RHIC-BES online seminar

Theoretical overview on both chirality and vorticity

Xu-Guang Huang Fudan University, Shanghai

December 08, 2020

Outline

- Introduction: vorticity and magnetic field
- The isobar collisions for CME search
- Realistic evolution of magnetic field
- Deep-learning assisted CME search
- Global spin polarization of Λ and $\ \Xi$ and Ω
- Puzzles in local spin polarization and spin alignment
- Summary

Introduction: B and ω in heavy-ion collisions

Vorticity and magnetic field in heavy-ion collisions

Global angular momentum

Strong magnetic field

(RHIC Au+Au 200 GeV, b=10 fm)

Initial magnetic field

• Strongest magnetic field $\langle |B_y| \rangle \sim 10^{18-20} G$

• Unknown: realistic time evolution

(Many similar calculations, e.g.: Skokov-Illarionov-Toneev 2009, Voronyuk etal 2011, Bzdak-Skokov 2011, Bloczynski etal 2012, Tuchin 2013, Feng etal 2013, Ma etal 2018,)

Vorticity by global angular momentum

(1000) (100) (10) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (1

Energy dependence

Deng-XGH-Ma-Zhang PRC2020 Deng-XGH PRC2016

- Most vortical fluid $\langle |\omega_y| \rangle \sim 10^{21} s^{-1}$
- Relativistic suppression at high energy

(See also: Becattini etal EPJC2015, Csernai etal PRC2013, PRC2014, Ivanov etal PRC2017, PRC2019,)

Vorticity by inhomogeneous expansion

Effect of B and ω: Spin polarization

• A charged fermion in **B** and **ω** fields: At rest

$$H = -\mu_{\rm B} \cdot B - S \cdot \omega$$
 Spin polarization

• A charged fermion in *B* and *ω* fields: At motion

The CME and isobar

Probe QCD topological sector

Difficulties in observing CME

• Small signal versus big elliptic-flow related backgrounds

Averaged CME fraction = $(8 \pm 4 \pm 8)\%$

One eccentric geometry gives two outcomes, B field and v_2 . Difficult to disentangle them.

• Isobar collisions: fix v_2 but vary B field

Difficulties in observing CME

• Isobar collisions: fix v_2 but vary B field

Relative difference R=2(Ru-Zr)/(Ru+Zr)

 $\begin{array}{l} \mbox{Centrality 20-60\%:} \\ \mbox{sizable R for B: } R_{B_{sq}}{\sim}10-20\% \\ \mbox{small R for eccentricity: } R_{\epsilon_2} < 2\% \end{array}$

• Signal versus background level

Evolution of B field

Difficulties in quantifying CME

• Quantifying CME in theory: hydrodynamic and transport models

(AVFD: Liao etal 2018, 2019)

 Main theoretical uncertainties: Initial axial charges

(Early attempts: Muller- Schlichting-Sharma 2016, Ruggieri etal 2019)

(AMPT: Ma-Zhang 2011; Deng-XGH-Ma-Wang 2018)

Realistic evolution of B field

In vacuum: moving charges In conductor: Faraday effect 14

• If quark-gluon matter is insulating

(Deng-XGH 2012; Hattori-XGH 2016; and many others)

Well fitted by

$$\langle eB_y(t)\rangle \approx \frac{\langle eB_y(0)\rangle}{(1+t^2/t_B^2)^{3/2}}$$

Life time of B field

$$t_B \approx R_A / (\gamma v_z) \approx \frac{2m_{\rm N}}{\sqrt{s}} R_A$$

• In hydro stage: couple Maxwell with hydro equations

(Gursoy-Kharzeev-Rajagopal-Shen 2018)

(Huang-Kharzeev-Liao-Shi-She 2020)

• But what is the pre-hydro evolution and the IC for hydro?

• We study the pre-hydro evolution for $t \sim Q_s^{-1} - \tau_0$ by solving coupled Maxwell and Boltzmann equations

$$\begin{cases} [p^{\mu}\partial_{\mu} + eQ_{a}p_{\mu}F^{\mu\nu}\partial_{p\nu}]f_{a}(t,\mathbf{x},\mathbf{p}) = \mathcal{C}[f_{a}] & a = q, \bar{q}, g \\\\ \partial_{\mu}F^{\mu\nu} = j^{\nu} \\\\ j^{\mu} = e\sum_{F}Q_{F}s_{F}\int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}E_{p}}p^{\mu}\left(f_{q}^{F} - f_{\bar{q}}^{F}\right) \end{cases}$$

Initial condition for EM field: moving colliding nuclei in vacuum Initial condition for q and g: CGC inspired distribution (Blaizot-Wu-Yan 2014)

• For the collision kernel: 2-2 processes

$$\begin{aligned} \mathcal{C}[f_{\mathbf{p}}^{a}] = & \frac{1}{2E_{p}\nu_{a}} \sum_{b,c,d} \frac{1}{s_{cd}} \int \frac{d^{3}\mathbf{p}'}{(2\pi)^{3}2E_{\mathbf{p}'}} \frac{d^{3}\mathbf{k}}{(2\pi)^{3}2E_{\mathbf{k}}} \frac{d^{3}\mathbf{k}'}{(2\pi)^{3}2E_{\mathbf{k}'}} \\ & \times (2\pi)^{4} \delta^{(4)}(P+P'-K-K') |\mathcal{M}_{cd}^{ab}|^{2} \\ & \times \left[f_{\mathbf{k}}^{c} f_{\mathbf{k}'}^{d} (1+\epsilon_{a}f_{\mathbf{p}}^{a})(1+\epsilon_{b}f_{\mathbf{p}'}^{b}) - f_{\mathbf{p}}^{a} f_{\mathbf{p}'}^{b} (1+\epsilon_{c}f_{\mathbf{k}}^{c})(1+\epsilon_{d}f_{\mathbf{k}'}^{d}) \right] \end{aligned}$$

 $|\mathcal{M}|^2 \ni gg \leftrightarrow q\bar{q}, gq \leftrightarrow gq, g\bar{q} \leftrightarrow g\bar{q}, gg \leftrightarrow gg$

• The B field (In case of Bjorken longitudinal expansion)

• Longitudinal distribution of B field

Background = B field by moving nucleus

Yan-XGH to appear

• The induced Faraday current

Large effective conductivity (comparable to LQCD at tQs=9.8)

• If put more charge carriers

Direction of current near mid-rapidity depends on quark-production rate thus may depends on energy

Deep-learning and CME search

- Recall the main challenge of CME search: Find a way to disentangle signal and elliptic-flow backgrounds
- Any designed observable is based on hadron distribution in momentum space. Why don't we just look at the distribution itself?

- We train a machine to recognize initial charge separation (mimicking CME): Supervised learning
- We use Convolutional Neural Network (CNN) : good at pattern recognition of figures.

In our case: input = π^{\pm} with |Y| < 1 projected on (p_x, p_y) -plane generated by AMPT

• Training set: 50000 events for each centrality and energy in blue

f = initial charge separation (CS) fractionf = 0:No CME, Label '0'f = 5% and 10%: With CME, Label '1'

- Test set: All centrality and energy region in the above
- Robust, insensitive to centrality and energy. The machine learns key feature of charge separation.

• Test: Comparing to γ -correlator with 10% charge separation (CS)

• Test: dependence of elliptic flow (Not sensitive to elliptic-flow background)

(Zhao-Zhou-XGH to appear)

- Future: Further optimize the machine.
 Understand what the feature the machine learns.
 Can be applied to real data?
 Isobar results?
 - Train a machine for chiral magnetic wave search.

Spin polarization of hyperons

Spin polarization and thermal vorticity

- Early idea: Liang-Wang PRL2005; Voloshin 2004
- Vorticity interpretation (at thermal equilibrium)

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ H = H_0 - \boldsymbol{\omega} \cdot \boldsymbol{S} \end{array} \xrightarrow{\boldsymbol{V}} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array}$$

• More rigorous derivation (Becattini etal 2013; Fang etal 2016; Liu etal 2020)

$$P^{\mu}(p) = \frac{1}{4E_{p}} \epsilon^{\mu\nu\rho\sigma} p_{\nu} \frac{\int d\Sigma_{\lambda} p^{\lambda} f'(x,p) \varpi_{\rho\sigma}(x)}{\int d\Sigma_{\lambda} p^{\lambda} f(x,p)} + O(\varpi^{2})$$

- Valid at global equilibrium. f(x, p) is the distribution function (Fermi-Dirac)
- Thermal vorticity $\varpi_{\rho\sigma} = (\partial_{\sigma}\beta_{\rho} \partial_{\rho}\beta_{\sigma})/2$
- Spin polarization is enslaved to thermal vorticity, not dynamical
- Friendly for numerical simulation (a spin Cooper-Frye type formula)

Global A spin polarization

The global polarization (i.e., integrated polarization over kinematics): •

Р_н(%) Au+Au 20-50% 024915 (2007 024915 (2007) З ∧ STAR preliminary ⊼ STAR preliminary 2 STAR 0 STAR preliminary 10 10^{2} STAR, Nature 548, 62–65 (2017) Vs_{NN} (GeV) Λ, STAR preliminary Au+Au @ 27 GeV \star Λ, AMPT + MUSIC $|\eta| < 1$ **MUSIC hydro** P_A [%] Fu-Xu-XGH-Song 2020 20 60

40

Centrality [%]

0

80

Experiment

Theory

Sun-Ko PRC2017; Wei-Deng-XGH PRC2019; Xie-Wang-Csernai PRC2017; Karpenko-Becattini EPJC2016

(Many similar results in literature)

Vorticity interpretation of global Λ polarization works well!

Global Λ spin polarization

• The global polarization: **Experiment = Theory**

<u>Global Ξ and Ω spin polarization</u>

 \sim

The global Ξ and Ω polarization are measured through their Λ decay •

- Feed-down contribution to Ξ and Ω polarization •
 - For Ξ , main decay channel $\Xi(1530) \rightarrow \Xi + \pi$ contributes about 40% of Ξ yield and 30% of Ξ polarization ٠
 - For Ω , very small feed-down contribution ٠

(Xia-Li-XGH-Huang PRC2019)

Vorticity interpretation of global to Ξ and Ω polarization works.

Differential A spin polarization

• The global Λ polarization reflects the total amount of angular momentum retained in the (-1,1) rapidity region. How is it distributed in e.g. p_T , η , and ϕ ?

Final polarization by hydro

Final polarization by chiral kinetic theory

Differential A spin polarization

- The global Λ polarization reflects the total amount of angular momentum retained in the (-1,1) rapidity region. How is it distributed in e.g. p_T , η , and ϕ ?
 - Spin harmonic flow:

$$\frac{dP_{y,z}}{d\phi} \propto P_{y,z} + 2f_{2y,z}\sin(2\phi) + 2g_{2y,z}\cos(2\phi) + \cdots$$

1) longitudinal polarization vs ϕ

JD

2) Transverse polarization vs ϕ

We have a spin "sign problem"!

Differential A spin polarization

Efforts to resolve the puzzles from theory side:

- Understand the vorticity ([©])
- Effect of feed-down decays ([©]) (Xia-Li-XGH-Huang PRC2019, Becattini-Cao-Speranza EPJC2019) (Measured Λ may from decays of heavier particles)
- Go beyond equilibrium treatment (spin as a dynamic d.o.f) spin hydrodynamics (Florkowski-Friman-Jaiswal-Speranza PRC2017, Hattori etal PLB2019, ...) spin kinetic theory (Gao-Liang 2019, Weickgenannt etal PRD2019, Hattori etal PRD2019, Wang etal PRD2019, Liu etal CPC2020, ...)
- Initial condition

(Initial polarization, initial flow,)

• Other possibilities

(chiral vortical effect (Liu-Sun-Ko 2019), mesonic mean-field (Csernai-Kapusta-Welle PRC2019), other spin chemical potential (Wu etal PRR2019, Florkowski etal2019), contribution from gluons,)

Other observables for vorticity and spin polarization
 Vector meson spin alignment (Liang-Wang 2005, STAR and ALICE 2019)
 Vorticity dependent hadron yield (ExHIC-P Collaboration PRC2020)

Spin "sign problem", though unsolved, inspires many theoretical developments about spin dynamics in and out of equilibrium!

Spin alignment of vector mesons

Global ϕ -spin alignment

- Vorticity can also polarize spin of vector mesons, e.g. φ
- Consider recombination $q + \overline{q} \rightarrow \phi$, the density matrix of q:

$$\rho^q = \frac{1}{2} \begin{pmatrix} 1+P_q & 0\\ 0 & 1-P_q \end{pmatrix}$$

• The density matrix of ϕ is obtained from $\rho^q \otimes \rho^{\overline{q}}$ in basis of $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$ - $|\downarrow\uparrow\rangle$, and $|\downarrow\downarrow\rangle$

$$\rho^{V} = \begin{pmatrix} \frac{(1+P_{q})(1+P_{\bar{q}})}{3+P_{q}P_{\bar{q}}} & 0 & 0\\ 0 & \frac{1-P_{q}P_{\bar{q}}}{3+P_{q}P_{\bar{q}}} & 0\\ 0 & 0 & \frac{(1-P_{q})(1-P_{\bar{q}})}{3+P_{q}P_{\bar{q}}} \end{pmatrix}$$

- Suppose $P_q=P_{\overline{q}}$, $\rho_{00}^{\rho({\rm rec})}=\frac{1-P_q^2}{3+P_q^2} \qquad \mbox{Liang-Wang 2005}$

Because P is small, ho_{00} should be slightly smaller than 1/3 !

Global ϕ -spin alignment

....

Experimental results

Puzzle 1: for most centrality, ρ_{00} is far from 1/3. Magnetic field contribution? Mesonic mean-field ? **Gluon contribution?**

Mesonic strangeness field (Sheng-Oliva-Wang 2019)

Puzzle 2: $\rho_{00} < \frac{1}{2}$ for central collisions.

Local ϕ -spin alignment

Local ϕ -spin alignment

In central collisions, we can model quark polarization as

0.34

Xia-Li-XGH-Huang 2020

Spin dependent hadron yields

Vorticity is the "spin chemical potential" (ExHIC-P Collaboration 2002.10082)

$$E_{\rm h} = \sqrt{m_{\rm h}^2 \! + \! \boldsymbol{p}^2} \! - \! \boldsymbol{\mu}^{\rm ch} \cdot \boldsymbol{Q}_{\rm h} \! - \! \boldsymbol{\omega}^{\rm ch} s_z$$

$$\frac{N^{\text{stat/coal}}(\omega)}{N^{\text{stat/coal}}(\omega=0)} \sim 1 + \frac{s(1+s)}{6} \left(\frac{\omega}{T}\right)^2$$

Naively, it is the same order as ρ_{00} , could be cross-check of vector spin alignment

Observable: ratio of e.g. $\frac{N_{\phi}}{N_{K}}$ or $\frac{N_{\Omega}}{N_{\Xi}}$ as function of centrality and energy

Summary

- Very interesting physics of chirality, vorticity, magnetic fields, and spin polarization!
- We study the pre-hydro evolution of B field, see the Faraday retaining effect for B field. This result may used as initial condition of hydro computation of B field.
- We train a CNN that can recognize the initial charge separation pattern (mimicking CME). The machine behaves robust against centrality, energy, and colliding systems.
- The global polarization of hyperons are well understood by global angular momentum through thermal vorticity. Local polarization is still a puzzle.
- Vector meson global spin alignment is too big to be understood via vorticity picture. But in central collisions, the local spin alignment could explain the smaller-than-1/3 spin alignment.

Thank you!

Chiral anomalies

• Quantumly, in external U(1) gauge field and background geometry

$$\nabla_{\mu}J^{\mu}_{A} = -\frac{e^{2}}{8\pi^{2}}F_{\mu\nu}\tilde{F}^{\mu\nu} - \frac{1}{192\pi^{2}}R^{\alpha}_{\ \beta\mu\nu}\tilde{R}^{\ \beta\mu\nu}_{\alpha} + \frac{\Lambda^{2}}{16\pi^{2}}(2\tilde{R}^{\ \mu\nu}_{\mu\nu} - T_{\lambda}^{\ \mu\nu}\tilde{T}^{\lambda}_{\ \mu\nu})$$

ABJ anomaly Gravitational anomaly Nieh-Yan anomaly

- Macroscopic anomalous chiral transport phenomena
 - Chiral magnetic effect (CME): Axial imbalance + B field = vector current (Kharzeev 2004; Kharzeev-Fukushima-McLerran-Warringa 2007; ...)
 - Chiral separation effect (CSE): vector imbalance + B field = axial current (Son-Zhitnitsky 2004; ...)
 - Chiral vortical effect (CVE): Temperature + vorticity = vector/axial current (Erdmenger etal 2008; Banerjee etal 2008; Torabian-Yee 2009; ...)
 - Chiral torsional effect (CTE): Temperature + torsion = vector/axial current (Khaidukov-Zubkov 2018; Imaki-Yamamoto 2019; Nissinen-Volovik 2019; ...)
 -

Chiral anomalies

• Quantumly, in external U(1) gauge field and background geometry

$$\nabla_{\mu}J^{\mu}_{A} = -\frac{e^{2}}{8\pi^{2}}F_{\mu\nu}\tilde{F}^{\mu\nu} - \frac{1}{192\pi^{2}}R^{\alpha}_{\ \beta\mu\nu}\tilde{R}^{\ \beta\mu\nu}_{\alpha} + \frac{\Lambda^{2}}{16\pi^{2}}(2\tilde{R}^{\ \mu\nu}_{\mu\nu} - T^{\ \mu\nu}_{\lambda}\tilde{T}^{\lambda}_{\ \mu\nu})$$

ABJ anomaly Gravitational anomaly Nieh-Yan anomaly

Macroscopic anomalous chiral transport phenomena

