather satisfactory description of the energy dependence

Empirically the energy dependence follows closely $dv_1/d\eta$ dependence. predicting polarization values at LHC about 3 to 6 times smaller than at top RHIC energy

LHC18 data, in progress Stat. errors ~30% smaller

Directed flow: tilted source \bigoplus dipole flow

ALICE Collaboration, B. Abelev et al., "Directed Flow of Charged Particles at Midrapidity Relative to the Spectator Plane in Pb-Pb Collisions at $\sqrt{s_{NN}}=2.76$ TeV", Phys. Rev. Lett. 111 no. 23, (2013) 232302, arXiv:1306.4145 [nucl-ex].

Thin lines in the left panel show a linear fit to the data.

Directed flow and vorticity

According to this naive "extrapolation" yield polarization at LHC about 1/3 of that at highest RHIC energy

But, the directed flow has different components... "tilted source", 'dipole flow"...

F. Becattini, G. Inghirami, V. Rolando, A. Beraudo, L. Del Zanna, A. De Pace, M. Nardi, G. Pagliara, and V. Chandra, Eur. Phys. J. C75, 406 (2015), arXiv:1501.04468 [nucl-th]

Good description of directed flow requires accounting for vorticity!

Slope, $dv_1/d\eta$ proportional to ω ?

gPolarization and magnetic field

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

Assumption: thermal equilibrium

L. McLerran, V. Skokov / Nuclear Physics A 929 (2014) 184–190

Fig. 1. Magnetic field for static medium with Ohmic conductivity, σ_{Ohm} .

Significant limits on the magnetic field at freeze-out (time ~ 10 - 15 fm?)

RHIC-BES seminar, December 1, 2020 page 34

S.A. Voloshin

Feed-down and polarization transfer

F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and S. Voloshin, "Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down", Phys. Rev. C95 no. 5, (2017) 054902, arXiv:1610.02506 [nucl-th].

- ~60% of measured Λ are feed-down from $\Sigma^* \rightarrow \Lambda \pi$, $\Sigma^0 \rightarrow \Lambda \gamma$,
- Polarization of parent particle R is transferred to its daughte (Polarization transfer could be negative!)

Decay	C
parity-conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
parity-conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
parity-conserving: $3/2^+ \rightarrow 1/2^+ 0^-$	1/3
parity-conserving: $3/2^- \rightarrow 1/2^+ 0^-$	-1/5
$\Xi^0 \to \Lambda + \pi^0$	+0.900
$\Xi^- \to \Lambda + \pi^-$	+0.927
$\Sigma^0 \to \Lambda + \gamma$	-1/3

TABLE I. Polarization transfer factors C (see eq. (36)) for important decays $X \to \Lambda(\Sigma)\pi$

$$\mathbf{S}^*_{\Lambda} = C\mathbf{S}^*_R$$

 $C_{\Lambda R}$: coefficient of spin transfer from parent R to Λ

- S_R : parent particle's spin
- μ_R : magnetic moment of particle R

Primary Λ polarization is diluted by 15%-20% (model-dependent) This also suggests that the polarization of daughter particles can be used to measure the polarization of its parent! e.g. Ξ , Ω

Measuring Ξ and Ω polarization

P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

	Mass (GeV/c²)	cτ (cm)	decay mode	decay parameter	magnetic moment (μ _N)	spir
Λ (uds)	1.115683	7.89	Λ->πp (63.9%)	0.732 ± 0.014	-0.613	1/2
∃⁻ (dss)	1.32171	4.91	Ξ⁻->Λπ⁻ (99.887%)	-0.401 ± 0.010	-0.6507	1/2
Ω⁻ (sss)	1.67245	2.46	Ω⁻->ΛΚ⁻ (67.8%)	0.0157 ± 0.002	-2.02	3/2

- Different spin, magnetic moments, quark structure
- Less feed-down in Ξ and Ω compared to Λ
- Freeze-out at different time?

$$\begin{aligned} \frac{dN}{d\Omega^*} &= \frac{1}{4\pi} \left(1 + \alpha_H \mathbf{P}_H^* \cdot \hat{\mathbf{p}}_B^* \right) \\ \text{Smaller } \alpha, \text{ more difficult to measure P} \end{aligned}$$

$$\mathbf{D}_{\Lambda}^* = \frac{(\alpha_{\Xi} + \mathbf{P}_{\Xi}^* \cdot \hat{\mathbf{p}}_{\Lambda}^*) \hat{\mathbf{p}}_{\Lambda}^* + \beta_{\Xi} \mathbf{P}_{\Xi}^* \times \hat{\mathbf{p}}_{\Lambda}^* + \gamma_{\Xi} \hat{\mathbf{p}}_{\Lambda}^* \times \frac{1}{1500}}{1 + \alpha_{\Xi} \mathbf{P}_{\Xi}^* \cdot \hat{\mathbf{p}}_{\Lambda}^*} \xrightarrow{1500}{1 + \alpha_{\Xi} \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^* \cdot \hat{\mathbf{p}}_{\Lambda}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^* \mathbf{P}_{\Xi}^* \cdot \hat{\mathbf{p}}_{\Lambda}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^* \mathbf{P}_{\Xi}^* \cdot \hat{\mathbf{p}}_{\Lambda}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^* \mathbf{P}_{\Xi}^* \cdot \hat{\mathbf{p}}_{\Lambda}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{P}_{\Xi}^*} \xrightarrow{1}^* \mathbf{$$

Possibility to determine γ_{Ω} under assumption of the global polarization

Measuring Ξ and Ω polarization

T. Niida (STAR) talk at RHIC/AGS Users meeting, 2020

 Ξ polarization might be slightly larger than that of Λ

 Ω polarization results slightly favor $\gamma_{\Omega} = +1$

C. D.E. Kharzeev et al. / Progress in Particle and Nuc	Jar Physics 88 (2016) 1–28 Jar Dolla ST	$\int_{\mathbf{x}} \mathbf{U} \mathbf{Q}$
\vec{B}	$\vec{R} \vec{J}_5$	for any auxi
Chiral $\vec{s} \neq \vec{p}$ $\vec{s} \neq \vec{p}$		anomaly.
$ \begin{array}{c} \mathbf{Q}_{R} \\ Q$		The trans
$\square \square $	\overrightarrow{s} \overrightarrow{p}	
\vec{v}_{R} \vec{s} \vec{p} \vec{v}_{R}	Q_R	
$\mu \neq 0$	$\mu \neq 0$	
	$J_{5} - \frac{1}{2\pi^{2}}\mu(Qe)\mathbf{B}$	2.2. The chir
or online) Illustration of the chiral separation effect. To be specific, the illustration of the chiral separation effect. To be specific, the illustration of $\mu > 0$ and for the case of $\mu > 0$ (i.e. more quarks than a	ration is for just one kind of right-handed (RH) quarks (with $Q >$	0) TH
rent is generated in the opposite direction but their contribution to the axia	\mathbf{J}_{1} arrent \mathbf{J}_{5} would be the same as that of RH quarks. For $\mu < 0$	the By remin
I flip direction. \mathbf{RH}	a aviator as of such a summert we true or or orbitron	
(iliary electric field $\vec{\mathbf{E}} \parallel \vec{\mathbf{B}}$ and examine the energy changing ra	ate of then	nicEffect (CSE)
omputation "counts" the work per unit time (i.e. power) done	by such a μ_V can be:	$\cdot \vec{B}. \rightarrow$
vely for this system of chiral fermions, the (electromagnetic) c re $d\Omega_c/dt = \int_{\vec{F}} C_s \vec{F} \cdot \vec{B}$ with $C_s = 4\Omega_c r^2/(2\pi^2)$ the universa	hiral anor ''''''''''''''''''''''''''''''''''''	$\mathbf{J}_5 = \mathbf{c}$
$\mu_5 \neq 0$ implies an energy cost for creating each unit of axia	al charge,	alyIt states that
would give the power $P = -\frac{1}{\sqrt{2}} (\overline{dQ_5}/dt) = \int_{\vec{x}} [C_A \mu_5] \vec{E} \cdot \vec{Q}_5$	B . These electric charge , <i>r</i> i	^{ng} (nonzero) v
th $O > O \to O \to I$	net strangeness	conductivity
$[(0\mathbf{e})\sigma_5]\mathbf{E} \cdot \mathbf{B} = \int_{\mathbf{x}} [C_A \mu_5] \mathbf{E} \cdot \mathbf{B}$	((8) Intuitive
$\mathbf{y}_{\mathbf{x}}$ with $\mathbf{y}_{\mathbf{x}}$ is the σ_{5} must take the universal value $\frac{1}{2}$	$\frac{C_A \mu_5}{\Omega_6} = \frac{0}{2-2} \mu_5$ that is completely fixed by the chi	polarization
a second a la seconda dia Antoina dia Anto	that is intrincially diff $\mathbf{A} \mathbf{Y}$ from $\mathbf{F} = (7) \mathbf{T} \mathbf{Y}$ as	spins prefer
conductivity σ_5/is a T -even transport coefficient while the	usual conductivity σ is \mathcal{T} -odd [26]. That is, the \overline{CN}	MERH quarks/a
an be generated as an equilibrium current without produce	cing entropy, while the usual conducting current $V_{L} + V_{L} - V_{L} = V_{L} + V_{$	is $(1 - 0)$ then
		would form
chiga] EpaBtion effect		axial curren
The contract of the CMW	phenomenon discussed so far, it may	^{be} It is instr
ask: could axial current also be generated under certain en	constances in response to external probe fields? T	The op
Pomaly	ML has been found and hamed the chiral separati	$\vec{\mathbf{I}}_{\mathbf{D}/L} =$
HOWING Difficultios: vs charge A	is noutral (but E is not!)	$\mathbf{J}R/L$ —
that an axia		with $\sigma_{R/L} =$
) vector che VS NET KAONS	- low sensitivity to μ_V	left-handed
ively the SE may be understood in the following way, as ill	lustrated in Fig. 2. The magnetic field leads to a sr	oin
ion (i.e. "magnetization") effect, with $\langle \vec{s} \rangle \propto (Qe)\vec{B}$. This effect	implies that the positively charged quarks have the	eir
ferably aligned along the B field direction, while the negative $\mathbf{B} = \mathbf{B} + \mathbf{B}$	vely charged anti-quarks have their spins opposite	ely
s/antiquarks moving in the direction parallel/antiparallel	B . Furthermore with nonzero $\mu \neq 0$ (e.g. consideri	ng
here would then be a net current of RH quarks/antiquarks R	$\propto \langle ec{p} angle (n_Q - n_{ar{Q}}) \propto (Qe) \mu ec{B}$. The LH quarks/antiquar	rks

ren an pippekite current $\vec{I}_L \propto -(Qe)\mu \vec{B}$ but contribute the same as the RH quarks/antiquarks to form together an

$[e]_{\sigma_5}]\vec{\mathbf{E}} \cdot \vec{\mathbf{B}} = \int_{a}^{b} [C_A \mu_5]\vec{\mathbf{E}} \cdot \vec{\mathbf{B}}$ (Kaon) charge asymmetry instead of

iliary \vec{E} field. Thus the σ_5 must take the universal value $\frac{C_A\mu_5}{Oe} = \frac{Qe}{2\pi^2}\mu_5$ that is completely fixed by the chiral

sport phenomenon in Eq. (4) bears a districtive feature that is intrinsically different from Eq. (7) The chiral ductivity σ_5 /is a \mathcal{T} -even transport coefficient while the usual conductivity σ is \mathcal{T} -odd [26]. That is, the \overline{CME} be generated as an equilibrium current without producing entropy, while the usual conducting current is $1V_{K} + 1V_{K} - 7$ $1 \mathbf{v}_{+} + 1 \mathbf{v}_{-}$ issipative.

ral separation effect

ding ourselves of the axial counterpart in Eq. (5) of the vector current, which we have discussed so far, it may be s Coll Chiral hityr Hoakshop generated under certain circ imstances in response to external probe fields? The ositive. A complementary transport phenomenon to the CI \parallel E has been found and π_{A} med the Chiral Separation [61,62]: $\overline{\Lambda}$: -0.112 ± 0.045 ± 0.102 [%] $\sigma_s \mathbf{B}.$ at an axial current is generated abbseaveex Aernab B field with its magnitude in proportion to the system's vector chemical potential μ as well as the field magnity let The coefficient (which may be called the CSE) y) is given by $\sigma_s = \frac{Qe}{2\pi^2}\mu$. ly the CSE may be understood in the following way, as ill strated in Fig. 2. The magnetic field leads to a spin (i.e. "magnetization") effect, with $\langle \vec{s} \rangle \propto (Qe) \vec{B}$. This effect positively charged quarks have their rably aligned along the \vec{B} field direction, while the negative \vec{I} y charged anti-quarks have their spins oppositely v RH quarks and antiquarks (with $\vec{p} \parallel \vec{s}$) will have opposite a verage moment of $\vec{p} = \vec{p} \cdot \vec{p}$ antiquarks moving in the direction parallel/antiparallel to \vec{I} Furthermare with nonzero 327 (e.g. considering \vec{P} would then be a net current of RH quarks/antiquarks $\vec{J}_R \subset \langle \vec{p} \rangle (n_Q - n_{\bar{Q}}) \propto (Qe)\mu \vec{B}$. The LH quarks/antiquarks an opposite current $\vec{J}_L \propto -(Qe)\mu \vec{B}$ but contribute the same as the RH quarks/antiquarks to form together for t along the magnetic field: $\vec{J}_5 \propto (Qe)\mu \vec{B}$. measured A ructive to recast (4) and (9) in terms of the RH and LH currents $J_{R/L}$, as follows:

$$\frac{\mathbf{J} \pm \mathbf{J}_5}{2} = \pm \sigma_{R/L} \mathbf{B}$$

$$\frac{Qe}{2m^2} \mu_{R/L}. \text{ The above sign for an dependence observed in the comparison of the compar$$

Quark vector chemical potential may explain the data

page 39 RHIC-BES seminar, December 1, 2020

hop 201 (10)

nd purely o \$1des of

zPolarization

Most models can not describe the sign/absolute value of P_{z} , but describe reasonably well the global polarization

HYDRO, AMPT: It was noticed that the "kinematic non-relativistic vorticity" fits data well, but is (much) smaller than that including contributions from acceleration and temperature gradients

Centrality and p_T dependence

STAR, PRL123.13201 (2019)

 $\phi_b)$

BW parameters obtained with HBT: STAR, PRC71.044906 (2005)

S.A. Voloshin WAYNE STATE

zPolarization, ALICE

Plans to release preliminary: D. Sarkar (ALICE), IS2021

Make predictions!

Spin alignment in vector meson decays

Strong decays of vector mesons in to two (pseudo)scalar particles

$$\frac{K^{*0} \rightarrow \pi + K}{\phi \rightarrow K^{-} + K^{+}} \qquad \qquad \frac{dN}{d\cos\theta^{*}} \propto (1 - \rho_{00}) + (3\rho_{00} - 1)$$

$$\rho_{00} = w_{0} \text{ - probability for } s_{z} = 0$$

$$\frac{dN}{d\cos\theta^*} \propto w_0 |Y_{1,0}|^2 + w_{+1} |Y_{1,1}|^2 + w_{-1} |Y_{1,-1}|^2 \propto w_0 \cos^2\theta^* + (w_{+1} + w_{-1}) \sin^2\theta^* / 2$$

$$\frac{V \to l^+ l^-}{W(\theta, \phi)} \propto \frac{1}{3 + \lambda_{\theta}} \left(1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta\right)$$

 J/ψ , in progress

$$\cos^2 \theta^*$$

$$\rho_{00} = \frac{1}{3} - \frac{4}{3} \langle \cos[2(\phi_p^* - \Psi_{\rm RF})] \rangle \langle \psi_{\rm RF} \rangle \langle$$

 $\cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos \phi$

Unlike $K^{0^*} \to K\pi$ and $\phi \to K^+ K^-$, the daughters in $J/\psi \rightarrow l^+ l^-$ have spin 1/2

RHIC-BES seminar, December 1, 2020 page 44

S.A. Voloshin WAYNE STATE

Summary

- Polarization measurements are very valuable for understanding of the QGP dynamics, hadronization, hadron spin structure
- RHIC: STAR 27 GeV Λ , $\overline{\Lambda}$
- BES II

LHC: High statistics Run3 data will bring many more possibilities

- Precision measurements of the global polarization
- more differential measurements of zPolarization
- measurements of other local polarization effects
- Measurement of Ξ and Ω polarization

EXTRA SLIDES, χ

Prehistory (1998 - ...)

Preprehistory also exists...

\mathcal{P} -odd domains in heavy ion collisions

 \leftarrow (DIS) Efremov, Kharzeev, PLB366:311(1996) Kharzeev, Pisarsky, Tytgat, PRL81:512(1998) Kharzeev, Pisarsky, PRD61:111901(2000) Voloshin, PRC62:044901(2000) Kharzeev, Krasnitz, Venugopalan, PLB545:298(2002) Finch, Chikanian, Longacre, Sandweiss, Thomas, PRC65:014908(2002)

D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Phys. Rev. Lett. 81, 512 (1998).

Sergei A. Voloshin PHYSICAL REVIEW C, VOLUME 62, 044901

Difference in the orientation of the event plane determined with positive or negative particles!

$$\sigma_{\sin(\Delta\phi),nonstat} \approx \alpha(1-3) \times 10^{-3}$$

where α is the fraction of particles originating from the P-odd domain

S. Voloshin and the NA49 Collaboration, "Search for parity violation in minimum bias Pb-Pb collisions at SPS," LBNL 1998 annual report, http://ie.lbl.gov/nsd1999/rnc/RNC.htm, report R10.

Cross correlations: CVE x CME comparison

Zero Lambda-pion correlations might be in contradiction to "CVE" and "CME" effect explanation

(identified particle correlations)

RP independent background II

ScienceDirect

XXVIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2017)

Disentangling flow and signals of Chiral Magnetic Effect in U+U, Au+Au and p+Au collisions

Prithwish Tribedy (for the STAR Collaboration)

"short range background"

RP independent ?

Can be checked,

Might be important for interpretation

RHIC BES results

- Again, the signal is surprisingly "stable" over the wide range of energies - Disappears at 7 GeV?

LHC vs RHIC, II

- HIJING and RQMD are way different from data

- 2-particle correlations are quite different at RHIC and LHC

page **53** RHIC-BES seminar, December 1, 2020

"R" correlator

FIG. 1. Comparison of the $R(\Delta S)$ correlators for (a) backgrounddriven charge separation $(a_1 = 0)$ in 30–40% Au+Au collisions $(\sqrt{s_{NN}} = 200 \text{ GeV})$ obtained with the AMPT and AVFD models, and (b) the combined effects of background- and CME-driven ($a_1 =$ 1.0%) charge separation in Au+Au collisions obtained with the AVFD model at the same centrality and beam energy.

$$R_{\Psi_2}(\Delta S) = C_{\Psi_m}(\Delta S)$$
$$\Delta S = \frac{\sum_{1}^{p} \sin \theta}{2}$$

 $= C_{\Psi_2}(\Delta S) / C_{\Psi_2}^{\perp}(\Delta S),$ $\frac{N_{\rm real}(\Delta S)}{N_{\rm Shuffled}(\Delta S)}$ $\sum_{1}^{n} \sin\left(\frac{m}{2}\Delta\varphi_{m}\right)$ $\left(\frac{m}{2}\Delta\varphi_m\right)$ The correlation functions $C^{\perp}_{\Psi_m}(\Delta S)$, used to quantify charge separation perpendicular to the B field, are constructed with the same procedure outlined for $C_{\Psi_m}(\Delta S)$, but with Ψ_m replaced by $\Psi_m + \pi/m$. sin() —> cos() in the Eq. above

The shape of the ratio (concave, convex) depends on the widths of the distributions in the denominator and numerator. Those widths are determined by the value of 2-particle correlations (sin-sin or cos-cos). The it is simpler and much more transparent to compare those directly (as done in gamma correlator). Does not seem to bring anything new Difficult for quantitative analysis, e.g. what should be the relative contribution of the signal and background for the ratio to be flat?

ns

New method for the experimental study of topological effects in the quark-gluon plasma

N. N. Ajitanand, Roy A. Lacey, A. Taranenko, and J. M. Alexander

PHYSICAL REVIEW C 97, 061901(R) (2018)

New correlator to detect and characterize the chiral magnetic effect

Niseem Magdy,^{1,*} Shuzhe Shi,² Jinfeng Liao,² N. Ajitanand,^{1,†} and Roy A. Lacey^{1,‡}

RHIC-BES seminar, December 1, 2020 page **55**

S.A. Voloshin

Centrality/energy dependence

Energy dependence is not that obvious

L. Adamczyk et al. (STAR Collaboration), Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions, Phys. Rev. Lett. 114, 252302 (2015).

CMW and LCC : Hydro

Fig. 4. The charge asymmetry dependence of π^+ and π^- elliptic flow coefficients in the hydrodynamic model followed by statistical emission with local charge conservation. We obtained $r = 0.012 \pm 0.004$ compared with the preliminary STAR data, $r_{\exp} \approx 0.03$.

LCC = local charge conservation.

The results indicates that LCC plays a significant role (even though in this particular calculations it might underestimate the 'signal' by a factor of 3)

CME vs background. U+U

FIG. 1 (color online). Schematic view of central U + U collisions: (a) tip-tip and (b) body-body.

In both cases the magnetic field is small, but elliptic flow is large in body-body. A way to disentangle two effects!

FIG. 2 (color online). Event distributions in v_2 for Au + Au and U + U collisions in event samples with the number of spectators $N_{\rm sp} < 20$.

Note that one can use a similar trick with Au+Au, but there, one would "play" on fluctuations, not nuclear shape

FIG. 3 (color online). Elliptic flow and the magnetic field (in arbitrary units) as a function of q, the magnitude of the flow vector, in events with the number of spectators $N_{\rm sp} < 20$.

EXTRA SLIDES, ω

RHIC-BES seminar, December 1, 2020 page **59**

S.A. Voloshin

Local vorticity

Vortex induced by jet

YT and T. Hirano, Nucl.Phys.A904-905 2013 (2013) 1023c-1026c Y. Tachibana and T. Hirano, NPA904-905 (2013) 1023 B. Betz, M. Gyulassy, and G. Torrieri, PRC76.044901 (2007)

Local vorticity induced by collective flow

L.-G. Pang, H. Peterson, Q. Wang, and X.-N. Wang, PRL117, 192301 (2016) F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, EPJ Web Conf.171, 07002 (2018)

X.-L. Xia et al., PRC98.024905 (2018)

Opposite sign

- UrQMD IC + hydrodynamic model F. Becattini and I. Karpenko, PRL.120.012302 (2018)
- AMPT

X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Same sign

- Chiral kinetic approach Y. Sun and C.-M. Ko, PRC99, 011903(R) (2019)
- High resolution (3+1)D PICR hydrodynamic model Y. Xie, D. Wang, and L. P. Csernai, EPJC80.39 (2020)
- Blast-wave model S. Voloshin, EPJ Web Conf.171, 07002 (2018), STAR, PRL123.13201

Partially (one of component showing the same sign)

- Glauber/AMPT IC + (3+1)D viscous hydrodynamics. H.-Z. Wu et al., Phys. Rev. Research 1, 033058 (2019)
- Thermal model W. Florkowski et al., Phys. Rev. C 100, 054907 (2019)

Incomplete thermal equilibrium of spin degree of freedom?

$$y_{\rm CM} \sim \frac{1}{2} \ln(N_{\rm part}^{\rm Au}/N_{\rm part}^{\rm Cu})$$