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•  Particle and Nuclear Physics           
–  extract fundamental parameters of Nature on the smallest scale 
–  test our understanding of Laws of Nature  
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•  Particle and Nuclear Physics           
–  extract fundamental parameters of Nature at Quantum Level 
–  test our understanding of Laws of Nature  

•  In Chemistry our knowledge summarized by Mendeleev table of chemical 
elements 
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•  Particle and Nuclear Physics           
–  extract fundamental parameters of Nature at Quantum Level 
–  test our understanding of Laws of Nature  

•  In particle physics a simpler table made of leptons and quarks 
 
 

 
 

 

 
 
 

     
 

     
 

 
 

 

These fundamental particles are the building blocks of matter as shown on Fig. 1, right. The
protons and neutrons as all states containing quarks are called hadrons. They are the baryons
containing three quarks like the proton and neutron and the mesons which are made of a quark
and an anti-quark. An example of these states is the pion or the kaon. These states interact by
the so-called strong interaction. This is the interaction that bounds the quark together inside
protons and neutrons as the one that bounds proton and neutron inside nucleus. They also
interact through the electromagnetism or the weak force. The electromagnetic force is the most
well known one expressing how charge particles attract or repel each other. The weak force is
less known because its range is small (⇠ 10�18 m). One needs to be in a quantum world to
observe it. This force is for instance responsible for the change of a neutron into a proton (a
so-called decay, n ! pe

�
⌫̄e) in radioactive processes.

The electron as well as its more massive brothers the muon (µ) and the tau (⌧) particle are
called leptons and are fundamental particles or constituents of matter. They do not interact
through the strong interaction but through the electromagnetic interaction or the weak interac-
tion. The electromagnetic interaction is described with exquisite precision with a theory known
as Quantum Electrodynamics (QED). This theory is so successful in part because the interactions
are relatively weak and their strength decreases with distance. It is characterized by a dimen-
sionless quantity, the fine structure constant, that is much less than 1: ↵ ⇠ e

2
/4⇡ ⇠ 1/137, with

e the elementary electric charge. As a result, it is possible to write predictions in terms of power
series in this quantity, where successive terms rapidly decrease in size (so-called perturbation
expansions).

To this picture should be added the neutrinos as fundamental constituants of matter. They
also belong to the leptons but contrary to the electrons they do not interact through electro-
magnetism. They are neutral. They interact only through the weak force and we have three
species associated to every charged lepton. They were discovered much later than the other
fundamental particles because they interact only through the weak force and are therefore much
more di�cult to detect.

Figure 1: Left: From crystals to quarks and leptons. Figure from Ref. [1]. Right: Building
blocks of the Standard Model. Picture adapted from Ref. [2]

.

The Standard Model of particles physics describes how the three fundamental interactions
(the electromagnetic force, the strong force and the weak force) act between the constituents
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•  In particle physics a simpler table made of leptons and quarks: the degrees of 
freedom 

•  3 forces: electromagnetic, weak and strong forces 
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 H
The mediators of weak interaction (W, Z) become massive through the Higgs 
Mechanism       one scalar particle remains in the spectrum: H 



1.2  Challenges 
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•  Searching physics beyond the Standard Model: 
–  Are there new forces besides the 3 gauge groups? 
–  Are there new particles? 
–  A more profound understanding of the origin of this 

table?  
–  Origin of matter/anti-matter asymmetry 
–  Origin of dark matter 

•  One type of new physics already discovered: neutrino 
masses 
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•  In this quest it is essential to have a robust understanding 
of Hadronic Physics  
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•  In this quest it is essential to have a robust understanding 
of Hadronic Physics  

•  This is true for quarks and leptons and even for neutrinos! 
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See A. Pich, 1201.0537  
Halzen & Martin, Quarks & Leptons  
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•  In particle physics a simpler table made of leptons and quarks: the degrees of 
freedom 

•  3 forces: electromagnetic, weak and strong forces 
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•  In particle physics a simpler table made of leptons and quarks: the degrees of 
freedom 

•  3 forces: electromagnetic, weak and strong forces 
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•  Lagrangian describing a free Dirac fermion: 

 
 

 

 
 
 

     
 

     
 

 
 

 

   
L0 = iψ (x)γ µ ∂µψ (x) − mψ (x)ψ (x)
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•  Lagrangian describing a free Dirac fermion: 

•       is invariant under global U(1) transformations  

 
 

 

 
 
 

     
 

     
 

 
 

 

   
L0 = iψ (x)γ µ ∂µψ (x) − mψ (x)ψ (x)

  L0

  ψ (x) →ψ '(x) ≡ exp iQθ( )ψ (x) with Qθ is an arbitrary real constant  
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•  Lagrangian describing a free Dirac fermion: 

•       is invariant under global U(1) transformations  

•  Gauge principle: global U(1) transformations à local, i.e., space-time dependent 
θ à θ(x)  

•       is no longer invariant !  

 
 

 

 
 
 

     
 

     
 

 
 

 

   
L0 = iψ (x)γ µ ∂µψ (x) − mψ (x)ψ (x)

  L0

  ψ (x) →ψ '(x) ≡ exp iQθ( )ψ (x) with Qθ is an arbitrary real constant  
 

searches. The flavour structure is discussed in Section 6, where knowledge of the quark mixing angles
and neutrino oscillation parameters is briefly reviewed and the importance of CP violation tests is em-
phasized. Finally, a few comments on open questions, to be investigated at future facilities, are given
in the summary. Some useful but more technical information has been collected in several appendices:
a minimal amount of quantum field theory concepts are given in Appendix A; Appendix B summarizes
the most important algebraic properties of SU(N) matrices; and a short discussion on gauge anomalies
is presented in Appendix C.

2 Gauge Invariance
2.1 Quantum electrodynamics
Let us consider the Lagrangian describing a free Dirac fermion:

L0 = iψ(x)γµ∂µψ(x) − mψ(x)ψ(x) . (4)

L0 is invariant under global U(1) transformations

ψ(x)
U(1)
−→ ψ′(x) ≡ exp {iQθ}ψ(x) , (5)

where Qθ is an arbitrary real constant. The phase of ψ(x) is then a pure convention-dependent quantity
without physical meaning. However, the free Lagrangian is no longer invariant if one allows the phase
transformation to depend on the space-time coordinate, i.e., under local phase redefinitions θ = θ(x),
because

∂µψ(x)
U(1)
−→ exp {iQθ} (∂µ + iQ ∂µθ) ψ(x) . (6)

Thus, once a given phase convention has been adopted at one reference point x0, the same convention
must be taken at all space-time points. This looks very unnatural.

The ‘gauge principle’ is the requirement that the U(1) phase invariance should hold locally. This
is only possible if one adds an extra piece to the Lagrangian, transforming in such a way as to cancel
the ∂µθ term in Eq. (6). The needed modification is completely fixed by the transformation (6): one
introduces a new spin-1 (since ∂µθ has a Lorentz index) field Aµ(x), transforming as

Aµ(x)
U(1)
−→ A′

µ(x) ≡ Aµ(x)−
1

e
∂µθ , (7)

and defines the covariant derivative

Dµψ(x) ≡ [∂µ + ieQAµ(x)] ψ(x) , (8)

which has the required property of transforming like the field itself:

Dµψ(x)
U(1)
−→ (Dµψ)

′ (x) ≡ exp {iQθ}Dµψ(x) . (9)

The Lagrangian

L ≡ iψ(x)γµDµψ(x) − mψ(x)ψ(x) = L0 − eQAµ(x)ψ(x)γ
µψ(x) (10)

is then invariant under local U(1) transformations.
The gauge principle has generated an interaction between the Dirac fermion and the gauge field

Aµ, which is nothing else than the familiar vertex of Quantum Electrodynamics (QED). Note that the
corresponding electromagnetic chargeQ is completely arbitrary. If one wantsAµ to be a true propagating
field, one needs to add a gauge-invariant kinetic term

LKin ≡ −
1

4
Fµν(x)F

µν(x) , (11)

2

  L0
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•  Lagrangian describing a free Dirac fermion: 

•       is invariant under global U(1) transformations  
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θ à θ(x)  
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•  We define a covariant derivative  
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•  We define a covariant derivative  
 
 
 
which transforms as           itself   
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•  Gauge principle has generated an interaction between the Dirac fermions and the 

gauge field Aµ: the photon          QED 
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LQED = iψ (x)γ µ Dµψ (x) − mψ (x)ψ (x) − 1

4
Fµν (x)F µν (x)

Kinetic term for Aµ where Fµν ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength which remains invariant under
the transformation (7). A mass term for the gauge field, Lm = 1

2m
2AµAµ, is forbidden because it

would violate the local U(1) gauge invariance; therefore, the photon field is predicted to be massless.
Experimentally, we know thatmγ < 1 · 10−18 eV [8, 9].

The total Lagrangian in Eqs. (10) and (11) gives rise to the well-known Maxwell equations:

∂µF
µν = e Jν ≡ eQψγνψ , (12)

where Jν is the fermion electromagnetic current. From a simple gauge-symmetry requirement, we have
deduced the right QED Lagrangian, which leads to a very successful quantum field theory.

2.1.1 Lepton anomalous magnetic moments

(a) (b) (c) (d) 

ν 

W W 

γ , Z 
γ f 

f 

Fig. 1: Feynman diagrams contributing to the lepton anomalous magnetic moment.

The most stringent QED test comes from the high-precision measurements of the e [10] and µ [11]
anomalous magnetic moments al ≡ (gγl − 2)/2 , where µ⃗l ≡ gγl (e/2ml) S⃗l:

ae = (1 159 652 180.73 ± 0.28) · 10−12 , aµ = (11 659 208.9 ± 6.3) · 10−10 . (13)

To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and manyO(α5) corrections have been already computed [12–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [10, 15]:

α−1 = 137.035 999 084 ± 0.000 000 051 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [16–18], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark-antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator (Fig. 1.c). Owing to the non-
perturbative character of the strong interaction at low energies, the light-quark contribution cannot be
reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [19]:

athµ =

{
(11 659 180.2 ± 4.9) · 10−10 (e+e− data) ,
(11 659 189.4 ± 5.4) · 10−10 (τ data) .

(15)

The quoted uncertainties include also the smaller light-by-light scattering contributions (Fig. 1.d) [20].
The difference between the SM prediction and the experimental value (13) corresponds to 3.6σ (e+e−)
or 2.4σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of athµ .
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•     

•  The quantum number associated to QED is the electric charge Q  
which is conserved according to Noether Theorem and U(1) invariance 
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•     

•  The quantum number associated to QED is the electric charge Q  
which is conserved according to Noether Theorem and U(1) invariance 

•  NB: A mass term for Aµ : 
 
 
is forbidden because it would violate the local U(1) gauge invariance 

             Aµ is predicted to be massless.  
 
 

             Experimentally,  

 

      

 
 

 

 
 
 

     
 

     
 

 
 

 

   
LQED = iψ (x)γ µ Dµψ (x) − mψ (x)ψ (x) − 1

4
Fµν (x)F µν (x)

  mγ < 1×10−18  eV

   
Lm = 1

2
m2 Aµ (x)Aµ (x)

PDG’21 
Ryutov’07 
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•     

 

•  QED is a very successful quantum field theory 

•  The most stringent QED test comes from the high-precision measurements of 
the electron and muon anomalous magnetic moments: 

 
 
 
 

•  g was predicted by Dirac to be 2 

•  Schwinger computed the first order   correction in 1948 
 

 

      

 
 

 

 
 
 

     
 

     
 

 
 

 

   
LQED = iψ (x)γ µ Dµψ (x) − mψ (x)ψ (x) − 1

4
Fµν (x)F µν (x)

where Fµν ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength which remains invariant under
the transformation (7). A mass term for the gauge field, Lm = 1

2m
2AµAµ, is forbidden because it

would violate the local U(1) gauge invariance; therefore, the photon field is predicted to be massless.
Experimentally, we know thatmγ < 1 · 10−18 eV [8, 9].

The total Lagrangian in Eqs. (10) and (11) gives rise to the well-known Maxwell equations:

∂µF
µν = e Jν ≡ eQψγνψ , (12)

where Jν is the fermion electromagnetic current. From a simple gauge-symmetry requirement, we have
deduced the right QED Lagrangian, which leads to a very successful quantum field theory.

2.1.1 Lepton anomalous magnetic moments

(a) (b) (c) (d) 
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γ , Z 
γ f 

f 

Fig. 1: Feynman diagrams contributing to the lepton anomalous magnetic moment.

The most stringent QED test comes from the high-precision measurements of the e [10] and µ [11]
anomalous magnetic moments al ≡ (gγl − 2)/2 , where µ⃗l ≡ gγl (e/2ml) S⃗l:

ae = (1 159 652 180.73 ± 0.28) · 10−12 , aµ = (11 659 208.9 ± 6.3) · 10−10 . (13)

To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and manyO(α5) corrections have been already computed [12–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [10, 15]:

α−1 = 137.035 999 084 ± 0.000 000 051 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [16–18], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark-antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator (Fig. 1.c). Owing to the non-
perturbative character of the strong interaction at low energies, the light-quark contribution cannot be
reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [19]:

athµ =

{
(11 659 180.2 ± 4.9) · 10−10 (e+e− data) ,
(11 659 189.4 ± 5.4) · 10−10 (τ data) .

(15)

The quoted uncertainties include also the smaller light-by-light scattering contributions (Fig. 1.d) [20].
The difference between the SM prediction and the experimental value (13) corresponds to 3.6σ (e+e−)
or 2.4σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of athµ .
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but new physics at the 
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Anomalous magnetic moment of elementary fermions 

ae = 1159652180.73(28) × 10−12 (0.24 × 10−9)
PRL 100, 120801 (2008)

QED test or αem determination

aμ = 116592091(63) × 10−11 (0.54 × 10−6)
E821, PRD 73, 072003 (2006)

Sensitive test of the Standard Model

aτ = −0.018(17) or − 0.052 < aτ < 0.013 95%CL
(DELPHI), EPJC 35, 159 (2004)

Theory: 117721(5) × 10−8, Eidelman, Passera, MPL A 22, 159 (2007)

aμ much more sensitive to NP than ae ∼ (mμ/me)2 ≈ 4.3 · 104

Single non trivial parameter coming from loops in QFT

QED:
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To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and manyO(α5) corrections have been already computed [12–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [10, 15]:

α−1 = 137.035 999 084 ± 0.000 000 051 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [16–18], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark-antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator (Fig. 1.c). Owing to the non-
perturbative character of the strong interaction at low energies, the light-quark contribution cannot be
reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [19]:

athµ =

{
(11 659 180.2 ± 4.9) · 10−10 (e+e− data) ,
(11 659 189.4 ± 5.4) · 10−10 (τ data) .

(15)

The quoted uncertainties include also the smaller light-by-light scattering contributions (Fig. 1.d) [20].
The difference between the SM prediction and the experimental value (13) corresponds to 3.6σ (e+e−)
or 2.4σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of athµ .
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4 Problem 4: Work of forces (8 points)

Given ~

F

1

= 2xz~i+ y

~

j + x

2

~

k and ~

F

2

= y

~

i� x

~

j:

(a) Which ~

F , if either, is conservative?

(b) If one of the given ~

F ’s is conservative, find a function W so that ~

F = ~rW .

(c) If one of the ~

F ’s is nonconservative, evaluate the work done by ~

F in moving a particle from
the point (0, 1) to the point (1, 0) along a straight line. Will I get the same result if I go along
a circle instead?

5 Problem 5: Stockes’ theorem (4 points)

Either by direct integration or use of Stokes’ theorem compute
H
C ~a · d~r, where C is the circle

x

2 + y

2 + 2x = 0 and ~a = y

~

i� x

~

j.

6 Problem 6 (Extra Credit): Multivariable Integration (4 points)

Two-year-old Michel is determined to give some milk to Gaston, the family cat. While his mother
is not looking, Michel seizes the opportunity, grabs a glass with milk o↵ the table and pours its
entire contents into Gaston’s bowl. Will the bowl overflow?

The glass has a circular base and sides that satisfy x

2 + y

2 = (z/10 + 3)2, with z being the
coordinate along the symmetry axis, such that z

min

= 0 is the bottom of the glass. It is initially
filled to z

max

= 10. The bowl also has a circular base and sides that satisfy x

2 + y

2 = (20z + 25),
with z

min

= 0 (the bottom of the bowl) and z

max

= 2 (the edges of the bowl).

aµ = (11 659 206.1± 4.1) · 10�10 (1)E821, BNL’04 + 
Muon g-2, FNAL’21 
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•  To a measurable level, ae arises entirely from virtual electrons and photons 
              fully known to O(α4) and many O(α5) corrections computed 
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Kinoshita & Nio, Aoyama et al.’03-12, 
Passera’05,’07, Laporta’93, Kataev’06, 
Kurz et al.’13, etc 
 
 
 
 

Impressive agreement on ae  
between theory and experiment  
       QED very successful theory  
to describe Nature.  
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where Fµν ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength which remains invariant under
the transformation (7). A mass term for the gauge field, Lm = 1

2m
2AµAµ, is forbidden because it

would violate the local U(1) gauge invariance; therefore, the photon field is predicted to be massless.
Experimentally, we know thatmγ < 1 · 10−18 eV [8, 9].

The total Lagrangian in Eqs. (10) and (11) gives rise to the well-known Maxwell equations:

∂µF
µν = e Jν ≡ eQψγνψ , (12)

where Jν is the fermion electromagnetic current. From a simple gauge-symmetry requirement, we have
deduced the right QED Lagrangian, which leads to a very successful quantum field theory.
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Fig. 1: Feynman diagrams contributing to the lepton anomalous magnetic moment.

The most stringent QED test comes from the high-precision measurements of the e [10] and µ [11]
anomalous magnetic moments al ≡ (gγl − 2)/2 , where µ⃗l ≡ gγl (e/2ml) S⃗l:

ae = (1 159 652 180.73 ± 0.28) · 10−12 , aµ = (11 659 208.9 ± 6.3) · 10−10 . (13)

To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and manyO(α5) corrections have been already computed [12–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [10, 15]:

α−1 = 137.035 999 084 ± 0.000 000 051 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [16–18], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark-antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator (Fig. 1.c). Owing to the non-
perturbative character of the strong interaction at low energies, the light-quark contribution cannot be
reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [19]:

athµ =

{
(11 659 180.2 ± 4.9) · 10−10 (e+e− data) ,
(11 659 189.4 ± 5.4) · 10−10 (τ data) .

(15)

The quoted uncertainties include also the smaller light-by-light scattering contributions (Fig. 1.d) [20].
The difference between the SM prediction and the experimental value (13) corresponds to 3.6σ (e+e−)
or 2.4σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of athµ .
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•  To a measurable level, ae arises entirely from virtual electrons and photons 
              fully known to O(α4) and many O(α5) corrections computed 
 
 
 
 
•  The theoretical error dominated by uncertainty on αQED ≡ e2/(4π) 

 
•  Turning things around, ae provides the most accurate determination of αQED 
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The most stringent QED test comes from the high-precision measurements of the e [10] and µ [11]
anomalous magnetic moments al ≡ (gγl − 2)/2 , where µ⃗l ≡ gγl (e/2ml) S⃗l:

ae = (1 159 652 180.73 ± 0.28) · 10−12 , aµ = (11 659 208.9 ± 6.3) · 10−10 . (13)

To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and manyO(α5) corrections have been already computed [12–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [10, 15]:

α−1 = 137.035 999 084 ± 0.000 000 051 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [16–18], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark-antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator (Fig. 1.c). Owing to the non-
perturbative character of the strong interaction at low energies, the light-quark contribution cannot be
reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [19]:

athµ =
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or 2.4σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of athµ .
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where Fµν ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength which remains invariant under
the transformation (7). A mass term for the gauge field, Lm = 1

2m
2AµAµ, is forbidden because it

would violate the local U(1) gauge invariance; therefore, the photon field is predicted to be massless.
Experimentally, we know thatmγ < 1 · 10−18 eV [8, 9].

The total Lagrangian in Eqs. (10) and (11) gives rise to the well-known Maxwell equations:

∂µF
µν = e Jν ≡ eQψγνψ , (12)

where Jν is the fermion electromagnetic current. From a simple gauge-symmetry requirement, we have
deduced the right QED Lagrangian, which leads to a very successful quantum field theory.

2.1.1 Lepton anomalous magnetic moments
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Fig. 1: Feynman diagrams contributing to the lepton anomalous magnetic moment.

The most stringent QED test comes from the high-precision measurements of the e [10] and µ [11]
anomalous magnetic moments al ≡ (gγl − 2)/2 , where µ⃗l ≡ gγl (e/2ml) S⃗l:

ae = (1 159 652 180.73 ± 0.28) · 10−12 , aµ = (11 659 208.9 ± 6.3) · 10−10 . (13)

To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and manyO(α5) corrections have been already computed [12–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [10, 15]:

α−1 = 137.035 999 084 ± 0.000 000 051 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [16–18], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark-antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator (Fig. 1.c). Owing to the non-
perturbative character of the strong interaction at low energies, the light-quark contribution cannot be
reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [19]:

athµ =

{
(11 659 180.2 ± 4.9) · 10−10 (e+e− data) ,
(11 659 189.4 ± 5.4) · 10−10 (τ data) .

(15)

The quoted uncertainties include also the smaller light-by-light scattering contributions (Fig. 1.d) [20].
The difference between the SM prediction and the experimental value (13) corresponds to 3.6σ (e+e−)
or 2.4σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of athµ .
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•  In lowest order, where mass effects appear, contributions 

from heavy virtual particles scale as m2
e /µ  :  

 aµ should be roughly 50 times more sensitive to NP than ae ! 

γ 

µ ? •  Loose about a factor of 800 in experimental precision 

The experimental precision for aµ will be worse than for ae, so why do it ? 

aτ even more sensitive, but insufficient experimental accuracy 

= 
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but new physics at the 
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4 Problem 4: Work of forces (8 points)
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= 2xz~i+ y
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~
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j:

(a) Which ~

F , if either, is conservative?

(b) If one of the given ~

F ’s is conservative, find a function W so that ~

F = ~rW .

(c) If one of the ~

F ’s is nonconservative, evaluate the work done by ~

F in moving a particle from
the point (0, 1) to the point (1, 0) along a straight line. Will I get the same result if I go along
a circle instead?

5 Problem 5: Stockes’ theorem (4 points)

Either by direct integration or use of Stokes’ theorem compute
H
C ~a · d~r, where C is the circle
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2 + 2x = 0 and ~a = y
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i� x

~

j.

6 Problem 6 (Extra Credit): Multivariable Integration (4 points)

Two-year-old Michel is determined to give some milk to Gaston, the family cat. While his mother
is not looking, Michel seizes the opportunity, grabs a glass with milk o↵ the table and pours its
entire contents into Gaston’s bowl. Will the bowl overflow?

The glass has a circular base and sides that satisfy x

2 + y

2 = (z/10 + 3)2, with z being the
coordinate along the symmetry axis, such that z

min

= 0 is the bottom of the glass. It is initially
filled to z

max

= 10. The bowl also has a circular base and sides that satisfy x

2 + y

2 = (20z + 25),
with z

min

= 0 (the bottom of the bowl) and z

max

= 2 (the edges of the bowl).

aµ = (11 659 206.1± 4.1) · 10�10 (1)
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•  On the muon side: aµ is sensitive to small corrections from virtual heavier 
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where Fµν ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength which remains invariant under
the transformation (7). A mass term for the gauge field, Lm = 1

2m
2AµAµ, is forbidden because it

would violate the local U(1) gauge invariance; therefore, the photon field is predicted to be massless.
Experimentally, we know thatmγ < 1 · 10−18 eV [8, 9].

The total Lagrangian in Eqs. (10) and (11) gives rise to the well-known Maxwell equations:

∂µF
µν = e Jν ≡ eQψγνψ , (12)

where Jν is the fermion electromagnetic current. From a simple gauge-symmetry requirement, we have
deduced the right QED Lagrangian, which leads to a very successful quantum field theory.

2.1.1 Lepton anomalous magnetic moments
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γ , Z 
γ f 

f 

Fig. 1: Feynman diagrams contributing to the lepton anomalous magnetic moment.

The most stringent QED test comes from the high-precision measurements of the e [10] and µ [11]
anomalous magnetic moments al ≡ (gγl − 2)/2 , where µ⃗l ≡ gγl (e/2ml) S⃗l:

ae = (1 159 652 180.73 ± 0.28) · 10−12 , aµ = (11 659 208.9 ± 6.3) · 10−10 . (13)

To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and manyO(α5) corrections have been already computed [12–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [10, 15]:

α−1 = 137.035 999 084 ± 0.000 000 051 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [16–18], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark-antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator (Fig. 1.c). Owing to the non-
perturbative character of the strong interaction at low energies, the light-quark contribution cannot be
reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [19]:

athµ =

{
(11 659 180.2 ± 4.9) · 10−10 (e+e− data) ,
(11 659 189.4 ± 5.4) · 10−10 (τ data) .

(15)

The quoted uncertainties include also the smaller light-by-light scattering contributions (Fig. 1.d) [20].
The difference between the SM prediction and the experimental value (13) corresponds to 3.6σ (e+e−)
or 2.4σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of athµ .

3

where Fµν ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength which remains invariant under
the transformation (7). A mass term for the gauge field, Lm = 1

2m
2AµAµ, is forbidden because it

would violate the local U(1) gauge invariance; therefore, the photon field is predicted to be massless.
Experimentally, we know thatmγ < 1 · 10−18 eV [8, 9].

The total Lagrangian in Eqs. (10) and (11) gives rise to the well-known Maxwell equations:

∂µF
µν = e Jν ≡ eQψγνψ , (12)

where Jν is the fermion electromagnetic current. From a simple gauge-symmetry requirement, we have
deduced the right QED Lagrangian, which leads to a very successful quantum field theory.

2.1.1 Lepton anomalous magnetic moments

(a) (b) (c) (d) 

ν 

W W 

γ , Z 
γ f 

f 

Fig. 1: Feynman diagrams contributing to the lepton anomalous magnetic moment.

The most stringent QED test comes from the high-precision measurements of the e [10] and µ [11]
anomalous magnetic moments al ≡ (gγl − 2)/2 , where µ⃗l ≡ gγl (e/2ml) S⃗l:

ae = (1 159 652 180.73 ± 0.28) · 10−12 , aµ = (11 659 208.9 ± 6.3) · 10−10 . (13)

To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and manyO(α5) corrections have been already computed [12–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [10, 15]:

α−1 = 137.035 999 084 ± 0.000 000 051 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [16–18], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark-antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator (Fig. 1.c). Owing to the non-
perturbative character of the strong interaction at low energies, the light-quark contribution cannot be
reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [19]:

athµ =

{
(11 659 180.2 ± 4.9) · 10−10 (e+e− data) ,
(11 659 189.4 ± 5.4) · 10−10 (τ data) .

(15)

The quoted uncertainties include also the smaller light-by-light scattering contributions (Fig. 1.d) [20].
The difference between the SM prediction and the experimental value (13) corresponds to 3.6σ (e+e−)
or 2.4σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of athµ .

3

with 

where Fµν ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength which remains invariant under
the transformation (7). A mass term for the gauge field, Lm = 1

2m
2AµAµ, is forbidden because it

would violate the local U(1) gauge invariance; therefore, the photon field is predicted to be massless.
Experimentally, we know thatmγ < 1 · 10−18 eV [8, 9].

The total Lagrangian in Eqs. (10) and (11) gives rise to the well-known Maxwell equations:

∂µF
µν = e Jν ≡ eQψγνψ , (12)

where Jν is the fermion electromagnetic current. From a simple gauge-symmetry requirement, we have
deduced the right QED Lagrangian, which leads to a very successful quantum field theory.

2.1.1 Lepton anomalous magnetic moments

(a) (b) (c) (d) 

ν 

W W 

γ , Z 
γ f 

f 

Fig. 1: Feynman diagrams contributing to the lepton anomalous magnetic moment.

The most stringent QED test comes from the high-precision measurements of the e [10] and µ [11]
anomalous magnetic moments al ≡ (gγl − 2)/2 , where µ⃗l ≡ gγl (e/2ml) S⃗l:

ae = (1 159 652 180.73 ± 0.28) · 10−12 , aµ = (11 659 208.9 ± 6.3) · 10−10 . (13)

To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and manyO(α5) corrections have been already computed [12–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [10, 15]:

α−1 = 137.035 999 084 ± 0.000 000 051 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [16–18], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark-antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator (Fig. 1.c). Owing to the non-
perturbative character of the strong interaction at low energies, the light-quark contribution cannot be
reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [19]:

athµ =

{
(11 659 180.2 ± 4.9) · 10−10 (e+e− data) ,
(11 659 189.4 ± 5.4) · 10−10 (τ data) .

(15)

The quoted uncertainties include also the smaller light-by-light scattering contributions (Fig. 1.d) [20].
The difference between the SM prediction and the experimental value (13) corresponds to 3.6σ (e+e−)
or 2.4σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of athµ .

3

45 Seminar, LAPP-Annecy, 2011 Andreas Hoecker   –   Charged-Lepton Flavour Physics 

•  In lowest order, where mass effects appear, contributions 

from heavy virtual particles scale as m2
e /µ  :  

 aµ should be roughly 50 times more sensitive to NP than ae ! 

γ 

µ ? •  Loose about a factor of 800 in experimental precision 

The experimental precision for aµ will be worse than for ae, so why do it ? 

aτ even more sensitive, but insufficient experimental accuracy 

= 
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scattering” 

… or no effect on aµ, 
but new physics at the 
LHC? That would be 
interesting as well !! 
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Test the whole Standard Model  See later 

2

4 Problem 4: Work of forces (8 points)

Given ~

F

1

= 2xz~i+ y

~

j + x

2

~

k and ~

F

2

= y

~

i� x

~

j:

(a) Which ~

F , if either, is conservative?

(b) If one of the given ~

F ’s is conservative, find a function W so that ~

F = ~rW .

(c) If one of the ~

F ’s is nonconservative, evaluate the work done by ~

F in moving a particle from
the point (0, 1) to the point (1, 0) along a straight line. Will I get the same result if I go along
a circle instead?

5 Problem 5: Stockes’ theorem (4 points)

Either by direct integration or use of Stokes’ theorem compute
H
C ~a · d~r, where C is the circle

x

2 + y

2 + 2x = 0 and ~a = y

~

i� x

~

j.

6 Problem 6 (Extra Credit): Multivariable Integration (4 points)

Two-year-old Michel is determined to give some milk to Gaston, the family cat. While his mother
is not looking, Michel seizes the opportunity, grabs a glass with milk o↵ the table and pours its
entire contents into Gaston’s bowl. Will the bowl overflow?

The glass has a circular base and sides that satisfy x

2 + y

2 = (z/10 + 3)2, with z being the
coordinate along the symmetry axis, such that z

min

= 0 is the bottom of the glass. It is initially
filled to z

max

= 10. The bowl also has a circular base and sides that satisfy x

2 + y

2 = (20z + 25),
with z

min

= 0 (the bottom of the bowl) and z

max

= 2 (the edges of the bowl).

aµ = (11 659 206.1± 4.1) · 10�10 (1)
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•  In particle physics a simpler table made of leptons and quarks: the degrees of 
freedom 

•  3 forces: electromagnetic, weak and strong forces 
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Experimentally: weak interaction exhibits interesting characteristics: 
 

•  Charged Currents: The interaction of quarks and leptons with the W ± bosons: 
–  W couples only to left-handed fermions and right-handed antifermions  

                Parity (P: left ↔ right)  
                Charge conjugation (C: particle ↔ antiparticle)  
 
 
 
 
 
 
 
 
 
       
    
 

 
 

 

 
 
 

     
 

     
 

 
 

 

not conserved  

 But CP is still a good symmetry.  

3 Electroweak Unification
3.1 Experimental facts
Low-energy experiments have provided a large amount of information about the dynamics underlying
flavour-changing processes. The detailed analysis of the energy and angular distributions in β decays,
such as µ− → e−ν̄e νµ or n → p e−ν̄e , made clear that only the left-handed (right-handed) fermion
(antifermion) chiralities participate in those weak transitions; moreover, the strength of the interaction
appears to be universal. This is further corroborated through the study of other processes like π− →
e−ν̄e or π− → µ−ν̄µ , which show that neutrinos have left-handed chiralities while anti-neutrinos are
right-handed.

From neutrino scattering data, we learnt the existence of different neutrino types (νe ̸= νµ) and that
there are separately conserved lepton quantum numbers which distinguish neutrinos from antineutrinos;
thus we observe the transitions ν̄e p → e+n , νe n → e−p , ν̄µ p → µ+n or νµ n → µ−p , but we do
not see processes like νe p ̸→ e+n , ν̄e n ̸→ e−p , ν̄µ p ̸→ e+n or νµ n ̸→ e−p .

Together with theoretical considerations related to unitarity (a proper high-energy behaviour) and
the absence of flavour-changing neutral-current transitions (µ− ̸→ e−e−e+, s ̸→ d ℓ+ℓ−), the low-
energy information was good enough to determine the structure of the modern electroweak theory [24].
The intermediate vector bosons W± and Z were theoretically introduced and their masses correctly
estimated, before their experimental discovery. Nowadays, we have accumulated huge numbers ofW±

and Z decay events, which bring much direct experimental evidence of their dynamical properties.
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fermion partners differ in one unit. The decay channels of theW− are then:
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′ ū , s ′ c̄ . (31)

Owing to the very high mass of the top quark [25], mt = 173 GeV > MW = 80.4 GeV, its
on-shell production through W− → b ′ t̄ is kinematically forbidden.

– All fermion doublets couple to theW± bosons with the same universal strength.
– The doublet partners of the up, charm and top quarks appear to be mixtures of the three quarks
with charge −1

3 :
⎛

⎝
d ′

s ′

b ′

⎞

⎠ = V

⎛

⎝
d
s
b

⎞

⎠ , VV† = V†V = 1 . (32)

8



Electroweak Interactions: Charged Currents 

37 Emilie Passemar 

Experimentally: electroweak interaction exhibits interesting characteristics: 
 

•  Charged Currents: The interaction of quarks and leptons with the W ± bosons: 
–  W couples only to left-handed fermions and right-handed antifermions  
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The interaction of quarks and leptons with theW± bosons (Fig. 6) exhibits the following features:

– Only left-handed fermions and right-handed antifermions couple to the W±. Therefore, there is
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– TheW± bosons couple to the fermionic doublets in Eq. (2), where the electric charges of the two
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The Standard Model of Electroweak Interactions

A. Pich
IFIC, University of València – CSIC,
València, Spain

Abstract
Gauge invariance is a powerful tool to determine the dynamical forces among
the fundamental constituents of matter. The particle content, structure and
symmetries of the Standard Model Lagrangian are discussed. Special empha-
sis is given to the many phenomenological tests which have established this
theoretical framework as the Standard Theory of the electroweak interactions:
electroweak precision tests, Higgs searches, quark mixing, neutrino oscilla-
tions. The present experimental status is summarized.

1 Introduction
The Standard Model (SM) is a gauge theory, based on the symmetry group SU(3)C ⊗SU(2)L⊗U(1)Y ,
which describes strong, weak and electromagnetic interactions, via the exchange of the corresponding
spin-1 gauge fields: eight massless gluons and one massless photon, respectively, for the strong and elec-
tromagnetic interactions, and three massive bosons, W± and Z , for the weak interaction. The fermionic
matter content is given by the known leptons and quarks, which are organized in a three-fold family
structure: [

νe u
e− d′

]
,

[
νµ c
µ− s ′

]
,

[
ντ t
τ− b′

]
, (1)

where (each quark appears in three different colours)
[
νl qu
l− qd

]
≡

(
νl
l−

)

L

,

(
qu
qd

)

L

, l−R , quR , qdR , (2)

plus the corresponding antiparticles. Thus, the left-handed fields are SU(2)L doublets, while their right-
handed partners transform as SU(2)L singlets. The three fermionic families in Eq. (1) appear to have
identical properties (gauge interactions); they differ only by their mass and their flavour quantum number.

The gauge symmetry is broken by the vacuum, which triggers the Spontaneous Symmetry Break-
ing (SSB) of the electroweak group to the electromagnetic subgroup:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
SSB−→ SU(3)C ⊗ U(1)QED . (3)

The SSB mechanism generates the masses of the weak gauge bosons, and gives rise to the appearance
of a physical scalar particle in the model, the so-called Higgs. The fermion masses and mixings are also
generated through the SSB.

The SM constitutes one of the most successful achievements in modern physics. It provides a
very elegant theoretical framework, which is able to describe the known experimental facts in particle
physics with high precision. These lectures [1] provide an introduction to the SM, focussing mostly on
its electroweak sector, i.e., the SU(2)L ⊗ U(1)Y part [2–5]. The strong SU(3)C piece is discussed in
more detail in Refs. [6, 7]. The power of the gauge principle is shown in Section 2, where the simpler
Lagrangians of quantum electrodynamics and quantum chromodynamics are derived. The electroweak
theoretical framework is presented in Sections 3 and 4, which discuss, respectively, the gauge structure
and the SSB mechanism. Section 5 summarizes the present phenomenological status; it describes the
main precision tests performed at the Z peak and the tight constraints on the Higgs mass from direct
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Experimentally: electroweak interaction exhibits interesting characteristics: 
 

-  The doublet partners of the up, charm and top quarks appear to be mixtures of 
the three quarks with charge − 1/3 
       the weak eigenstates are different than the mass eigenstates: 
 
 
 
 
 
 
 
 
 
Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction 
eigenstates in Standard Model  

 

 
    
 

 
 

 

 
 
 

     
 

     
 

 
 

 

•  The CKM Mechanism source of Charge Parity Violation in SM 
 

•  Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction 
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The CKM Mechanism

The CKM Mechanism source of ChargeParityViolation in SM
• Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction 

eigenstates in Standard Model

• Fully parametrized by four parameters if unitarity holds: three real parameters 
and one complex phase that if non-zero results in CPV

• Unitarity can be visualized using triangle equations, e.g. 
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Precision measurement of |Vus| is a test of CKM unitarity

Vij: Mixing between Weak and Mass Eigenstates

• |Vud| = 0.97417 ± 0.00021 (from nuclear β decays) 

• |Vub| = (4.09 ± 0.39) x 10-3 (from B → Xu ℓ ν decays) 

 ⇒  |Vus|CKM = 0.22582 ± 0.00091
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Experimentally: electroweak interaction exhibits interesting characteristics: 
 

•  Neutral Currents: The interaction of quarks and leptons with the Z boson: or 
phtoton 
–  All interacting vertices are flavour conserving.  
 
 
 
 
 
 
 
–  The interactions depend on the fermion electric charge Qf for em interactions        
     Neutrinos do not have electromagnetic interactions (Qν = 0), but they have a          
     non-zero coupling to the Z boson.  

–  The Z couplings are different for left-handed and right-handed fermions. 
The neutrino coupling to the Z involves only left-handed chiralities.  

–  There are three different light neutrino species.  
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Fig. 7: Tree-level Feynman diagrams for e+e− → µ+µ− and e+e− → ν ν̄.

Thus, the weak eigenstates d ′ , s ′ , b ′ are different than the mass eigenstates d , s , b . They are
related through the 3× 3 unitary matrixV, which characterizes flavour-mixing phenomena.

– The experimental evidence of neutrino oscillations shows that νe, νµ and ντ are also mixtures
of mass eigenstates. However, the neutrino masses are tiny:

∣∣m2
ν3 −m2

ν2

∣∣ ∼ 2.4 · 10−3 eV2 ,
m2

ν2 −m2
ν1 ∼ 7.6 · 10−5 eV2 [9].

3.1.2 Neutral currents
The neutral carriers of the electromagnetic and weak interactions have fermionic couplings (Fig. 7) with
the following properties:

– All interacting vertices are flavour conserving. Both the γ and the Z couple to a fermion and its
own antifermion, i.e., γ f f̄ and Z f f̄ . Transitions of the type µ ̸→ eγ or Z ̸→ e±µ∓ have
never been observed.

– The interactions depend on the fermion electric charge Qf . Fermions with the same Qf have
exactly the same universal couplings. Neutrinos do not have electromagnetic interactions (Qν =
0), but they have a non-zero coupling to the Z boson.

– Photons have the same interaction for both fermion chiralities, but the Z couplings are different for
left-handed and right-handed fermions. The neutrino coupling to the Z involves only left-handed
chiralities.

– There are three different light neutrino species.

3.2 The SU(2)L ⊗ U(1)Y theory
Using gauge invariance, we have been able to determine the right QED and QCD Lagrangians. To
describe weak interactions, we need a more elaborated structure, with several fermionic flavours and
different properties for left- and right-handed fields; moreover, the left-handed fermions should appear
in doublets, and we would like to have massive gauge bosons W± and Z in addition to the photon.
The simplest group with doublet representations is SU(2). We want to include also the electromagnetic
interactions; thus we need an additional U(1) group. The obvious symmetry group to consider is then

G ≡ SU(2)L ⊗ U(1)Y , (33)

where L refers to left-handed fields. We do not specify, for the moment, the meaning of the subindex Y
since, as we will see, the naive identification with electromagnetism does not work.

For simplicity, let us consider a single family of quarks, and introduce the notation

ψ1(x) =

(
u
d

)

L

, ψ2(x) = uR , ψ3(x) = dR . (34)

Our discussion will also be valid for the lepton sector, with the identification

ψ1(x) =

(
νe
e−

)

L

, ψ2(x) = νeR , ψ3(x) = e−R . (35)
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0), but they have a non-zero coupling to the Z boson.

– Photons have the same interaction for both fermion chiralities, but the Z couplings are different for
left-handed and right-handed fermions. The neutrino coupling to the Z involves only left-handed
chiralities.

– There are three different light neutrino species.

3.2 The SU(2)L ⊗ U(1)Y theory
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•  Theory should give:  
–  different properties for left- and right-handed fields;  
–  left-handed fermions should appear in doublets 
–  massive gauge bosons W± and Z in addition to the photon. 

 
 

•  Gauge group:                                        with L for left-handed fermion 

•  Degrees of freedom: 
 

•  The free Lagrangian:  
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•       is invariant under global G transformations 

•  Gauge principle: global G transformations à local: αi = αi(x) and β = β(x)  

•  For        to be invariant introduction of covariant derivatives:  
 
 
 
 
 
 
with 4 gauge fields:                             and Bµ(x) corresponding to W+/-, Z and γ
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  L0

As in the QED and QCD cases, let us consider the free Lagrangian

L0 = i ū(x) γµ ∂µu(x) + i d̄(x) γµ ∂µd(x) =
3∑

j=1

iψj(x) γ
µ ∂µψj(x) . (36)

L0 is invariant under global G transformations in flavour space:

ψ1(x)
G−→ ψ′

1(x) ≡ exp {iy1β} UL ψ1(x) ,

ψ2(x)
G−→ ψ′

2(x) ≡ exp {iy2β} ψ2(x) , (37)

ψ3(x)
G−→ ψ′

3(x) ≡ exp {iy3β} ψ3(x) ,

where the SU(2)L transformation [σi are the Pauli matrices (B.3)]

UL ≡ exp
{
i
σi
2
αi
}

(i = 1, 2, 3) (38)

only acts on the doublet field ψ1. The parameters yi are called hypercharges, since the U(1)Y phase
transformation is analogous to the QED one. The matrix transformation UL is non-Abelian as in QCD.
Notice that we have not included a mass term in Eq. (36) because it would mix the left- and right-handed
fields [see Eq. (A.17)], therefore spoiling our symmetry considerations.

We can now require the Lagrangian to be also invariant under local SU(2)L ⊗ U(1)Y gauge
transformations, i.e., with αi = αi(x) and β = β(x). In order to satisfy this symmetry requirement, we
need to change the fermion derivatives by covariant objects. Since we have now four gauge parameters,
αi(x) and β(x), four different gauge bosons are needed:

Dµψ1(x) ≡
[
∂µ + i g W̃µ(x) + i g ′ y1 Bµ(x)

]
ψ1(x) ,

Dµψ2(x) ≡ [∂µ + i g ′ y2Bµ(x)] ψ2(x) , (39)

Dµψ3(x) ≡ [∂µ + i g ′ y3Bµ(x)] ψ3(x) ,

where
W̃µ(x) ≡

σi
2
W i

µ(x) (40)

denotes a SU(2)L matrix field. Thus we have the correct number of gauge fields to describe theW±, Z
and γ.

We want Dµψj(x) to transform in exactly the same way as the ψj(x) fields; this fixes the trans-
formation properties of the gauge fields:

Bµ(x)
G−→ B′

µ(x) ≡ Bµ(x)−
1

g ′
∂µβ(x), (41)

W̃µ
G−→ W̃ ′

µ ≡ UL(x) W̃µ U
†
L(x) +

i

g
∂µUL(x)U

†
L(x), (42)

where UL(x) ≡ exp
{
i σi

2 α
i(x)

}
. The transformation of Bµ is identical to the one obtained in QED for

the photon, while the SU(2)L W i
µ fields transform in a way analogous to the gluon fields of QCD. Note

that the ψj couplings to Bµ are completely free as in QED, i.e., the hypercharges yj can be arbitrary
parameters. Since the SU(2)L commutation relation is non-linear, this freedom does not exist for the
W i

µ: there is only a unique SU(2)L coupling g.
The Lagrangian

L =
3∑

j=1

iψj(x) γ
µDµψj(x) (43)
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•  The covariant derivative transforms as the field itself dictating the transf. 
properties of Wµ (x) and Bµ(x)  

 
 
•  The EW Lagrangian is:  
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•  The covariant derivative transforms as the field itself dictating the transf. 
properties of Wµ (x) and Bµ(x)  

 
 
•  The EW Lagrangian is:  
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As in the QED and QCD cases, let us consider the free Lagrangian
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is invariant under localG transformations. In order to build the gauge-invariant kinetic term for the gauge
fields, we introduce the corresponding field strengths:

Bµν ≡ ∂µBν − ∂νBµ , (44)
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k
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1

4
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1

2
Tr
[
W̃µν W̃

µν
]
= −

1

4
Bµν B

µν −
1

4
W i

µν W
µν
i . (48)

Since the field strengths W i
µν contain a quadratic piece, the Lagrangian LKin gives rise to cubic and

quartic self-interactions among the gauge fields. The strength of these interactions is given by the same
SU(2)L coupling g which appears in the fermionic piece of the Lagrangian.

The gauge symmetry forbids the writing of a mass term for the gauge bosons. Fermionic masses
are also not possible, because they would communicate the left- and right-handed fields, which have
different transformation properties, and therefore would produce an explicit breaking of the gauge sym-
metry. Thus, the SU(2)L ⊗ U(1)Y Lagrangian in Eqs. (43) and (48) only contains massless fields.

3.3 Charged-current interaction

23/2
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quqd g
(1− γ  )

5 23/2

W

l νl
−

5
(1− γ  )

g

Fig. 8: Charged-current interaction vertices.

The Lagrangian (43) contains interactions of the fermion fields with the gauge bosons,

L −→ −g ψ1γ
µW̃µψ1 − g ′ Bµ

3∑

j=1

yj ψjγ
µψj . (49)

The term containing the SU(2)L matrix

W̃µ =
σi

2
W i

µ =
1

2

(
W 3

µ

√
2W †

µ
√
2Wµ −W 3

µ

)

(50)

gives rise to charged-current interactions with the boson field Wµ ≡ (W 1
µ+iW 2

µ)/
√
2 and its complex-

conjugate W †
µ ≡ (W 1

µ − iW 2
µ)/

√
2 (Fig. 8). For a single family of quarks and leptons,

LCC = −
g

2
√
2

{
W †

µ [ūγµ(1− γ5)d + ν̄eγ
µ(1− γ5)e] + h.c.

}
. (51)

The universality of the quark and lepton interactions is now a direct consequence of the assumed gauge
symmetry. Note, however, that Eq. (51) cannot describe the observed dynamics, because the gauge
bosons are massless and, therefore, give rise to long-range forces.
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are also not possible, because they would communicate the left- and right-handed fields, which have
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The Lagrangian (43) contains interactions of the fermion fields with the gauge bosons,
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gives rise to charged-current interactions with the boson field Wµ ≡ (W 1
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µ)/
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The universality of the quark and lepton interactions is now a direct consequence of the assumed gauge
symmetry. Note, however, that Eq. (51) cannot describe the observed dynamics, because the gauge
bosons are massless and, therefore, give rise to long-range forces.
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µ [ūγµ(1− γ5)d + ν̄eγ
µ(1− γ5)e] + h.c.

}
. (51)

The universality of the quark and lepton interactions is now a direct consequence of the assumed gauge
symmetry. Note, however, that Eq. (51) cannot describe the observed dynamics, because the gauge
bosons are massless and, therefore, give rise to long-range forces.

11

is invariant under localG transformations. In order to build the gauge-invariant kinetic term for the gauge
fields, we introduce the corresponding field strengths:

Bµν ≡ ∂µBν − ∂νBµ , (44)

W̃µν ≡ −
i

g

[(
∂µ + i g W̃µ

)
,
(
∂ν + i g W̃ν

)]
= ∂µW̃ν − ∂νW̃µ + ig

[
W̃µ, W̃ν

]
, (45)

W̃µν ≡
σi
2
W i

µν , W i
µν = ∂µW

i
ν − ∂νW

i
µ − g ϵijk W j

µ W
k
ν . (46)

Bµν remains invariant under G transformations, while W̃µν transforms covariantly:

Bµν
G−→ Bµν , W̃µν

G−→ UL W̃µν U
†
L . (47)

Therefore, the properly normalized kinetic Lagrangian is given by

LKin = −
1

4
Bµν B

µν −
1

2
Tr
[
W̃µν W̃

µν
]
= −

1

4
Bµν B

µν −
1

4
W i

µν W
µν
i . (48)

Since the field strengths W i
µν contain a quadratic piece, the Lagrangian LKin gives rise to cubic and

quartic self-interactions among the gauge fields. The strength of these interactions is given by the same
SU(2)L coupling g which appears in the fermionic piece of the Lagrangian.

The gauge symmetry forbids the writing of a mass term for the gauge bosons. Fermionic masses
are also not possible, because they would communicate the left- and right-handed fields, which have
different transformation properties, and therefore would produce an explicit breaking of the gauge sym-
metry. Thus, the SU(2)L ⊗ U(1)Y Lagrangian in Eqs. (43) and (48) only contains massless fields.

3.3 Charged-current interaction

23/2

W

quqd g
(1− γ  )

5 23/2

W

l νl
−

5
(1− γ  )

g

Fig. 8: Charged-current interaction vertices.

The Lagrangian (43) contains interactions of the fermion fields with the gauge bosons,

L −→ −g ψ1γ
µW̃µψ1 − g ′ Bµ

3∑

j=1

yj ψjγ
µψj . (49)

The term containing the SU(2)L matrix

W̃µ =
σi

2
W i

µ =
1

2

(
W 3

µ

√
2W †

µ
√
2Wµ −W 3

µ

)

(50)

gives rise to charged-current interactions with the boson field Wµ ≡ (W 1
µ+iW 2

µ)/
√
2 and its complex-

conjugate W †
µ ≡ (W 1

µ − iW 2
µ)/

√
2 (Fig. 8). For a single family of quarks and leptons,

LCC = −
g

2
√
2

{
W †
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Since the field strengths W i
µν contain a quadratic piece, the Lagrangian LKin gives rise to cubic and

quartic self-interactions among the gauge fields. The strength of these interactions is given by the same
SU(2)L coupling g which appears in the fermionic piece of the Lagrangian.

The gauge symmetry forbids the writing of a mass term for the gauge bosons. Fermionic masses
are also not possible, because they would communicate the left- and right-handed fields, which have
different transformation properties, and therefore would produce an explicit breaking of the gauge sym-
metry. Thus, the SU(2)L ⊗ U(1)Y Lagrangian in Eqs. (43) and (48) only contains massless fields.
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The Lagrangian (43) contains interactions of the fermion fields with the gauge bosons,

L −→ −g ψ1γ
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gives rise to charged-current interactions with the boson field Wµ ≡ (W 1
µ+iW 2

µ)/
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2 and its complex-

conjugate W †
µ ≡ (W 1

µ − iW 2
µ)/
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The universality of the quark and lepton interactions is now a direct consequence of the assumed gauge
symmetry. Note, however, that Eq. (51) cannot describe the observed dynamics, because the gauge
bosons are massless and, therefore, give rise to long-range forces.
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Equation (49) contains also interactions with the neutral gauge fields W 3
µ and Bµ. We would like

to identify these bosons with the Z and the γ. However, since the photon has the same interaction with
both fermion chiralities, the singlet gauge boson Bµ cannot be equal to the electromagnetic field. That
would require y1 = y2 = y3 and g ′yj = eQj , which cannot be simultaneously true.

Since both fields are neutral, we can try with an arbitrary combination of them:
(

W 3
µ

Bµ

)
≡
(

cos θW sin θW
− sin θW cos θW

) (
Zµ

Aµ

)
. (52)

The physical Z boson has a mass different from zero, which is forbidden by the local gauge symmetry.
We will see in the next section how it is possible to generate non-zero boson masses, through the SSB
mechanism. For the moment, we just assume that something breaks the symmetry, generating the Z
mass, and that the neutral mass eigenstates are a mixture of the triplet and singlet SU(2)L fields. In
terms of the fields Z and γ, the neutral-current Lagrangian is given by

LNC = −
∑

j

ψj γ
µ
{
Aµ

[
g
σ3
2

sin θW + g ′ yj cos θW
]
+ Zµ

[
g
σ3
2

cos θW − g ′ yj sin θW
]}

ψj .

(53)
In order to get QED from the Aµ piece, one needs to impose the conditions:

g sin θW = g ′ cos θW = e , Y = Q− T3 , (54)

where T3 ≡ σ3/2 and Q denotes the electromagnetic charge operator

Q1 ≡
(

Qu/ν 0
0 Qd/e

)
, Q2 = Qu/ν , Q3 = Qd/e . (55)

The first equality relates the SU(2)L and U(1)Y couplings to the electromagnetic coupling, providing the
wanted unification of the electroweak interactions. The second identity fixes the fermion hypercharges
in terms of their electric charge and weak isospin quantum numbers:

Quarks: y1 = Qu − 1
2 = Qd +

1
2 = 1

6 , y2 = Qu = 2
3 , y3 = Qd = −1

3 ,

Leptons: y1 = Qν − 1
2 = Qe +

1
2 = −1

2 , y2 = Qν = 0 , y3 = Qe = −1 .

A hypothetical right-handed neutrino would have both electric charge and weak hypercharge equal to
zero. Since it would not couple either to the W± bosons, such a particle would not have any kind of
interaction (sterile neutrino). For aesthetic reasons, we shall then not consider right-handed neutrinos
any longer.

Using the relations (54), the neutral-current Lagrangian can be written as

LNC = LQED + LZ
NC , (56)
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is invariant under localG transformations. In order to build the gauge-invariant kinetic term for the gauge
fields, we introduce the corresponding field strengths:

Bµν ≡ ∂µBν − ∂νBµ , (44)

W̃µν ≡ −
i

g

[(
∂µ + i g W̃µ

)
,
(
∂ν + i g W̃ν

)]
= ∂µW̃ν − ∂νW̃µ + ig

[
W̃µ, W̃ν

]
, (45)

W̃µν ≡
σi
2
W i

µν , W i
µν = ∂µW

i
ν − ∂νW

i
µ − g ϵijk W j

µ W
k
ν . (46)

Bµν remains invariant under G transformations, while W̃µν transforms covariantly:

Bµν
G−→ Bµν , W̃µν

G−→ UL W̃µν U
†
L . (47)

Therefore, the properly normalized kinetic Lagrangian is given by

LKin = −
1

4
Bµν B

µν −
1

2
Tr
[
W̃µν W̃

µν
]
= −

1

4
Bµν B

µν −
1

4
W i

µν W
µν
i . (48)

Since the field strengths W i
µν contain a quadratic piece, the Lagrangian LKin gives rise to cubic and

quartic self-interactions among the gauge fields. The strength of these interactions is given by the same
SU(2)L coupling g which appears in the fermionic piece of the Lagrangian.

The gauge symmetry forbids the writing of a mass term for the gauge bosons. Fermionic masses
are also not possible, because they would communicate the left- and right-handed fields, which have
different transformation properties, and therefore would produce an explicit breaking of the gauge sym-
metry. Thus, the SU(2)L ⊗ U(1)Y Lagrangian in Eqs. (43) and (48) only contains massless fields.

3.3 Charged-current interaction
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Fig. 8: Charged-current interaction vertices.

The Lagrangian (43) contains interactions of the fermion fields with the gauge bosons,

L −→ −g ψ1γ
µW̃µψ1 − g ′ Bµ

3∑

j=1

yj ψjγ
µψj . (49)

The term containing the SU(2)L matrix

W̃µ =
σi

2
W i

µ =
1

2

(
W 3

µ

√
2W †

µ
√
2Wµ −W 3

µ

)

(50)

gives rise to charged-current interactions with the boson field Wµ ≡ (W 1
µ+iW 2

µ)/
√
2 and its complex-

conjugate W †
µ ≡ (W 1

µ − iW 2
µ)/

√
2 (Fig. 8). For a single family of quarks and leptons,

LCC = −
g

2
√
2

{
W †

µ [ūγµ(1− γ5)d + ν̄eγ
µ(1− γ5)e] + h.c.

}
. (51)

The universality of the quark and lepton interactions is now a direct consequence of the assumed gauge
symmetry. Note, however, that Eq. (51) cannot describe the observed dynamics, because the gauge
bosons are massless and, therefore, give rise to long-range forces.
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Equation (49) contains also interactions with the neutral gauge fields W 3
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to identify these bosons with the Z and the γ. However, since the photon has the same interaction with
both fermion chiralities, the singlet gauge boson Bµ cannot be equal to the electromagnetic field. That
would require y1 = y2 = y3 and g ′yj = eQj , which cannot be simultaneously true.

Since both fields are neutral, we can try with an arbitrary combination of them:
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− sin θW cos θW

) (
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)
. (52)

The physical Z boson has a mass different from zero, which is forbidden by the local gauge symmetry.
We will see in the next section how it is possible to generate non-zero boson masses, through the SSB
mechanism. For the moment, we just assume that something breaks the symmetry, generating the Z
mass, and that the neutral mass eigenstates are a mixture of the triplet and singlet SU(2)L fields. In
terms of the fields Z and γ, the neutral-current Lagrangian is given by
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]
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]}
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(53)
In order to get QED from the Aµ piece, one needs to impose the conditions:

g sin θW = g ′ cos θW = e , Y = Q− T3 , (54)

where T3 ≡ σ3/2 and Q denotes the electromagnetic charge operator

Q1 ≡
(

Qu/ν 0
0 Qd/e

)
, Q2 = Qu/ν , Q3 = Qd/e . (55)

The first equality relates the SU(2)L and U(1)Y couplings to the electromagnetic coupling, providing the
wanted unification of the electroweak interactions. The second identity fixes the fermion hypercharges
in terms of their electric charge and weak isospin quantum numbers:

Quarks: y1 = Qu − 1
2 = Qd +

1
2 = 1

6 , y2 = Qu = 2
3 , y3 = Qd = −1

3 ,

Leptons: y1 = Qν − 1
2 = Qe +

1
2 = −1

2 , y2 = Qν = 0 , y3 = Qe = −1 .

A hypothetical right-handed neutrino would have both electric charge and weak hypercharge equal to
zero. Since it would not couple either to the W± bosons, such a particle would not have any kind of
interaction (sterile neutrino). For aesthetic reasons, we shall then not consider right-handed neutrinos
any longer.

Using the relations (54), the neutral-current Lagrangian can be written as

LNC = LQED + LZ
NC , (56)
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Table 1: Neutral-current couplings.

u d νe e

2 vf 1− 8
3 sin

2 θW −1 + 4
3 sin

2 θW 1 −1 + 4 sin2 θW

2 af 1 −1 1 −1

where
LQED = −eAµ

∑

j

ψjγ
µQjψj ≡ −eAµ J

µ
em (57)

is the usual QED Lagrangian and

LZ
NC = −

e

2 sin θW cos θW
Jµ
Z Zµ (58)

contains the interaction of the Z boson with the neutral fermionic current

Jµ
Z ≡

∑

j

ψjγ
µ
(
σ3 − 2 sin2 θWQj

)
ψj = Jµ

3 − 2 sin2 θW Jµ
em . (59)

In terms of the more usual fermion fields, LZ
NC has the form (Fig. 9)

LZ
NC = −

e

2 sin θW cos θW
Zµ

∑

f

f̄γµ(vf − afγ5) f , (60)

where af = T f
3 and vf = T f

3

(
1− 4|Qf | sin2 θW

)
. Table 1 shows the neutral-current couplings of the

different fermions.

3.5 Gauge self-interactions

W+

W −

γ , Z 

γ , Z W −

, Zγ

W

W + + +

W −−

WW

Fig. 10: Gauge boson self-interaction vertices.

In addition to the usual kinetic terms, the Lagrangian (48) generates cubic and quartic self-
interactions among the gauge bosons (Fig. 10):

L3 = ie cot θW
{
(∂µW ν − ∂νW µ)W †

µZν −
(
∂µW ν† − ∂νW µ†

)
WµZν +WµW

†
ν (∂

µZν − ∂νZµ)
}

+ ie
{
(∂µW ν − ∂νW µ)W †

µAν −
(
∂µW ν† − ∂νW µ†

)
WµAν +WµW

†
ν (∂

µAν − ∂νAµ)
}
;

(61)

L4 = −
e2

2 sin2 θW

{(
W †

µW
µ
)2

−W †
µW

µ†WνW
ν

}
− e2 cot2 θW

{
W †

µW
µZνZ

ν −W †
µZ

µWνZ
ν
}
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Equation (49) contains also interactions with the neutral gauge fields W 3
µ and Bµ. We would like

to identify these bosons with the Z and the γ. However, since the photon has the same interaction with
both fermion chiralities, the singlet gauge boson Bµ cannot be equal to the electromagnetic field. That
would require y1 = y2 = y3 and g ′yj = eQj , which cannot be simultaneously true.

Since both fields are neutral, we can try with an arbitrary combination of them:
(
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The physical Z boson has a mass different from zero, which is forbidden by the local gauge symmetry.
We will see in the next section how it is possible to generate non-zero boson masses, through the SSB
mechanism. For the moment, we just assume that something breaks the symmetry, generating the Z
mass, and that the neutral mass eigenstates are a mixture of the triplet and singlet SU(2)L fields. In
terms of the fields Z and γ, the neutral-current Lagrangian is given by
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In order to get QED from the Aµ piece, one needs to impose the conditions:

g sin θW = g ′ cos θW = e , Y = Q− T3 , (54)

where T3 ≡ σ3/2 and Q denotes the electromagnetic charge operator

Q1 ≡
(

Qu/ν 0
0 Qd/e

)
, Q2 = Qu/ν , Q3 = Qd/e . (55)

The first equality relates the SU(2)L and U(1)Y couplings to the electromagnetic coupling, providing the
wanted unification of the electroweak interactions. The second identity fixes the fermion hypercharges
in terms of their electric charge and weak isospin quantum numbers:

Quarks: y1 = Qu − 1
2 = Qd +

1
2 = 1

6 , y2 = Qu = 2
3 , y3 = Qd = −1

3 ,

Leptons: y1 = Qν − 1
2 = Qe +

1
2 = −1

2 , y2 = Qν = 0 , y3 = Qe = −1 .

A hypothetical right-handed neutrino would have both electric charge and weak hypercharge equal to
zero. Since it would not couple either to the W± bosons, such a particle would not have any kind of
interaction (sterile neutrino). For aesthetic reasons, we shall then not consider right-handed neutrinos
any longer.

Using the relations (54), the neutral-current Lagrangian can be written as

LNC = LQED + LZ
NC , (56)
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•  As we have seen introducing a mass terms for the fermions and the gauge 
bosons breaks gauge symmetry and        is no longer invariant 

•  However in nature the gauge bosons as well as the fermions are massive: 
      Dilemma: break the gauge symmetry while having a fully symmetric 
Lagrangian to preserve renormalizability  
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•  In order to have a ground state the potential should be bounded from below, 
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The horse in Fig. 11 illustrates in a very simple way the phenomenon of SSB. Although the left
and right carrots are identical, Nicolás must take a decision if he wants to get food. What is important
is not whether he goes left or right, which are equivalent options, but that the symmetry gets broken. In
two dimensions (discrete left-right symmetry), after eating the first carrot Nicolás would need to make
an effort to climb the hill in order to reach the carrot on the other side; however, in three dimensions
(continuous rotation symmetry) there is a marvelous flat circular valley along which Nicolás can move
from one carrot to the next without any effort.

The existence of flat directions connecting the degenerate states of minimal energy is a general
property of the SSB of continuous symmetries. In a quantum field theory it implies the existence of
massless degrees of freedom.

4.1 Goldstone theorem

|φ|

V(φ)

2
ϕ

|φ|
ϕ
1

V(φ)

Fig. 12: Shape of the scalar potential for µ2 > 0 (left) and µ2 < 0 (right). In the second case there is
a continuous set of degenerate vacua, corresponding to different phases θ, connected through a massless field
excitation ϕ2.

Let us consider a complex scalar field φ(x), with Lagrangian

L = ∂µφ
†∂µφ− V (φ) , V (φ) = µ2φ†φ+ h

(
φ†φ

)2
. (62)

L is invariant under global phase transformations of the scalar field

φ(x) −→ φ′(x) ≡ exp {iθ}φ(x) . (63)

In order to have a ground state the potential should be bounded from below, i.e., h > 0. For the
quadratic piece there are two possibilities, shown in Fig. 12:

1. µ2 > 0: The potential has only the trivial minimum φ = 0. It describes a massive scalar particle
with mass µ and quartic coupling h.

2. µ2 < 0: The minimum is obtained for those field configurations satisfying

|φ0| =
√

−µ2

2h
≡

v√
2

> 0 , V (φ0) = −
h

4
v4 . (64)

Owing to the U(1) phase invariance of the Lagrangian, there is an infinite number of degenerate
states of minimum energy, φ0(x) = v√

2
exp {iθ}. By choosing a particular solution, θ = 0 for

example, as the ground state, the symmetry gets spontaneously broken. If we parametrize the
excitations over the ground state as

φ(x) ≡
1√
2
[v + ϕ1(x) + iϕ2(x)] , (65)
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example, as the ground state, the symmetry gets spontaneously broken. If we parametrize the
excitations over the ground state as
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•  We introduce a SU(2)L doublet of complex scalar fields:  
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where ϕ1 and ϕ2 are real fields, the potential takes the form
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Thus, ϕ1 describes a massive state of massm2
ϕ1

= −2µ2, while ϕ2 is massless.

The first possibility (µ2 > 0) is just the usual situation with a single ground state. The other
case, with SSB, is more interesting. The appearance of a massless particle when µ2 < 0 is easy to
understand: the field ϕ2 describes excitations around a flat direction in the potential, i.e., into states
with the same energy as the chosen ground state. Since those excitations do not cost any energy, they
obviously correspond to a massless state.

The fact that there are massless excitations associated with the SSB mechanism is a completely
general result, known as the Goldstone theorem [26–28]: if a Lagrangian is invariant under a continuous
symmetry group G, but the vacuum is only invariant under a subgroup H ⊂ G, then there must exist as
many massless spin-0 particles (Nambu–Goldstone bosons) as broken generators (i.e., generators of G
which do not belong toH).

4.2 Massive gauge bosons
At first sight, the Goldstone theorem has very little to do with our mass problem; in fact, it makes it worse
since we want massive states and not massless ones. However, something very interesting happens when
there is a local gauge symmetry [29–32].

Let us consider [3] an SU(2)L doublet of complex scalar fields
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Dµφ =
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∂µ + i g W̃ µ + i g ′ yφB

µ
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φ , yφ = Qφ − T3 =

1

2
, (69)

is invariant under local SU(2)L ⊗ U(1)Y transformations. The value of the scalar hypercharge is fixed
by the requirement of having the correct couplings between φ(x) and Aµ(x); i.e., the photon does not
couple to φ(0), and φ(+) has the right electric charge.

The potential is very similar to the Goldstone model one in Eq. (62). There is a infinite set of
degenerate states with minimum energy, satisfying

∣∣⟨0|φ(0)|0⟩
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√
−µ2

2h
≡

v√
2
. (70)

Note that we have made explicit the association of the classical ground state with the quantum vacuum.
Since the electric charge is a conserved quantity, only the neutral scalar field can acquire a vacuum
expectation value. Once we choose a particular ground state, the SU(2)L ⊗ U(1)Y symmetry gets
spontaneously broken to the electromagnetic subgroup U(1)QED, which by construction still remains a
true symmetry of the vacuum. According to the Goldstone theorem three massless states should then
appear.

Now, let us parametrize the scalar doublet in the general form

φ(x) = exp
{
i
σi
2
θi(x)

} 1√
2

(
0

v +H(x)

)
, (71)
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•  Spontaneous Symmetry Breaking:  

•  SU(2)L invariance        θi(x) can be gauged away  

•  3 massless Goldstone bosons that are « eaten » to give masses to W+/- and Z 
 
 
 
 

 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
       
    
 

 
 

 

 
 
 

     
 

     
 

 
 

 

where ϕ1 and ϕ2 are real fields, the potential takes the form

V (φ) = V (φ0)− µ2ϕ2
1 + h v ϕ1

(
ϕ2
1 + ϕ2

2

)
+

h

4

(
ϕ2
1 + ϕ2

2

)2
. (66)

Thus, ϕ1 describes a massive state of massm2
ϕ1

= −2µ2, while ϕ2 is massless.

The first possibility (µ2 > 0) is just the usual situation with a single ground state. The other
case, with SSB, is more interesting. The appearance of a massless particle when µ2 < 0 is easy to
understand: the field ϕ2 describes excitations around a flat direction in the potential, i.e., into states
with the same energy as the chosen ground state. Since those excitations do not cost any energy, they
obviously correspond to a massless state.

The fact that there are massless excitations associated with the SSB mechanism is a completely
general result, known as the Goldstone theorem [26–28]: if a Lagrangian is invariant under a continuous
symmetry group G, but the vacuum is only invariant under a subgroup H ⊂ G, then there must exist as
many massless spin-0 particles (Nambu–Goldstone bosons) as broken generators (i.e., generators of G
which do not belong toH).

4.2 Massive gauge bosons
At first sight, the Goldstone theorem has very little to do with our mass problem; in fact, it makes it worse
since we want massive states and not massless ones. However, something very interesting happens when
there is a local gauge symmetry [29–32].

Let us consider [3] an SU(2)L doublet of complex scalar fields

φ(x) ≡
(
φ(+)(x)
φ(0)(x)

)
. (67)

The gauged scalar Lagrangian

LS = (Dµφ)
†Dµφ− µ2φ†φ− h

(
φ†φ

)2
(h > 0 , µ2 < 0) , (68)

Dµφ =
[
∂µ + i g W̃ µ + i g ′ yφB

µ
]
φ , yφ = Qφ − T3 =

1

2
, (69)

is invariant under local SU(2)L ⊗ U(1)Y transformations. The value of the scalar hypercharge is fixed
by the requirement of having the correct couplings between φ(x) and Aµ(x); i.e., the photon does not
couple to φ(0), and φ(+) has the right electric charge.

The potential is very similar to the Goldstone model one in Eq. (62). There is a infinite set of
degenerate states with minimum energy, satisfying

∣∣⟨0|φ(0)|0⟩
∣∣ =

√
−µ2

2h
≡

v√
2
. (70)

Note that we have made explicit the association of the classical ground state with the quantum vacuum.
Since the electric charge is a conserved quantity, only the neutral scalar field can acquire a vacuum
expectation value. Once we choose a particular ground state, the SU(2)L ⊗ U(1)Y symmetry gets
spontaneously broken to the electromagnetic subgroup U(1)QED, which by construction still remains a
true symmetry of the vacuum. According to the Goldstone theorem three massless states should then
appear.

Now, let us parametrize the scalar doublet in the general form

φ(x) = exp
{
i
σi
2
θi(x)

} 1√
2

(
0

v +H(x)

)
, (71)

16

4 real fields θi(x) + H(x) 

54 

with four real fields θi(x) and H(x). The crucial point is that the local SU(2)L invariance of the La-
grangian allows us to rotate away any dependence on θi(x). These three fields are precisely the would-be
massless Goldstone bosons associated with the SSB mechanism.

The covariant derivative (69) couples the scalar multiplet to the SU(2)L ⊗ U(1)Y gauge bosons.
If one takes the physical (unitary) gauge θi(x) = 0 , the kinetic piece of the scalar Lagrangian (68) takes
the form:

(Dµφ)
†Dµφ

θi=0−→
1

2
∂µH ∂µH + (v +H)2

{
g2

4
W †

µW
µ +

g2

8 cos2 θW
ZµZ

µ

}
. (72)

The vacuum expectation value of the neutral scalar has generated a quadratic term for the W± and the
Z , i.e., those gauge bosons have acquired masses:

MZ cos θW = MW =
1

2
v g . (73)

Therefore, we have found a clever way of giving masses to the intermediate carriers of the weak
force. We just add LS to our SU(2)L ⊗ U(1)Y model. The total Lagrangian is invariant under gauge
transformations, which guarantees the renormalizability of the associated quantum field theory [33].
However, SSB occurs. The three broken generators give rise to three massless Goldstone bosons which,
owing to the underlying local gauge symmetry, can be eliminated from the Lagrangian. Going to the
unitary gauge, we discover that the W± and the Z (but not the γ, because U(1)QED is an unbroken
symmetry) have acquired masses, which are moreover related as indicated in Eq. (73). Notice that
Eq. (52) has now the meaning of writing the gauge fields in terms of the physical boson fields with
definite mass.

It is instructive to count the number of degrees of freedom (d.o.f.). Before the SSB mechanism,
the Lagrangian contains massless W± and Z bosons, i.e., 3 × 2 = 6 d.o.f., due to the two possible
polarizations of a massless spin-1 field, and four real scalar fields. After SSB, the three Goldstone modes
are ‘eaten’ by the weak gauge bosons, which become massive and, therefore, acquire one additional
longitudinal polarization. We have then 3 × 3 = 9 d.o.f. in the gauge sector, plus the remaining scalar
particle H , which is called the Higgs boson. The total number of d.o.f. remains of course the same. The
new longitudinal polarizations of the massive gauge bosons are nothing else than the original Goldstone
fields. It was necessary to introduce additional d.o.f. (scalars) in the gauge theory in order to give masses
to the gauge bosons. The Higgs appears because the scalar doublet (67) contains too many fields.

4.3 Predictions
We have now all the needed ingredients to describe the electroweak interaction within a well-defined
quantum field theory. Our theoretical framework implies the existence of massive intermediate gauge
bosons, W± and Z . Moreover, the chosen SSB mechanism has produced a precise prediction1 for the
W± and Z masses, relating them to the vacuum expectation value of the scalar field through Eq. (73).
Thus,MZ is predicted to be bigger thanMW in agreement with the measured masses [34, 35]:

MZ = 91.1875 ± 0.0021 GeV , MW = 80.399 ± 0.023 GeV . (74)

From these experimental numbers, one obtains the electroweak mixing angle

sin2 θW = 1−
M2

W

M2
Z

= 0.223 . (75)

1 Note, however, that the relationMZ cos θW = MW has a more general validity. It is a direct consequence of the symmetry
properties of LS and does not depend on its detailed dynamics.
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Mass generation: electroweak SSB 

 
 

•     

•  Before SSB:  
–  3 massless W± and Z bosons, i.e., 3 × 2 = 6 d.o.f fields  
–  3 Goldstones θi(x) 
–  H(x) 

•  After SSB:  
–  3 massives W± and Z bosons, i.e., 3 × 3 = 9 d.o.f fields  
–  H(x) 

•  Higgs field remains in the spectrum  
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–  3 massless W± and Z bosons, i.e., 3 × 2 = 6 d.o.f fields  
–  3 Goldstones θi(x) 
–  H(x) 

•  After SSB:  
–  3 massives W± and Z bosons, i.e., 3 × 3 = 9 d.o.f fields  
–  H(x) 

•  Higgs field remains in the spectrum  
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  G ≡ SU (2)L ⊗U (1)Y   U (1)EM

SSB 

3 GBs « eaten » to give masses  
to W+/- and Z 



Higgs field 

57 

•  Discovery of a 125 GeV scalar particle at LHC on  
July 4, 2012: Missing piece of the Standard Model 

Does nature agree?
• Higgs boson: discovered in H →γγ mode 

h ! ��

Does nature agree?
• Higgs boson: discovered in H →γγ mode 

h ! ��

Does nature agree?
• Higgs boson: discovered in H →γγ mode 

h ! ��



Fermion masses 

•  Yukawa Lagrangian:  
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Massive Fermions 

Z

H

Z

H

HZ

Z

W

H

W

−

H

W H
2M Z

v2

2
Z2 M

v

W

+

+

−

2
W

v

2M W
v2

2 M

Fig. 13: Higgs couplings to the gauge bosons.
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Fig. 14: Fermionic coupling of the Higgs boson.

4.5 Fermion masses
A fermionic mass term Lm = −mψψ = −m

(
ψLψR + ψRψL

)
is not allowed, because it breaks the

gauge symmetry. However, since we have introduced an additional scalar doublet into the model, we can
write the following gauge-invariant fermion-scalar coupling:

LY = −c1
(
ū, d̄
)
L

(
φ(+)

φ(0)

)
dR − c2

(
ū, d̄
)
L

(
φ(0)∗

−φ(−)

)
uR − c3 (ν̄e, ē)L

(
φ(+)

φ(0)

)
eR + h.c. ,

(86)
where the second term involves the C-conjugate scalar field φc ≡ iσ2 φ∗. In the unitary gauge, this
Yukawa-type Lagrangian takes the simpler form

LY = −
1√
2
(v +H)

{
c1 d̄d+ c2 ūu+ c3 ēe

}
. (87)

Therefore, the SSB mechanism generates also fermion masses:

md = c1
v√
2
, mu = c2

v√
2
, me = c3

v√
2
. (88)

Since we do not know the parameters ci, the values of the fermion masses are arbitrary. Note,
however, that all Yukawa couplings are fixed in terms of the masses (Fig. 14):

LY = −
(
1 +

H

v

) {
md d̄d+mu ūu+me ēe

}
. (89)
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Standard Model Lagrangian 
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The Standard Model

Q = T3 + Y 



•  Study of the process: 
 
•  Can it go through strong, EM, weak interactions?  

•  How many Feynman diagrams at tree level?  

 

 
 
 
 
 

 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
       
    
 

 
 

 

 
 
 

     
 

     
 

 
 

 

Application of EW interactions 
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 ν e + e− → ν e + e−



•  Study of the process: 
 
•  Involve leptons only         no strong interaction 

•  The neutrinos are electrically neutral           no EM interaction   
             Only Weak interactions ! 
 
•  How many Feynman diagrams?  
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 ν e + e− → ν e + e−



•  Study of the process: 
 
•  Involve leptons only         no strong interaction 

•  The neutrinos are electrically neutral           no EM interaction   
             Only Weak interactions ! 
 
•  How many Feynman diagrams?  

 

 
 
 
 
 

 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
       
    
 

 
 

 

 
 
 

     
 

     
 

 
 

 

Application of EW interactions 
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 ν e + e− → ν e + e−

+ 

NC CC 



2.4  Strong Interactions 

Emilie Passemar 



Introduction 
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•  In particle physics a simpler table made of leptons and quarks: the degrees of 
freedom 

•  3 forces: electromagnetic, weak and strong forces 
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Quark masses 
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•  Let us consider the proton: it is not a fundamental particle, but a bound state 
of 3 quarks 

 
 
 

     
 
 

     
 

 
 

 

Quarks Proton Contrary to naïve expectation, most of its  
mass comes from strong force 
 
Only 1% of its mass comes from the quark  
masses (Coupling of the quarks to the Higgs 
boson) 
 



Quark masses 
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•  Let us consider the proton: it is not a fundamental particle, but a bound state 
of 3 quarks 

•  How can we access the quark masses?  

 
 
 

     
 
 

     
 

 
 

 

Quarks Proton Contrary to naïve expectation, most of its  
mass comes from strong force 
 
Only 1% of its mass comes from the quark  
masses (Coupling of the quarks to the Higgs 
boson) 
 



Strong interaction 

•  Problem: quarks and gluons are not free particles: they are bound inside 
hadrons 
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Strong interaction 

•  Problem: quarks and gluons are not free particles: they are bound inside 
hadrons 

 

 
 

 
     
      
•  Two properties: 

–  Confinement 
–  Asymptotic freedom  : The interaction decreases at high energies 

Nobel Prize in 2004 for Frank Wilczek and David Gross and David 
Politzer  
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Quark masses 
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•  Let us consider the proton: it is not a fundamental particle, but a bound state 
of 3 quarks 

•  How can we access the quark masses?  
 

•  In principle a theory          Quantum ChromoDynamics  

 
 
 

     
 
 

     
 

 
 

 

Quarks Proton Contrary to naïve expectation, most of its  
mass comes from strong force 
 
Only 1% of its mass comes from the quark  
masses (Coupling of the quarks to the Higgs 
boson) 
 

   
LQCD = − 1
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µνGµν
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NF

∑ iγ µ Dµ − mk( )qk



Formulation of QCD 

•  SU(3)C QCD invariant Lagrangian 

•  Different parts to describe the interactions 
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a + qk
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Formulation of QCD 

•  SU(3)C QCD invariant Lagrangian 

•  Different parts to describe the interactions 
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Formulation of QCD 

•  SU(3)C QCD invariant Lagrangian 

•  Different parts to describe the interactions 
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Formulation of QCD 

•  Different parts to describe the interactions 
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Interaction gluon 
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Formulation of QCD 

•  SU(3)C QCD invariant Lagrangian 

Ø One single universal coupling :                        strong coupling constant 

Ø  It is not a constant, depends on the energy ! 
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Strong interaction 

•  Problem: quarks and gluons are bound inside hadrons 
 
 

 
 
•  High energies, short distance:  

αS  small         Asymptotic freedom 
 
Perturbative QCD 
Theory “easy” to solve 
 

     Order-by-order expansion in   
          

Quarks Proton 

Asymptotic freedom 
small smaller 

2 3

0 1 2 3         +     +     +  ...S S Sα α ασ σ σ σ σ
π π π

⎛ ⎞ ⎛ ⎞= + ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( )Sα µ
π
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•  Looking for new physics in hadronic processes       not direct access to 
quarks due to confinement  
 
 
 
 
 
 

Ø  Low energy (Q <~1 GeV), long  
distance: αS becomes large ! 
 
 
A perturbative expansion in the usual  
sense fails  

            Use of alternative approaches,  
             expansions… 
 

      
          

Strong interaction 

Non-perturbative QCD 

Confinement 

Quarks Proton 

Emilie Passemar 

PDG’12 

h
u

µ
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•  Looking for new physics in hadronic processes      not direct access to 
quarks due to confinement  
 
 
 
 
 
 

Ø  Non-perturbative methods: 
‒  Numerical simulations on  

the lattice 
 

 
      
          

Strong interaction 

Confinement 

Quarks Proton 

Emilie Passemar 

PDG’12 

u

µ



Lattice QCD 

•  Principle: Discretization of the space time and solve QCD on the 
lattice numerically 
–  All quark and gluon fields  

of QCD on a 4D-lattice 
–  Field configurations by 

Monte Carlo sampling 
      

 
•  Important subtleties due to the  

discretization, should come back  
to the continuum, formulation  
of the fermions on the lattice… 
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•  Looking for new physics in hadronic processes      not direct access to 
quarks due to confinement  
 
 
 
 
 
 

Ø  Non-perturbative methods: 
‒  Numerical simulations on  

the lattice 
 

–  Analytical methods:  
Effective field theory           
 Ex: ChPT for light quarks 
Dispersion relations 
Synergies with lattice QCD 

 
 
 

 
 

 
      
          

Strong interaction 

Confinement 

Quarks Proton 
PDG’12 

u

µ

Hadronic Physics 



Quark masses 
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•  Strong force:  If mu~ md: Mn ~ Mp isospin symmetry  
 

Countless experiments have shown that strong force obeys isospin symmetry 
Results are the same if we interchange neutrons and protons (or up and 
down quarks) 

 
 

 
 
 

     
 
 

     
 

 
 

 

Quarks Proton Neutron 

Heisenberg’60 

vs. 

  Mn = 939.57 MeV   M p = 938.27 MeV
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down quarks) 

 
 

 
 
 

     
 
 

     
 

 
 

 

Quarks Proton Neutron 

Heisenberg’60 

vs. 

  Mn = 939.57 MeV   M p = 938.27 MeV



Quark masses 
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•  Strong force:  If mu~ md: Mn ~ Mp isospin symmetry  

 

Countless experiments have shown that strong force obeys isospin symmetry 
Results are the same if we interchange neutrons and protons 

 
 

•  Electromagnetic energy: one obvious difference between a neutron and a 
proton is their electric charges:   

 
 

 
 
 

     
 
 

     
 

 
 

 

Quarks Proton Neutron 

Heisenberg’60 

vs. 

  QP = 1   Qn = 0and 
  
Ee ∝

Q2

R
Since Mp > Mn ? 
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•  Strong force:  If mu~ md: Mn ~ Mp isospin symmetry  

 

Countless experiments have shown that strong force obeys isospin symmetry 
Results are the same if we interchange neutrons and protons 

 
 

•  Electromagnetic energy: one obvious difference between a neutron and a 
proton is their electric charges:   

 
 
 
 

 Terrible consequences : Proton would decay into neutrons and there       
 will be no chemistry and we would not be there in this room! 

 
 

 
 

 
 
 

     
 
 

     
 

 
 

 

Quarks Proton Neutron 

Heisenberg’60 
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  QP = 1   Qn = 0and 
  
Ee ∝

Q2

R
Since Mp > Mn ? 
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•  Strong force:  If mu~ md: Mn ~ Mp isospin symmetry  

 
 
 
 

•  Electromagnetic energy: 

•  This is not the case:  
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Heisenberg’60 

vs. 

Mp > Mn 
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•  Strong force:  If mu~ md: Mn ~ Mp isospin symmetry  

 
 
 
 

•  Electromagnetic energy: 

•  This is not the case:  

•  Another small effect in addition to e.m. force:  

 
different fundamental quark masses 

 Different coupling to Higgs field 
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vs. 

Mp > Mn 

Why? 

 md ≠ mu



Quark masses 
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We will come back to 
the determination of 
quark mass difference 
later 



2.5  Success of the Standard Model and search for 
       New Physics  
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Oscillations of Kaons 
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•  Let us consider simplest hadrons: the mesons. They are quark-anti-quark 
bound states. They interact with strong, electromagnetic and weak forces 

 

 

 
 

 
 

 

 
 
 

     
 
 

     
 

 
 

 

1.1   The Standard Model 
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 H
The mediators of weak interaction (W, Z) become massive through the Higgs 
Mechanism       one scalar particle remain in the spectrum: H

  π
+ :  ud

  π
− :  ud

,   π
0 :  uu  or dd  

-  The simplest one is the pion: 
 
 
 
 
 
 
 
The pions mediate strong force in nuclei 
It is ubiquitous in hadronic collisions 
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•  Let us consider simplest hadrons: the mesons. They are quark-anti-quark 
bound states. They interact with strong, electromagnetic and weak forces. 
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 H
The mediators of weak interaction (W, Z) become massive through the Higgs 
Mechanism       one scalar particle remain in the spectrum: H

  π
+ :  ud

  π
− :  ud

,   π
0 :  uu  or dd  

-  The simplest one is the pion: 

-  The ones containing a s quark  
are the kaons  
 

 
 

  K
+ :  us ,

  K
− :  us

  K
0 :  ds , K 0 : sd  

Discovered in cosmic ray experiments 



•  Discovered in 1964 by Christenson, Cronin, Fitch and Turlay 
 

                    Nobel Prize in 1980 for Cronin and Fitch 

•  Start with a                  after some time it transforms into a 

•  The rate of this oscillation is suppressed but measurable in the Standard 
Model 
 

                        goes through weak interactions   ~ GF 
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through weak interaction 
Short distance effect 

  K 0   K 0

Historic Example: Beta Decay

GF

n
p

e
ν̄e

effective low energy description
of nuclear beta decay by a
4 fermion contact interaction

the interaction strength is given by
the Fermi constant

GF ≃ 1.17× 10−5 GeV−2

this defines an energy scale

Λ = (GF
√
2)−1/2 ≃ 246 GeV

Wolfgang Altmannshofer The Flavor Puzzle June 26, 2014 28 / 40
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•  Discovered in 1964 by Christenson, Cronin, Fitch and Turlay 
 

                    Nobel Prize in 1980 for Cronin and Fitch 

•  Start with a                  after some time it transforms into a 

•  The rate of this oscillation is very suppressed in the Standard Model 
 

                        goes through weak interactions   ~ GF  

•  How can we understand the oscillation rate?  
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•  Process described using the  
bag parameter BK 
Fundamental hadronic quantity 
proportional to matrix element 
 

         determined using lattice QCD 
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1.1   Introduction: 1.1  Test of New Physics : Vus 

Ø  BSM: sensitive to tree-level and loop effects of a large class of models 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Ø  Look for new physics by comparing the extraction of Vus from different 
processes: helicity suppressed Kµ2, helicity allowed Kl3, hadronic τ decays 

 
 
 

 

 

Emilie Passemar 

2 2 2 1ud us CKMubV V V + Δ+ + =

9 

1.2  Constraining New Physics 

Matthew Moulson & Emilie Passemar 

Oscillations of Kaons 

 

 

 
 

 
 

 

 
 
 

     
 
 

     
 

 
 

 

•  Since process is suppressed in the Standard Model: 
 

                    very sensitive to new physics: new degrees of freedom and symmetries 

 
 
 

•  If measured with very good precision 
provided the SM contribution is known  
 

         stringent constraints on new physics   
             models 
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  K 0   K 0 + 

SM BSM 

  K 0   K 0
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GF  Vij  Vij

†  
mi , j

2

MW
2



•  Similar tests with other mesons           Beauty mesons contain a b-quark 

 
 
 
 
 
 
 
 
 

 

 
 

 
 

 

 
 
 

     
 
 

     
 

 
 

 

Oscillations of B mesons 
1.1   The Standard Model 
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 H
The mediators of weak interaction (W, Z) become massive through the Higgs 
Mechanism       one scalar particle remain in the spectrum: H

•  B meson physics have been studied 
extensively at BaBar, Belle, CDF, 
D0@Tevatron and now Belle-II, LHCb, 
CMS and ATLAS@LHC 
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  B
+ :  ub

  B
− :  ub  ,

,   B
0 : db  

  B
0 : db 

  Bs
0 :  sb   ,   Bs

0 :  sb  

  Bc
0 :  cb   ,

  Bc
0 :  cb 



•  Similar tests with other mesons           Beauty mesons contain a b-quark 

•  Similar tests with D mesons 

 
 
 
 
 
 
 
 
 

 

 
 

 
 

 

 
 
 

     
 
 

     
 

 
 

 

Oscillations of B mesons 
1.1   The Standard Model 
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 H
The mediators of weak interaction (W, Z) become massive through the Higgs 
Mechanism       one scalar particle remain in the spectrum: H

•  B meson physics have been studied 
extensively at BaBar, Belle, CDF, 
D0@Tevatron and now Belle-II, LHCb, 
CMS and ATLAS@LHC 
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  B
+ :  ub

  B
− :  ub  ,

,   B
0 : db  

  B
0 : db 

  Bs
0 :  sb   ,   Bs

0 :  sb  

  Bc
0 :  cb   ,

  Bc
0 :  cb 



SM BSM 

  B0   B0

1.1   The Standard Model 
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 H
The mediators of weak interaction (W, Z) become massive through the Higgs 
Mechanism       one scalar particle remain in the spectrum: H

3
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  B0   B0
+ 

•  B-Bbar measured by BaBar and Belle’01 

•  Bs-Bsbar mixing observed by CDF’06 and 
LHCb’11 
 

 CP violation in B decays  

  

LHCb’13 

•  Similar tests with other mesons 

 
 
 
    
 
 
 
 

•  Stringent constraints on new physics  models provided hadronic matrix 
elements known 

 

 
 

 
 

 

 
 
 

     
 
 

     
 

 
 

 

CP violation in D decays  LHCb’19 
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Oscillations of B mesons 



New Physics and Flavour sector  
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•  Very sensitive to New Physics 
 

 
 

 
 

 

 
 
 

     
 
 

     
 

 
 

 

High Sensitivity to New Physics

Wolfgang Altmannshofer The Flavor Puzzle June 26, 2014 30 / 40
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•  Exciting discrepancies found recently: 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

 

 
 
 

     
 
 

     
 

 
 

 

Anomalies in Flavour Physics 

New Physics in the Flavour Sector 

Page 5 Andreas Crivellin 

“Popular 
news” 

New Physics in the Flavour Sector 

Page 5 Andreas Crivellin 

“Popular 
news” 
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•  These anomalies have generated a lot of excitement and theoretical papers 
to try to explain them using new physics models 

•  This requires a good understanding of hadronic physics  
see e.g. Celis, Cirigliano, E.P., Phys.Rev. D89 (2014) 013008,  

           Phys.Rev. D89 (2014) no.9, 095014 

•  New measurements are planned at ATLAS, CMS (dedicated B physics run) 
LHCb and Belle II 

•  Better precision within the next decade          match the level of precision 
theoretically with hadronic physics 
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3.   Back up 

Emilie Passemar 



 
•  Let us consider the proton: it is not a fundamental particle, it is made of 3 

quarks 

 
 
 

     
 
 

     
 

 
 

 

Proton 
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1.1   Introduction: 1.1  Test of New Physics : Vus 

•  Extraction of the Cabibbo-Kobayashi-Maskawa matrix element Vus 

Ø  Fundamental parameter of the Standard Model 
 
Description of the weak interactions: 

 
 

 
 
 
 
 

 
 
 

 

 

   
LEW = g

2
Wα

+ DLVCKMγ
αU L + eLγ

αν eL
+ µLγ

αν µL
+ τ Lγ

αντ L
( ) + h.c.

1.1   The Standard Model  

•  Theory that describes the strong and electroweak interactions 
!  Degrees of Freedom:  

" Quarks and Leptons  
" The gauge bosons:  

   W+/-, Z and A 

 
 
 

 
 
 
 

 

 

4 

Particle physics

Central question of QFT-based particle physics

L =?

i.e. which degrees of freedom, symmetries, scales ?

H Hi
gg

s

3 générations

SM best answer up to now, but
neutrino masses
dark matter
dark energy
baryon asymmetry of the
universe
hierarchy problem

S. Descotes-Genon (LPT) Heavy flavours 20/01/14 3

3 generations 
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•  The CKM Mechanism source of Charge Parity Violation in SM 
 

•  Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction 
eigenstates in Standard Model  
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University of Zurich, 2016, May 9 Flavour anomalies & Belle II's impact on the physics landscape

The CKM Mechanism

The CKM Mechanism source of ChargeParityViolation in SM
• Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction 

eigenstates in Standard Model

• Fully parametrized by four parameters if unitarity holds: three real parameters 
and one complex phase that if non-zero results in CPV

• Unitarity can be visualized using triangle equations, e.g. 
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Overview 
of τ physics

Swagato 
Banerjee

The |Vus| element of CKM Matrix
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λ 

λ2 λ 

λ3 

λ3 λ2 

J.C.Hardy & I.S. Towner, PRC 91 (2015) 025501

Particle Data Group 2016

Precision measurement of |Vus| is a test of CKM unitarity

Vij: Mixing between Weak and Mass Eigenstates

• |Vud| = 0.97417 ± 0.00021 (from nuclear β decays) 

• |Vub| = (4.09 ± 0.39) x 10-3 (from B → Xu ℓ ν decays) 

 ⇒  |Vus|CKM = 0.22582 ± 0.00091



•  The CKM Mechanism source of Charge Parity Violation in SM 

•  Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction 
eigenstates in Standard Model  

 
  
  

 

•  Fully parametrized by four parameters if unitarity holds: three real 
parameters and one complex phase that if non-zero results in CPV  

•  Unitarity can be visualized using triangle equations, e.g.  
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The CKM Mechanism

The CKM Mechanism source of ChargeParityViolation in SM
• Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction 

eigenstates in Standard Model

• Fully parametrized by four parameters if unitarity holds: three real parameters 
and one complex phase that if non-zero results in CPV

• Unitarity can be visualized using triangle equations, e.g. 
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The CKM Mechanism

The CKM Mechanism source of ChargeParityViolation in SM
• Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction 

eigenstates in Standard Model

• Fully parametrized by four parameters if unitarity holds: three real parameters 
and one complex phase that if non-zero results in CPV

• Unitarity can be visualized using triangle equations, e.g. 
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Existence of CPV phase established in 2001 by BaBar & Belle 

•  Picture still holds 15 years later, constrained with remarkable precision  
•  But: still leaves room for new physics contributions  

  
  

 
 

 

 
 

CKM picture over the years: from discovery to precision 
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Existence of CPV phase established in 2001 by BaBar & Belle
• Picture still holds 15 years later, constrained with remarkable precision
• But: still leaves room for new physics contributions
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CKMFitter: 2016 Vs 2025
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2 Global analyses
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Fig. 11: UT fit today (left) and extrapolated to the 50 ab�1 scenario for an SM-like scenario

(right). Four tests are shown ...
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Loop

Tree

CP conserving

CP violating

2 Global analyses

Table 6: Parameter values for each scenario. The label “id” and “id*” denotes that the value

is the same as the column to the left, and two to the left respectively.

World average SM-like

Input 2016 Belle II

(+LHCb)

2025

Belle II (+LHCb) 2025

|Vub|(semileptonic)[10�3] 4.01 ± 0.08 ± 0.22 ±0.10 3.71 ± 0.09

|Vcb|(semileptonic)[10�3] 41.00 ± 0.33 ± 0.74 ±0.57 41.80 ± 0.60

B(B ! ⌧⌫) 1.08 ± 0.21 ±0.04 0.817 ± 0.03

sin 2� 0.691 ± 0.017 ±0.008 0.710 ± 0.008

�[�] 73.2+6.3
�7.0 ±1.5

(±1.0)

67 ± 1.5 (±1.0)

↵[�] 87.6+3.5
�3.3 ±1.0 90.4 ± 1.0

�md 0.510 ± 0.003 - -

�ms 17.757 ± 0.021 - -

B(Bs ! µµ) 2.8+0.7
�0.6 (±0.5) 3.31+0.7

�0.6 (±0.5)

fBs
0.224 ± 0.001 ± 0.002 0.001 -

BBs
1.320 ± 0.016 ± 0.030 0.010 -

fBs
/fBd

1.205 ± 0.003 ± 0.006 0.005 -

BBs
/BBd

1.023 ± 0.013 ± 0.014 0.005 -

|Vcd|(⌫N) 0.230 ± 0.011 - -

|Vcs|(W ! cs̄) 0.94+0.32
�0.26 ± 0.13 - -

fDs
/fDd

1.175+0.001
�0.004 - -

B(D ! µ⌫) 0.374 ± 0.017 ±0.010 -

✏K 2.228 ± 0.011 - -

|Vus|fK!⇡
+ (0) 0.2163 ± 0.0005 - 0.22449 ± 0.0005

B(K ! e⌫) 1.581 ± 0.008 - 1.5689 ± 0.008

B(K ! µ⌫) 0.6355 ± 0.0011 - 0.6357 ± 0.0011

B(⌧ ! K⌫) 0.6955 ± 0.0096 - 0.7170 ± 0.0096

|Vud| 0.97425 ± 0.00022 - -

to be feasible in practice. However, in some cases only a restricted set of Wilson coe�cients 966

contributes and such model-independent fits are possible. These cases are discussed in this 967

section. 968

2.2.1. Tree-level decays. Ryoutaro Watanabe 969

(Semi-)leptonic B meson decays are derived from the quark level process, b ! q`⌫ for q = u 970

and c. The SuperKEKB/Belle II has su�cient e�ciencies to precisely measure a variety of 971

observables for B̄ ! D(⇤)`⌫̄, B̄ ! ⇡`⌫̄, and B̄ ! `⌫̄ (for ` = ⌧ , µ, e). As we know that a 972

clear discrepancy of 4� in RD(⇤) ⌘ B(B̄ ! D(⇤)⌧ ⌫̄)/B(B̄ ! D(⇤)`⌫̄) (for ` = µ or e) has been 973

realized between the present data [203–207] and the SM predictions, it would be deserved 974
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Expect substantial 
improvements to tree 
constraints!University of Zurich, 2016, May 9 Flavour anomalies & Belle II's impact on the physics landscape
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CKM Picture over the years: from discovery to precision
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2001 2015

Existence of CPV phase established in 2001 by BaBar & Belle
• Picture still holds 15 years later, constrained with remarkable precision
• But: still leaves room for new physics contributions



•  Similar tests with other mesons 

 
 
 
 
 
 
 
 
 
 
 

•  Stringent constraints on new physics models provided hadronic matrix 
elements known 

 

 
 

 
 

 

 
 
 

     
 
 

     
 

 
 

 

2.2  Oscillations of Kaons 

SM BSM 

1.1   The Standard Model 

6Emilie Passemar

 H
The mediators of weak interaction (W, Z) become massive through the Higgs 
Mechanism       one scalar particle remain in the spectrum: H

  D0   D0

3
ud ub cd cb td tbV V V V V V Al� � �� � �

B0 ─  B0  MIXING ¯ 

0
1(0.5064 0.0019) ps

dB
M −∆ = ± tdV

20 0 2 24 ˆH ( , )
3t t B B BtdB B V S r r M f B

� ¬­� ­� ­�� ®
�

0
1(17.757 0.021) ps

sB
M −∆ = ±

22
ts tdV V�

0 0
2 2/ 1tbB BM m m%( % � �

2 21 /c tq p m m� �

0 0 0.770 0.004
d dB BM∆ Γ = ±

( )0Re 0.0010 0.0008
dB

ε = − ±

  

�  

�   

�   

�   

�( very  small 

0 0 0.129 0.009
s sB B∆Γ Γ = − ±

0 0 26.72 0.09
s sB BM∆ Γ = ±

( )0Re 0.0003 0.0014
sB

ε = − ±
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 CP violation in D decays  
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Lattice  Results  for  BK 
^ 

Flavianet  Lattice  Averaging  Group 

	 
MS ˆ(2GeV) 0.557 0.007 , 0.763 20.010 1fK KB B N� o � o � �
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B � K*µ+µ- � Kπµ+µ- 
B0 → Κ∗0µ+µ− → Κ+π−µ+µ− 

2q sm m� ��
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Belle 1604.04042 
Descotes-Genon et al 
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Flavor anomalies: P5’ & BRs
❖ Several angular observables measured as functions of q2

❖ Some, like P5’, are optimized to be insensitive to 
hadronic uncertainties:

The curious case of P5
n Most angular observables agree with SM
n Deviation in P5′ near q2=~6 GeV2

Exotic hadrons & flavor physics, May 2018 18

′
[Descotes-Genon, Matias, Ramon, Virto 2012]

M. Neubert — The Future of Flavor Physics                                 SSI 2019                                                                                                             31
112 Emilie Passemar 

•  Build an observable the less  
sensitive possible to hadronic  
uncertainties          P5’ 
Only at LO 

 
 
 
•  But new physics contributions  

involve hadronic physics! 

DHMV: Descotes-Genon et al.’15 
ASZB:  
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Flavor anomalies: RK & RK*

RK(⇤) =
�(B̄ ! K̄(⇤)µ+µ�)

�(B̄ ! K̄(⇤)e+e�)

“The RK Anomaly”
LHCb 1406.6482

2.6� hint for violation of lepton flavor universality (LFU)

RK =
BR(B ! Kµ+µ�)[1,6]
BR(B ! Ke+e�)[1,6]

= 0.745+0.090
�0.074 ± 0.036

Wolfgang Altmannshofer (UC) Theoretical Advances in Flavor Physics January 14, 2016 21 / 34

� 2.2-2.4 ı in two bins

R(K*) = B→K*μ+μ-/B→K*e+e-

Page 14

LHCb 1705.05802
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•  Hadronic uncertainties cancel in the ratio 

•  Update from LHCb and Belle 
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until 2016 (2.5σ):
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Figure 1: (Top) expected distributions of the opening angle between the two leptons, in the
laboratory frame, for the four modes in the double ratio used to determine RK . (Bottom) the
single ratio rJ/ relative to its average value

⌦
rJ/ 

↵
as a function of the opening angle.

in the double ratio. For each of the variables examined, no significant trend is observed.
Figure 1 shows the ratio as a function of the dilepton opening angle and other examples
are provided in the Supplemental Material [71]. Assuming the deviations that are observed
indicate genuine mismodelling of the e�ciencies, rather than fluctuations, and taking into
account the spectrum of the relevant variables in the nonresonant decay modes of interest,
a total shift on RK is computed for each of the variables examined. In each case, the
resulting variation is within the estimated systematic uncertainty on RK . The rJ/ ratio
is also computed in two- and three-dimensional bins of the considered variables. Again, no
trend is seen and the deviations observed are consistent with the systematic uncertainties
on RK . An example is shown in Fig. S7 in the Supplemental Material [71]. Independent
studies of the electron reconstruction e�ciency using control channels selected from the
data also give consistent results.

The results of the fits to the m(K+`+`�) and mJ/ (K+`+`�) distributions are shown
in Fig. 2. A total of 1943 ± 49 B+! K+µ+µ� decays are observed. A study of the
B+! K+µ+µ� di↵erential branching fraction gives results that are consistent with pre-
vious LHCb measurements [12] but, owing to the selection criteria optimised for the
precision on RK , are less precise. The B+! K+µ+µ� di↵erential branching fraction
observed is consistent between the 7 and 8TeV data and the 13TeV data.

The value of RK is measured to be

RK = 0.846 +0.060
� 0.054

+0.016
� 0.014 ,

7

is assessed by incorporating a resolution e↵ect that takes into account the di↵erence between
the mass shape in simulated events for B+! J/ (! e+e�)K+ and B+! K+e+e� decays and
contributes a relative systematic uncertainty of 3% to the value of R

K

.
The e�ciency to select B+! K+µ+µ�, B+! K+e+e�, B+! J/ (! µ+µ�)K+ and B+!

J/ (! e+e�)K+ decays is the product of the e�ciency to reconstruct the final state particles.
This includes the geometric acceptance of the detector, the trigger and the selection e�ciencies.
Each of these e�ciencies is determined from simulation and is corrected for known di↵erences
relative to data. The use of the double ratio of decay modes ensures that most of the possible
sources of systematic uncertainty cancel when determining R

K

. Residual e↵ects from the trigger
and the particle identification that do not cancel in the ratio arise due to di↵erent final-state
particle kinematic distributions in the resonant and non resonant dilepton mass region.

The dependence of the particle identification on the kinematic distributions contributes a
systematic uncertainty of 0.2% to the value of R

K

. The e�ciency associated with the hardware
trigger on B+! J/ (! e+e�)K+ and B+! K+e+e� decays depends strongly on the kinematic
properties of the final state particles and does not entirely cancel in the calculation of R

K

, due
to di↵erent electron and muon trigger thresholds. The e�ciency associated with the hardware
trigger is determined using simulation and is cross-checked using B+ ! J/ (! e+e�)K+ and
B+! J/ (! µ+µ�)K+ candidates in the data, by comparing candidates triggered by the kaon
or leptons in the hardware trigger to candidates triggered by other particles in the event. The
largest di↵erence between data and simulation in the ratio of trigger e�ciencies between the
B+! K+`+`� and B+! J/ (! `+`�)K+ decays is at the level of 3%, which is assigned as a
systematic uncertainty on R

K

. The veto to remove misidentification of kaons as electrons contains
a similar dependence on the chosen binning scheme and a systematic uncertainty of 0.6% on R

K

is
assigned to account for this.

Overall, the e�ciency to reconstruct, select and identify an electron is around 50% lower than
the e�ciency for a muon. The total e�ciency in the range 1 < q2 < 6GeV2/c4 is also lower for
B+! K+`+`� decays than the e�ciency for the B+! J/ (! `+`�)K+ decays, due to the softer
lepton momenta in this q2 range.

The ratio of e�ciency-corrected yields of B+! K+e+e� to B+! J/ (! e+e�)K+ is deter-
mined separately for each type of hardware trigger and then combined with the ratio of e�ciency-
corrected yields for the muon decays. R

K

is measured to have a value of 0.72+0.09

�0.08

(stat)±0.04 (syst),
1.84+1.15

�0.82

(stat)± 0.04 (syst) and 0.61+0.17

�0.07

(stat)± 0.04 (syst) for dielectron events triggered by elec-
trons, the kaon or other particles in the event, respectively. Sources of systematic uncertainty are
assumed to be uncorrelated and are added in quadrature. Combining these three independent
measurements of R

K

and taking into account correlated uncertainties from the muon yields and
e�ciencies, gives

R
K

= 0.745+0.090

�0.074

(stat) ± 0.036 (syst).

The dominant sources of systematic uncertainty are due to the parameterization of the B+ !
J/ (! e+e�)K+ mass distribution and the estimate of the trigger e�ciencies that both contribute
3% to the value of R

K

.
The branching fraction of B+! K+e+e� is determined in the region from 1 < q2 < 6GeV2/c4

by taking the ratio of the branching fraction from B+ ! K+e+e� and B+ ! J/ (! e+e�)K+

decays and multiplying it by the measured value of B(B+! J/ K+) and J/ ! e+e� [11]. The

7
❖ And there is more: exciting news from Belle …
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•  Hadronic uncertainties cancel in the ratio 

•  Update from LHCb and Belle 

Flavor anomalies: RK & RK*

RK(⇤) =
�(B̄ ! K̄(⇤)µ+µ�)

�(B̄ ! K̄(⇤)e+e�)

“The RK Anomaly”
LHCb 1406.6482

2.6� hint for violation of lepton flavor universality (LFU)

RK =
BR(B ! Kµ+µ�)[1,6]
BR(B ! Ke+e�)[1,6]

= 0.745+0.090
�0.074 ± 0.036

Wolfgang Altmannshofer (UC) Theoretical Advances in Flavor Physics January 14, 2016 21 / 34

� 2.2-2.4 ı in two bins

R(K*) = B→K*μ+μ-/B→K*e+e-
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Figure 1: (Top) expected distributions of the opening angle between the two leptons, in the
laboratory frame, for the four modes in the double ratio used to determine RK . (Bottom) the
single ratio rJ/ relative to its average value
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as a function of the opening angle.

in the double ratio. For each of the variables examined, no significant trend is observed.
Figure 1 shows the ratio as a function of the dilepton opening angle and other examples
are provided in the Supplemental Material [71]. Assuming the deviations that are observed
indicate genuine mismodelling of the e�ciencies, rather than fluctuations, and taking into
account the spectrum of the relevant variables in the nonresonant decay modes of interest,
a total shift on RK is computed for each of the variables examined. In each case, the
resulting variation is within the estimated systematic uncertainty on RK . The rJ/ ratio
is also computed in two- and three-dimensional bins of the considered variables. Again, no
trend is seen and the deviations observed are consistent with the systematic uncertainties
on RK . An example is shown in Fig. S7 in the Supplemental Material [71]. Independent
studies of the electron reconstruction e�ciency using control channels selected from the
data also give consistent results.

The results of the fits to the m(K+`+`�) and mJ/ (K+`+`�) distributions are shown
in Fig. 2. A total of 1943 ± 49 B+! K+µ+µ� decays are observed. A study of the
B+! K+µ+µ� di↵erential branching fraction gives results that are consistent with pre-
vious LHCb measurements [12] but, owing to the selection criteria optimised for the
precision on RK , are less precise. The B+! K+µ+µ� di↵erential branching fraction
observed is consistent between the 7 and 8TeV data and the 13TeV data.

The value of RK is measured to be

RK = 0.846 +0.060
� 0.054

+0.016
� 0.014 ,

7

is assessed by incorporating a resolution e↵ect that takes into account the di↵erence between
the mass shape in simulated events for B+! J/ (! e+e�)K+ and B+! K+e+e� decays and
contributes a relative systematic uncertainty of 3% to the value of R

K

.
The e�ciency to select B+! K+µ+µ�, B+! K+e+e�, B+! J/ (! µ+µ�)K+ and B+!

J/ (! e+e�)K+ decays is the product of the e�ciency to reconstruct the final state particles.
This includes the geometric acceptance of the detector, the trigger and the selection e�ciencies.
Each of these e�ciencies is determined from simulation and is corrected for known di↵erences
relative to data. The use of the double ratio of decay modes ensures that most of the possible
sources of systematic uncertainty cancel when determining R

K

. Residual e↵ects from the trigger
and the particle identification that do not cancel in the ratio arise due to di↵erent final-state
particle kinematic distributions in the resonant and non resonant dilepton mass region.

The dependence of the particle identification on the kinematic distributions contributes a
systematic uncertainty of 0.2% to the value of R

K

. The e�ciency associated with the hardware
trigger on B+! J/ (! e+e�)K+ and B+! K+e+e� decays depends strongly on the kinematic
properties of the final state particles and does not entirely cancel in the calculation of R

K

, due
to di↵erent electron and muon trigger thresholds. The e�ciency associated with the hardware
trigger is determined using simulation and is cross-checked using B+ ! J/ (! e+e�)K+ and
B+! J/ (! µ+µ�)K+ candidates in the data, by comparing candidates triggered by the kaon
or leptons in the hardware trigger to candidates triggered by other particles in the event. The
largest di↵erence between data and simulation in the ratio of trigger e�ciencies between the
B+! K+`+`� and B+! J/ (! `+`�)K+ decays is at the level of 3%, which is assigned as a
systematic uncertainty on R

K

. The veto to remove misidentification of kaons as electrons contains
a similar dependence on the chosen binning scheme and a systematic uncertainty of 0.6% on R

K

is
assigned to account for this.

Overall, the e�ciency to reconstruct, select and identify an electron is around 50% lower than
the e�ciency for a muon. The total e�ciency in the range 1 < q2 < 6GeV2/c4 is also lower for
B+! K+`+`� decays than the e�ciency for the B+! J/ (! `+`�)K+ decays, due to the softer
lepton momenta in this q2 range.

The ratio of e�ciency-corrected yields of B+! K+e+e� to B+! J/ (! e+e�)K+ is deter-
mined separately for each type of hardware trigger and then combined with the ratio of e�ciency-
corrected yields for the muon decays. R

K

is measured to have a value of 0.72+0.09

�0.08

(stat)±0.04 (syst),
1.84+1.15

�0.82

(stat)± 0.04 (syst) and 0.61+0.17

�0.07

(stat)± 0.04 (syst) for dielectron events triggered by elec-
trons, the kaon or other particles in the event, respectively. Sources of systematic uncertainty are
assumed to be uncorrelated and are added in quadrature. Combining these three independent
measurements of R

K

and taking into account correlated uncertainties from the muon yields and
e�ciencies, gives

R
K

= 0.745+0.090

�0.074

(stat) ± 0.036 (syst).
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J/ (! e+e�)K+ mass distribution and the estimate of the trigger e�ciencies that both contribute
3% to the value of R
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.
The branching fraction of B+! K+e+e� is determined in the region from 1 < q2 < 6GeV2/c4

by taking the ratio of the branching fraction from B+ ! K+e+e� and B+ ! J/ (! e+e�)K+

decays and multiplying it by the measured value of B(B+! J/ K+) and J/ ! e+e� [11]. The
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trons, the kaon or other particles in the event, respectively. Sources of systematic uncertainty are
assumed to be uncorrelated and are added in quadrature. Combining these three independent
measurements of R
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and taking into account correlated uncertainties from the muon yields and
e�ciencies, gives
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= 0.745+0.090

�0.074

(stat) ± 0.036 (syst).

The dominant sources of systematic uncertainty are due to the parameterization of the B+ !
J/ (! e+e�)K+ mass distribution and the estimate of the trigger e�ciencies that both contribute
3% to the value of R
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.
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Flavor anomalies: RD & RD*

Enhanced B→D(*)τν decay rates
❖ Puzzling observation of enhanced semileptonic decay rates for third-

generation leptons (~22% of B→D*τν events due to new physics):
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R(D*) status today
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If WA is correct, 22% of the D*tn events are mediated by new physics!

http://www.slac.stanford.edu/xorg/hfag/semi/index.html
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One Leptoquark to Rule Them All:
A Minimal Explanation for RD(⇤), RK and (g � 2)µ

Martin Bauera and Matthias Neubertb,c
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bPRISMA Cluster of Excellence & MITP, Johannes Gutenberg University, 55099 Mainz, Germany
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We show that by adding a single new scalar particle to the Standard Model, a TeV-scale leptoquark
with the quantum numbers of a right-handed down quark, one can explain in a natural way three of
the most striking anomalies of particle physics: the violation of lepton universality in B̄ ! K̄`+`�

decays, the enhanced B̄ ! D(⇤)⌧ ⌫̄ decay rates, and the anomalous magnetic moment of the muon.
Constraints from other precision measurements in the flavor sector can be satisfied without fine-
tuning. Our model predicts enhanced B̄ ! K̄(⇤)⌫⌫̄ decay rates and a new-physics contribution to
Bs�B̄s mixing close to the current central fit value.

Introduction. Rare decays and low-energy precision
measurements provide powerful probes of physics beyond
the Standard Model (SM). During the first run of the
LHC, many existing measurements of such observables
were improved and new channels were discovered, at rates
largely consistent with SM predictions. However, a few
anomalies observed by previous experiments have been
reinforced by LHC measurements and some new anoma-
lous signals have been reported. The most remarkable
example of a confirmed e↵ect is the 3.5� deviation from
the SM expectation in the combination of the ratios

R
D

(⇤) =
�(B̄ ! D(⇤)⌧ ⌫̄)

�(B̄ ! D(⇤)`⌫̄)
; ` = e, µ. (1)

An excess of the B̄ ! D(⇤)⌧ ⌫̄ decay rates was first noted
by BaBar [1, 2], and it was shown that this e↵ect can-
not be explained in terms of type-II two Higgs-doublet
models. The relevant rate measurements were consis-
tent with those reported by Belle [3–5] and were recently
confirmed by LHCb for the case of R

D

⇤ [6]. Since these
decays are mediated at tree level in the SM, relatively
large new-physics contributions are necessary in order to
explain the deviations. Taking into account the di↵eren-
tial distributions d�(B̄ ! D⌧ ⌫̄)/dq2 provided by BaBar
[2] and Belle [7], only very few models can explain the ex-
cess, and they typically require new particles with masses
near the TeV scale and O(1) couplings [8–17]. One of the
interesting new anomalies is the striking 2.6� departure
from lepton universality of the ratio

R
K

=
�(B̄ ! K̄µ+µ�)

�(B̄ ! K̄e+e�)
= 0.745+0.090

�0.074 ± 0.036 (2)

in the dilepton invariant mass bin 1GeV2  q2  6 GeV2,
reported by LHCb [18]. This ratio is essentially free from
hadronic uncertainties, making it very sensitive to new
physics. Equally intriguing is a discrepancy in angu-
lar observables in the rare decays B̄ ! K̄⇤µ+µ� seen
by LHCb [19], which is however subject to significant
hadronic uncertainties [20–22]. Both observables are in-
duced by loop-mediated processes in the SM, and assum-
ing O(1) couplings one finds that the dimension-6 opera-

tors that improve the global fit to the data are suppressed
by mass scales of order tens of TeV [23–26].

In this letter we propose a simple extension of the SM
by a single scalar leptoquark � transforming as (3,1,� 1

3 )
under the SM gauge group, which can explain both the
R

D

(⇤) and the R
K

anomalies with a low mass M
�

⇠
1 TeV and O(1) couplings. The fact that such a particle
can explain the anomalous B̄ ! D(⇤)⌧ ⌫̄ rates and q2

distributions is well known [13, 17]. Here we show that
the same leptoquark can resolve in a natural way the R

K

anomaly and explain the anomalous magnetic moment of
the muon. Reproducing R

K

with a light leptoquark is
possible in our model, because the transitions b ! s`+`�

are only mediated at loop level. Such loop e↵ects have
not been studied previously in the literature. We also
discuss possible contributions to B

s

�B̄
s

mixing, the rare
decays B̄ ! K̄(⇤)⌫⌫̄, D0 ! µ+µ�, ⌧ ! µ�, and the
Z-boson couplings to fermions. We focus primarily on
fermions of the second and third generations, leaving a
more complete analysis for future work.

The leptoquark � can couple to LQ and e
R

u
R

, as well
as to operators which would allow for proton decay and
will be ignored in the following. Such operators can be
eliminated, e.g., by means of a discrete symmetry, under
which SM leptons and � are assigned opposite parity.
The leptoquark interactions follow from the Lagrangian

L
�

= (D
µ

�)†D
µ

�� M2
�

|�|2 � g
h�

|�|2|�|2
+ Q̄c�Li⌧2L�

⇤ + ūc

R

�Re
R

�⇤ + h.c. ,
(3)

where � is the Higgs doublet, �L,R are matrices in fla-
vor space, and  c = C ̄T are charge-conjugate spinors.
Note that our leptoquark shares the quantum numbers of
a right-handed sbottom, and the couplings proportional
to �L can be reproduced from the R-parity violating su-
perpotential. The above Lagrangian refers to the weak
basis. Switching to the mass basis for quarks and charged
leptons, the couplings to fermions take the form

L
�

3 ūc

L

�L

ue

e
L

�⇤�d̄c
L

�L

d⌫

⌫
L

�⇤+ūc

R

�R

ue

e
R

�⇤+h.c. , (4)

where

�L

ue

= UT

u

�LU
e

, �L

d⌫

= UT

d

�L , �R

ue

= V T

u

�
R

V
e

, (5)
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If WA is correct, 22% of the D*tn events are mediated by new physics!
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⇠ 3.5�

LEPTON UNIVERSALITY VIOLATION?
➤ Deviations in B→ D(*)τν 

decays found in multiple 
measurements over the last 6 
years, almost 4σ disagreement 
with SM prediction  

➤ Other hints of lepton 
universality violations in 
other decay modes R(D)
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R(J/ )|th = 0.25� 0.28
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R(J/ )|
exp

=
BR(B

c

! J/ ⌧ ⌫)

BR(B
c

! J/ ` ⌫)
= 0.71± 0.17± 0.18
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R(K)|
exp

=
BR(B ! K µµ)

BR(B ! K ee)
= 0.745+0.090

�0.074 ± 0.036
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vs

Is it New Physics? Interesting BSM interpretations → see talks in later sessions

vs R(K)|
exp

= 1.00± 0.01
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RD, RD* : recent update from Belle 
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Recent update from Belle (03/19)
Recent update from Belle 

19/40 Johannes Albrecht 
G. Caria, Moriond EW, March 19 

8. Mai 2019 

(Belle 2019: 1.2σ)

Significance reduced from 4.1 to 3.1σ  !
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Leptons decays The very basic of charged leptons

Muon LFC

µ → µγ

(g − 2)µ, (EDM)µ

νe ↔ νµ

νµ ↔ ντ

νe ↔ ντ

NeutrinoOscillations

τ → ℓγ

τ → ℓℓ+i ℓ
−

j

Tau LFV

Tau LFC

τ → τγ

(g − 2)τ , (EDM)τ

Muon LFV

µ+ → e+γ

µ+e− → µ−e+
µ−N → e+N ′

µ−N → e−N
µ+ → e+e+e−

LFV

Thanks to Babu
Y. Grossman Charged lepton theory Lecce, May 6, 2013 p. 15

Adapted from Talk by  
Y. Grossman@CLFV2013 
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Contribution to (g-2)µ

46 Seminar, LAPP-Annecy, 2011 Andreas Hoecker   –   Charged-Lepton Flavour Physics 

Loop contributions: 

Weak 

h

γ

µ
γ γ

µ ν µ

W W

γ
µ µ

γ

µ Z

h

µ
γ

γ

µ µ

γ

γµ

µ µ

h

γ

µ
γ γ

µ ν µ

W W

γ
µ µ

γ

µ Z

h

µ
γ

γ

µ µ

γ

γµ

µ µ

QED 

h

γ

µ
γ γ

µ ν µ

W W

γ
µ µ

γ

µ Z

h

µ
γ

γ

µ µ

γ

γµ

µ µ

SUSY... ? 

h

γ

µ
γ γ

µ ν µ

W W

γ
µ µ

γ

µ Z

h

µ
γ

γ

µ µ

γ

γµ

µ µ

h

γ

µ
γ γ

µ ν µ

W W

γ
µ µ

γ

µ Z

h

µ
γ

γ

µ µ

γ

γµ

µ µ

 χ χ

 ν

   

  χ
0

   

... or some unknown 
type of new physics ? 

h

γ

µ
γ γ

µ ν µ

W W

γ
µ µ

γ

µ Z

h

µ
γ

γ

µ µ

γ

γµ

µ µ

? 

Hadronic 

h

γ

µ
γ γ

µ ν µ

W W

γ
µ µ

γ

µ Z

h

µ
γ

γ

µ µ

γ

γµ

µ µ

h

γ

µ
γ γ

µ ν µ

W W

γ
µ µ

γ

µ Z

h

µ
γ

γ

µ µ

γ

γµ

µ µ

“Light-by-light 
scattering” 

… or no effect on aµ, 
but new physics at the 
LHC? That would be 
interesting as well !! 

Need to compute the SM prediction with high precision!           Not so easy!  
Hadrons enter virtually through loops!  
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Hoecker’11 



2.1  Quark masses 

121 Emilie Passemar 

 
•  Quark masses fundamental parameters of the QCD Lagrangian 

•  No direct experimental access to quark masses due to confinement! 
 
•  Let us consider the proton: it is not a fundamental particle, but a bound state 

of 3 quarks 

 
 
 

     
 
 

     
 

 
 

 

   
LQCD = − 1

4
Ga

µνGµν
a + qk

k=1

NF

∑ iγ µ Dµ − mk( )qk

Quarks Proton Contrary to naïve expectation, most of its  
mass comes from strong force 
 
Only 1% of its mass comes from the quark  
masses (Coupling of the quarks to the Higgs 
boson) 
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•  Quark masses fundamental parameters of the QCD Lagrangian 

•  No direct experimental access to quark masses due to confinement! 
 
•  Let us consider the proton: it is not a fundamental particle, but a bound state 
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LQCD = − 1

4
Ga

µνGµν
a + qk

k=1

NF

∑ iγ µ Dµ − mk( )qk

Quarks Proton 



2.6   Why a new dispersive analysis? 

 

•  Several new ingredients:  
–  New inputs available: extraction ππ phase shifts has improved 

 
 
 

 
–  New experimental programs, precise Dalitz plot measurements 
 
 
 
 
 
–  Many improvements needed in view of very precise data: inclusion of  

‒  Electromagnetic effects (O(e2m)) 

 

‒  Isospin breaking effects 
 
 
 
 
 

 

 

Ditsche, Kubis, Meissner’09 

123 Emilie Passemar 

Kaminsky et al’01, Garcia-Martin et al’09 

Ananthanarayan et al’01, Colangelo et al’01 
Descotes-Genon et al’01 

CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) 
     

TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) 

BES III (Beijing) 
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2.7  Method

•  S-channel partial wave decomposition  
 
 
 
 
 

 
•  One truncates the partial wave expansion :         Isobar approximation 
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Improve to include final  
states interactions 
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3 BWs (ρ+, ρ−, ρ0) + background term 

A�(s, t) =
1X

J

(2J + 1)dJ�,0(✓s)AJ(s)
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2.7  Method

•  S-channel partial wave decomposition  
 
 
 
 

 
•  One truncates the partial wave expansion :         Isobar approximation 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

•   Use a Khuri-Treiman approach or dispersive approach 
        Restore 3 body unitarity and take into account the final state interactions     

             in a systematic way 
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A�(s, t) =
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•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves        exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
 

   
 

 

 
 

      

 
 

( ) ( )0 1 1 2 2 2
2( , , ) ( ) ( ) ( ) ( ) ( ) ( )
3

M s t u M s s u M t s t M u M t M u M s= + − + − + + −

IM
Fuchs, Sazdjian & Stern’93 

Anisovich & Leutwyler’96 
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2.8  Representation of the amplitude 



•  Decomposition of the amplitude as a function of isospin states  

 
 

 
 

•  Unitarity relation:  

 

 
 

      

 
 

  
M (s, t,u) = M0

0(s) + s − u( )M1
1(t) + s − t( )M1

1(u) + M0
2(t) + M0

2(u) − 2
3

M0
2(s)
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2.8  Representation of the amplitude 
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disc Mℓ

I (s)⎡⎣ ⎤⎦ = ρ(s)tℓ
*(s) Mℓ

I (s) + M̂ℓ
I (s)( )

right-hand cut  left-hand cut  

From unitarity to integral equation

Unitarity relation for F(s):
discF(s) = 2i

{
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+ F̂(s)
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• inhomogeneities F̂(s): angular averages over the F(s)
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Khuri, Treiman 1960
Aitchison 1977

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Precision tools in hadron physics for Dalitz plot studies – p. 12
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2.4  ω/φ  → 3π	

•  Simple system: restricted to odd partial waves  
        P wave interactions only (neglecting F- and higher)  

•  Amplitude: 

 
 
 

•  F(s) function of one variable with only a right-hand cut 
 

•  Unitarity relation: 

•  Relation of dispersion to reconstruct the amplitude everywhere: 
 
 
 
 
 
 
 
 
 

ω(s): conformal map of inelastic contributions: 
        Coefficients ai play the role of improved  
        subtraction constants in alternative approaches:  
        e.g, Niecknig, Kubis, Schneider‘12 

•    
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•  Decomposition of the amplitude as a function of isospin states  

 
 
 

•  Unitarity relation:  

 
 
 

•  Relation of dispersion to reconstruct the amplitude everywhere: 

•  PI(s) determined from a fit to NLO ChPT + experimental Dalitz plot 
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2.8  Representation of the amplitude 
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2.9  η → 3π  Dalitz plot 

•  In the charged channel: experimental data from WASA, KLOE, BESIII 

•  New data expected from CLAS and GlueX with very different systematics 
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FIG. 7: (Color online) The experimental background
subtracted Dalitz plot distribution represented by the
two dimensional histogram with 371 bins. Only bins
used for the Dalitz parameter fits are shown. The

physical border is indicated by the red line.

TABLE V: Summary of the systematic errors for the
asymmetries.

syst. error (⇥105) �ALR �AQ �AS

EGmin ±1 ±0 ±4

BkgSub ±5 ±3 ±16

✓+� , ✓�� cut +2
�0

+0
�2

+2
�0

�te cut +49
�92

+48
�22

+ 7
�15

�te ��t⇡ cut +0
�2

+3
�0

+0
�1

✓⇤�� cut + 1
�57

+3
�4

+0
�8

MM +0
�4

+0
�1

+1
�2

ECL ±9 ±0 ±25

TOTAL + 50
�109

+48
�23

+31
�35

These results confirm the tension with the theoretical
calculations on the b parameter, and also the need for
the f parameter. In comparison to the previous mea-
surements shown in Tab. I, the present results are the
most precise and the first including the g parameter.
The improvement over KLOE(08) analysis comes from
four times larger statistics and improvement in the sys-
tematic uncertainties which are in some cases reduced
by factor 2 � 3. The major improvement in the system-
atic uncertainties comes from the analysis of the e↵ect of
the Event classification with an unbiased prescaled data
sample.

The final values of the charge asymmetries are all con-
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FIG. 8: (Color online) The experimental background
subtracted Dalitz plot data, Ni, (points with errors),

compared to set #4 fit results (red lines connecting bins
with the same Y value). The row with lowest Ni values

corresponds to the highest Y value (Y = +0.75).
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FIG. 9: (Color online) Distribution of the normalized
residuals, ri, for fit #4.
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•  The amplitude along the line s = u :  

 

2.10  Results: Amplitude for η→ π+ π- π0 decays  
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Intro mu − md η → 3π and Q η → 3π disp. Summary iso-breaking Fits to data
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•  The amplitude along the line t = u :  

 

2.10  Results: Amplitude for η→ π+ π- π0 decays  
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•  The amplitude squared in the neutral channel is  

2.11  Z distribution for η→ π0 π0 π0 decays  

The agreement is excellent between  
our prediction and the data! 

Emilie Passemar 132 



2.12  Comparison of results for α
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Intro mu − md η → 3π and Q η → 3π disp. Summary iso-breaking Fits to data

Dalitz plot in the neutral channel: value of α

Comparison with other determinations:

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
α

ChPT O(p4)

ChPT O(p6)

Kambor et al.

Kampf et al.

NREFT, Schneider et al.

JPAC, Guo et al.

KT-elastic, AM

KT-coupled, AM

Dispersive, fit to charged KLOE

GAMS-2000 (1984)

Crystal Barrel@LEAR (1998)

Crystal Ball@BNL (2001)

SND (2001)

WASA@CELSIUS (2007)

WASA@COSY (2008)

Crystal Ball@MAMI-B (2009)

Crystal Ball@MAMI-C (2009)

KLOE (2010)

PDG average
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2.13  Quark mass ratio 
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  Q = 22.1 ± 0.7

•  No systematics taken into account         collaboration with experimentalists 

20 21 22 23 24

Q

χPT O(p4) (Gasser, Leutwyler’85)

η → 3π

χPT O(p6) (Bijnens, Ghorbani’07)

dispersive (Anisovich et al.’96)

dispersive (Kambor et al.’96)

dispersive (Kampf et al.’11)

disp, single-channel (Albaladejo et al.’17)

disp, coupled-channel (Albaladejo et al.’17)

dispersive (Guo et al., JPAC’15’17)

dispersive (Colangelo et al.’18)

Weinberg’77

kaon mass splitting

Kastner, Neufeld’08

Nf = 2

lattice, FLAG’19

Nf = 2 + 1

Nf = 2 + 1 + 1



 
 
 
 
 
 

•  Smaller values for Q        smaller values for ms/md and mu/md than LO ChPT  
  

 

2.14  Light quark masses 
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  Q = 22.1 ± 0.7
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2.14  Light quark masses 

Emilie Passemar 136 

0.35

0.35

0.4

0.4

0.45

0.45

0.5

0.5

0.55

0.55

0.6

0.6

0.65

0.65

0.7

0.7

m
u

⎯

m
d

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

m
s

⎯

m
d FLAG 

PDG

BMW 2016

RM123 2017

Bazavov et al. 2018

this work



Formulation of QCD 

Dynamics: The Lagrangien 
 

•  Build all the invariants under SU(3)C with the quarks 
 
 
 
 
invariant under global SU(3)C:  

•  Gauge the theory: SU(3)C       local 
 8 different independent gauge fields:       the gluons 

137 

   
L0 = qk

k=1

NF

∑ iγ µ ∂µ − mk( )qk

( )'
 k k kq q U qα α α β

β→ =

with              exp
2
a

S aU ig λ θ⎛ ⎞= −⎜ ⎟⎝ ⎠
and        the generators of SU(3)C :  aλ , 2a b abc cifλ λ λ⎡ ⎤ =⎣ ⎦

kqkq

( )a a xθ θ→
aGµ

( )
2

aa
k k s kq D q ig G x qµ µ µ µ

λ⎡ ⎤∂ → ≡ ∂ −⎢ ⎥⎣ ⎦
( )G xµ
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•  Looking for new physics in hadronic processes      not direct access to 
quarks due to confinement  
 
 
 
 
 
 

Ø  Model independent methods: 
–  Effective field theory           

 Ex: ChPT for light quarks 
 
‒  Dispersion relations 

 
‒  Numerical simulations on  

the lattice 
 

 
      
          

1.4  Strong interaction 

Confinement 

Quarks Proton 

Emilie Passemar 

PDG’12 

u

µ

Hadronic Physics 



Dispersive approach 

•  Dispersion Relations: extrapolate ChPT at higher energies 

•  Important corrections in the physical region taken care of by the dispersive 
treatment! 
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Good convergence 

ChPT NLO 

ChPT LO 

 ChPT

Dispersion relations 

Dispersive Re M 

s in units of Mπ

Anisovich & Leutwyler’96  
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3 BWs (ρ+, ρ−, ρ0) + background term 
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•  One truncates the partial wave expansion :         Isobar approximation 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

•   Use a Khuri-Treiman approach or dispersive approach 
        Restore 3 body unitarity and take into account the final state interactions     

             in a systematic way 
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•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves        exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
 

   
 

 

 
 

      

 
 

( ) ( )0 1 1 2 2 2
2( , , ) ( ) ( ) ( ) ( ) ( ) ( )
3

M s t u M s s u M t s t M u M t M u M s= + − + − + + −

IM
Fuchs, Sazdjian & Stern’93 

Anisovich & Leutwyler’96 
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Representation of the amplitude 



•  Decomposition of the amplitude as a function of isospin states  

 
 
 

•  Unitarity relation:  

 
 
 

•  Relation of dispersion to reconstruct the amplitude everywhere: 

•  PI(s) determined from a fit to NLO ChPT + experimental Dalitz plot 
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M s t u M s s u M t s t M u M t M u M s= + − + − + + −
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Representation of the amplitude 

   
disc Mℓ

I (s)⎡⎣ ⎤⎦ = ρ(s)tℓ
*(s) Mℓ

I (s) + M̂ℓ
I (s)( )

  
MI (s) = Ω I (s) PI (s) + sn

π
ds'
s'n

4 Mπ
2

∞

∫
sinδ I (s') M̂I (s')
Ω I (s') s'− s − iε( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Omnès function 
 

  

Ω I (s) = exp
s
π

ds'
δ I (s')

s'(s'− s − iε )
4 Mπ
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∞

∫
⎛

⎝
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⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Gasser & Rusetsky’18 



η → 3π  Dalitz plot 

•  In the charged channel: experimental data from WASA, KLOE, BESIII 

•  New data expected from CLAS and GlueX with very different systematics 
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FIG. 7: (Color online) The experimental background
subtracted Dalitz plot distribution represented by the
two dimensional histogram with 371 bins. Only bins
used for the Dalitz parameter fits are shown. The

physical border is indicated by the red line.

TABLE V: Summary of the systematic errors for the
asymmetries.

syst. error (⇥105) �ALR �AQ �AS

EGmin ±1 ±0 ±4

BkgSub ±5 ±3 ±16

✓+� , ✓�� cut +2
�0

+0
�2

+2
�0

�te cut +49
�92

+48
�22

+ 7
�15

�te ��t⇡ cut +0
�2

+3
�0

+0
�1

✓⇤�� cut + 1
�57

+3
�4

+0
�8

MM +0
�4

+0
�1

+1
�2

ECL ±9 ±0 ±25

TOTAL + 50
�109

+48
�23

+31
�35

These results confirm the tension with the theoretical
calculations on the b parameter, and also the need for
the f parameter. In comparison to the previous mea-
surements shown in Tab. I, the present results are the
most precise and the first including the g parameter.
The improvement over KLOE(08) analysis comes from
four times larger statistics and improvement in the sys-
tematic uncertainties which are in some cases reduced
by factor 2 � 3. The major improvement in the system-
atic uncertainties comes from the analysis of the e↵ect of
the Event classification with an unbiased prescaled data
sample.

The final values of the charge asymmetries are all con-
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FIG. 8: (Color online) The experimental background
subtracted Dalitz plot data, Ni, (points with errors),

compared to set #4 fit results (red lines connecting bins
with the same Y value). The row with lowest Ni values

corresponds to the highest Y value (Y = +0.75).
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FIG. 9: (Color online) Distribution of the normalized
residuals, ri, for fit #4.
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Which value of Q2  impact neutrino data? 
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Which values of q2 impact neutrino data?
❖ The experimental results point towards a larger value of the axial 

form factor 

❖ If true, the value of MA saturates the cross section leaving little 
room for multi nucleon effects

❖ Is the dipole physically motivated?  
 
 
 
 
The parametrisation has an impact on different q2 dependence 
ranges on the neutrino data  

!38

MA ∼ 1.35 GeV

FA(q2) = FA(0)

(1 − q2

M2
A )

2
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Improving the Form Factor parametrization 
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Improving the Form Factor parametrisation
❖ For intermediate energy region: Can try to use VMD

• Analytical structure of FF (e.g. F1 or FA)  
 
 
 
 
 

• Resonances (Vector Mesons)                For FA  (Axial Vector Mesons)

Photon or W sees proton through  
all hadronic states (with vector or 
axial-vector  Quantum Number)

Method: Dispersive representation 2
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Processes in unphysical  
region t < 4 mN

2 

!43

a1(1230) and a1’(1647)
Masjuan et al.’12

FA(t) = gA
m2

a1
m2

a′�1
(m2a1 − t)(m2

a′�1 − t)
Emilie Passemar



Improving the Form Factor parametrization 
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Improving the Form Factor parametrisation
❖ For intermediate energy region: Can try to use VMD, e.g. EM FF

• Dispersion Relations

• Use spectral function from theory or from experiment 

!44
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  tth ≡ 4mπ
2

  Re(t ')

  Im(t ')

 Λ
2

 C

Frazer &Fulco’60, Hohler et al’75



Improving the Form Factor parametrization 
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❖ How to connect to the nucleon?  

Axial form factor constrained from Tau data and nucleon data 

!52

FA(q2) = gA ⋅ fA→3π (q2)

• Take a constant gA

Does not work!

A��������� ������������ �� ��� �����-����

Axial form factor of the nucleon
FA(Q�) = fa�(Q�)Pa�NN(Q�) ,

I fa�(Q�): from ⌧ ! �⇡
I Pa�NN(Q�): a�-NN vertex function
I if Pa�NN(Q�) = �: direct extrapolation of fa�(Q�)

◼

◼
◼

◼
◼

◼
◼

◼ ◼
◼

◼ ◼
◼ ◼

• •
•
• • • •

• • ••

▲
▲

▲
▲ ▲

▲
▲

▲
▲ ▲▲

○

○

○

○

○

○

○

○

○

○
○

○

○
○

○
○

○
○

◻

◻

◻

◻

◻

◻

◻

◻

◻

◻
◻

◻

◻

◻

◻

◻
◻

◻
◼◼

••
▲▲
○○

○○

○○
◻◻

◻◻

◻◻

——
----

----

——

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

Q2 [GeV2]

F
A
(Q
2 )
/g
A

Alexandrou et.al (mπ=130 MeV)

PNDME (mπ=130 MeV)

PNDME (mπ=135 MeV)

PNDME (mπ=220 MeV)

PNDME (mπ=220 MeV)

PNDME (mπ=220 MeV)

PNDME (mπ=310 MeV)

PNDME (mπ=310 MeV)

PNDME (mπ=310 MeV)

Our prediction (π0π0π-)

Our prediction (π-π+π-)

Dipole MA=1.35 GeV

Dipole MA=1.03 GeV

�� ��

Method: Dispersive representation 2

thr

t

spacelike timelike

t

N

_

...

hadronic
states

N
t > t thr

=F

Isovector: ππ (incl. ρ), 4π,KK̄, ...
Isoscalar: 3π (incl.ω), KK̄ (incl. φ), ...

• Dispersive representation

Fi(t) =

∞∫

tthr

dt′

π

ImFi(t
′)

t′ − t − i0

Expresses analytic structure of Fi(t)

• Spectral functions ImFi(t)

Current → hadronic states → NN̄

Processes in unphysical region t < 4M2
N

Spectral functions to be provided by theory
Frazer, Fulco 1960; Höhler et al 1975+


