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QCD in the Standard Model

* Three quark colors
* Colorless hadrons apparently required

* Two typical arrangements: mesons
and baryons

Mesons
(e.g., T, K, D)

q electron muon tau
neutrino neutrino neutrino
q=-—e e ﬂ "c
electron muon tau
Baryons
(e.g., proton and T o -
neutron) J".I IGGS £3Q§QN
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Evidence of Color

ATT B(B® — D7) = 0.26 x 1073
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More Evidence of 3 Colors
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® Probes the ratio of quark to lepton couplings in QED: Qg2 / Q2
e-
q S —
Homework: Compute the expected value
et q of R below and above charm (and bottom)
R = T thresholds under the assumptions that there |
H are | and 3 colors of quarks. Compare with
experimental data from the PDG.
e+ IJ+ e e e T e e e e e e e
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Interactions in QED

Have: freely propagating Want: “physics” to remain
spin-1/2 particle invariant under local phase

i transformations

L = i(he)Py" 0,10 — (mc2)if h — )y

Doing so requires introduction of a freely propagating massless gauge field
(the photon) and the interaction of this field with spin-1/2 particles

NN\ NN

1
1067

FMVF,uV —Q(ZEW“@D)AM
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Interactions in QCD

Want: “physics” to remain invariant

Have: freely propagatin . :
Y Propagating under unitary color transformations

spin-1/2 quark in rgb space

3 Yy ¥y
N 2\ T e Yy | = U Yy
L = i(hc)Yy" 0,0 — (me” )Yy Wy Vb

This requires the introduction of eight massless gauge fields (the gluons)
and several interaction terms -- note that gluons interact with each other!

it G QI

gluons
quark-gluon vertex three-gluon vertex four-gluon vertex
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Higher Order Corrections

® |n QED, vacuum polarization acts to “screen” the charges of interacting
particles resulting in weaker force at large distance.

scale of corrections set by
a=1/137

® |n QCD quark loops continue to screen the QCD force, but gluon loops provide
an “anti-screening” effect that dominates, resulting in a stronger force at large
distances.

i >
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Gluon Interactions in QCD

QCD has interesting
properties

® gluon-gluon interactions

® confinement

Nonpurturbative in the
interesting domain

Study QCD using hadrons
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a(Q)
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sa Deep Inelastic Scattering
oe ¢’ Annihilation
o Hadron Collisions

0.3t

0.2

0.1}
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The Forces that Bind Hydrogen and Mesons

The Electromagnetic Force and
Quantum Electrodynamics (QED)

(Hydrogen Atom)
e
Simple Term “<«—photon
<o P
T
Correction e~ { et
3 e
Potential ] r
a
V(r)=—=
I

IONIZATION IS POSSIBLE
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The Strong Force and

Quantum Chromodynamics (QCD)

(Meson)
“«—gluon Slmplg Term
s g (small distances)
(‘Q;‘é‘) : - ‘ < g
“"’,'.’,; E Vi :ﬂ
é}l‘? z e o/
g 1 ) 5 “Correction”
| \ S .
(3 > 8 (large distances)
E / Potential
r (mOdEI)
4 a

V(r)= ———+Fr
31

QUARKS ARE CONFINED
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=0

17 =4

n=3J-

T = 4

n=1

Studying Forces with Spectroscopy

Electromagnetic Force

A  Ultraviolet

E Visible E Infrared

A
] X it
! o
5 A Paschen
a. SEries
3
£
= YYY
A Balmer
SET1es
=1 B>
2|8 Hydrogen
=18
Y YYYY Ground state
Lyman
SCries
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Strong Force
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Charmonium
O++ 1 ++ 2++
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Other Configurations of Quarks and Gluons

"slueball”

"tetraquark” g "hybrid meson"

Not forbidden by the requirement
of colorless hadrons -- do they exist in nature?
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Spectroscopy and QCD

® Studying the spectrum of hadrons motivated

the quark model and led to development of
QCD

® QCD has interesting properties

® confinement: force is strong at large
distances

® colorless hadrons that can be made with
any number of quarks

® gluon-gluon interactions: how do they affect
the spectrum and properties of hadrons!?

® Why is the spectrum of hadrons observed in nature
so simple? (...or is it?)
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Hadrons in
Nature

an
emergent
phenomenon
we want to
understand

Z ocp
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Classifying Mesons



Properties of Mesons

Sand Feadback

VRN Summary Tables Heviews, Tables, Plots  Particle Listrg3

2021 Review of Particle Physics.
[*A. Zyla et al. (Particle Data Greup), Prog. Thecr. Exp. Phys. 2020, 063001 (2020) and 2021 ugdale
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Constituent Quark Model

® Assemble mesons from spin /2
constituent quarks with effective masses

® a model: not the quark fields in the
QCD Lagrangian 1.5 GeV

few
hundred

MeV

|77 GeV
(unstable)

bottom

0.5 GeV 4.7 GeV
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JP C

color singlet ® P: inverts coordinates

quark anti-quark ® quark wave function is odd

under spatial inversion for
L odd: (-1)t

® intrinsic party of quark
anti-quark: | x -1 = -1

® (C: particle = anti-particle
® neutral eigenstates
® spatial inversion: (-1)t

T:Z’+§’ P= (=1t €= (=1)L*S . . .
(=1) (=D ® fermion — anti-fermion:-|

S=0orl,andL=0,1,2,... ® opposite spins: - |>*]
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Charmonium Spectrum

All states below 2 Mp observed
No extra states below 2 Mp

Good agreement with potential model
calculation

Structure is a quark anti-quark each with
1

spin-a and having a mass of about 1.5 GeV

J=L+S§ P=(=D" C=(=DHS
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Isospin

® symmetry from my = mqg Homework: why are these almost
. : exactly a factor of two different?
® in isospin space:
uhasl=1/2,1,=1/2 B((2S) — nTx~J/¢) = 0.34
d has | = |/2, |z='|/2 B(w(QS) %7_‘_07_‘_0(]'/7#) —0.18
® Combining quark antiquark
elements from this vector space Homework: why is the first so much
gives four combinations bigger than the second even though
(examples for 0-* given) there is less phase space available?
B(1(2S) — nJ /) = 0.034
lud) — " B(1(25) — 70T /1) = 0.0013
1 — 7 0
\/—5 (\uu} — |dd>) —> T 1 )
du) — 7 75 ([uw) +|dd)) —n
triplet: isovector (I = 1) singlet: isoscalar (I = 0)
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G Parity

® Extension of C to isovectors
(charged particles):

e apply C

® rotate by Ttin isospin space:

u<d

® Multiplicative

® Mostly conserved in strong
Interactions

® general: G=C(-1)

B(p? = ntn7)~1

B(,OO — 7T+7T_7TO) 1 x 104
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lud) — |ud) — |du)

isospin:0 : G=C

wit) + |dd) — |dd) + |ui)

isospin: | : G=-C

u@) — |dd) — |dd) — |u@)

B(w — w77~ ) = 0.015
B(w — 7tr~7%) = 0.89

M. R. Shepherd
NNPSS
June 2021



Light Quark Nonets

strangeness strangeness
KY K+ K30 Ko
O O O O
™ n' |« 4 P’ ¢ | p P’
O o9 @- O o9, O—
i 1SOSpIn w 1SOSpIn
(z comp.) (z comp.)
@ v . © ® o
0- nonet 1" nonet
neutrals: C=+ neutrals: C=-

motivate the quark model ingredients from studying and classifying mesons!
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fast forward 50 years...
and deploy some supercomputing to
use QCD to predict a meson spectrum
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Meson Spectrum from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

ool negative parity I positive parity I exotic
— — [
- = - - =
20 - ] = ] -
=
| - -+ =
ot 27
2000 | —
> - —
=
~ 2_+
E L
1500 F
lightest
1000 F 7 === f_ hybrlds T m,. = 391 MeV
| o ! 243 x 128
i 1= 1 ls
R | isoscalar I
500 isovector
0_+ . J/
All states have strangeness = 0
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Hybrid Mesons

“gluonic contribution”
color singlet (JF¢g = I+
quark anti-quark mass = |.0-1.5 GeV

color-octet
qq pair
J=L+58 P=(-1)*" C= (=1
Allowed JPC: O+, 0%, |-+, |+, 2%+, ...
Forbidden JP&: 0+ 0%, I+, 2+, ... Jc 0+, 1+ 2 [
I'IJ ' DEPARTMENT OF PHYSICS “exotic hybrid” M. R. Shepherd
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Recap

® Spectroscopy depends on identifying properties that are
useful for sorting and classifying hadrons

® Enables identification of states that don’t fit a pattern
® New patterns suggest new degrees of freedom

® QCD predicts new states that should not fit the standard
patterns predicted by the quark-antiquark model of mesons

® How do we produce them!?
® How do we detect them!?

® How do we measure the properties of mesons that we
want to use to sort the spectrum!?
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Some Experimental
Preliminaries



Meson Spectrum from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)
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— — [
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| - -+ =
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Decays and Conservation Laws

® Conservation laws that apply to all decays
® angular momentum
e four-momentum
® charge
® Symmetries/conservations laws of strong interactions
o C
o P
® isospin (mostly)
® quark flavor: strangeness or charmness

® Measuring these properties for decay products directly informs us of
the properties of the parent particle
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Production and Detection

Colliding Beam
ete
proton-proton
proton-antiproton

Superconducting

Muon Detector )
Solenoid Magnet

BESII

Time of Flight
Detector

Drift Chamber

Interaction Region
(Be Beam Pipe)

Csl(TI) Electromagnetic -
Calorimeter

INDIANA UNIVERSITY
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Fixed Target
electromagnetic or
hadron beams

Forward Calorimeter

GLue
Time of Flight

Barrel Calorimeter

Start Counter

Target DIRC
Photon Beam
Taggin
Mggne?c X Forward Drift
> Chamber
Electron )
Beam Central Drift

Chamber

Radiator Solenoid
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Detection: Observables

® Long lived particles
® charged: p, T, K
® neutral: n,vy, KL
® Types of detectors:

® tracking: measure
momentum

® calorimetry: measure
energy

® particle ID: measure
velocity

® Assemble pieces to get four-
momentum

IIJ ' DEPARTMENT OF PHYSICS
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G L% Forward Calorimeter
Time of Flight

Barrel Calorimeter

Start Counter

Target DIRC
Photon Beam
Taggin
Mggne?c \ Forward Drift
W Chamber
Electron

Central Drift
Chamber

Beam

\

Radiator Solenoid

for a few GlueX yp collision events, see:
https://hpg.sitehost.iu.edu/hdvis/event.html
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Histograms: Invariant Mass

vyp — X

reconstruct all particles

consider all combinations
of two photons

Homework -- show:

2
pyZ‘

M; = 2E E,(1 — cos )

0 : angle between photon momenta

IIIIIIIIIIIIIIIII
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Branching Fractions and Widths

Experimentally accessible:

B;

Ftot

Theoretically interesting:

Fi X ‘./\/lz|2 X

Candidates per Bin

160

—
N
o

—
N
o

—
o
o

N
o

N
o

(phase space)

[0}
o
T T 11

(o2}
o
T T T

resolution:
detector effect

N

) =8 eV

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
vy Invariant Mass [GeV/c?]
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eV

eV/c
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NData' NFit

Entries/(5

400
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200
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o

\ NData

w o u»

physics induced:
Xco is more likely to decay

~
o
~

—¢— Data
— Global fit
---- Background

° ) ° o * o ® e C
_—.;.‘W;O—M;"Ww'rﬂ.—.ou?—“om.—‘—“.—.fm“—
30 3.35 3.40 3.45 3.50 3.55 3.60

M(prr®) (GeV/c?)
PRD 86,05201 |

T'(xeo) = 10 MeV
F(Xcl) = 0.8 MeV
F(Xc2) = 1.9 MeV
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Decays: The OZI Rule
(S. Okubo, G. Zweig, and |. lizuka)

OZI Favored OZI Suppressed

B(¢ - KK)=0.83 B(¢p — ntn—w%) = 0.15

Helps one infer “hidden” quark flavor of mesons.
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OZI| Rule and Widths

7 B | | A | | | | | Al | | | | | | | | | | i
| J/LI) L|)I —
6 A Mark-| —
— Mark-1 + LGW LI) 4160 .
- ® Mark-ll W s0i0 D s -
| Ig' [ 1 ' ]
5 - ® PLUTO P 370 0 . b :
R B O DASP | | | | vl|||”|'|. ) 5
4 Crystal Ball P ;‘ g a3 ol fl";*-"';-i“u L ‘ | —
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- [ QAL i il ‘ -
B R :': —
3 B ‘ l ‘ | | l: !I | :"1|||1I|ﬂ»ll ! "," —— ]
- + || t | ||' L it (T .
SRR L R :
2 — S L i_ R R I | |
| | | | | I | | | | I | | | | I | | | | —
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E [GeV]
c D
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threshold
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An Example: Measuring Spin

cosd

I
Y
]
—

cosi

—1 0 1

cosd
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some
quantization

From data
conclude | = |

20 -
Pions are spinless so spin of p

is carried in the orbital angular
momentum of the two pions.

VOLUME &, NUMBER 2 PHYSICAL REVIEW LETTERS JANUARY 15, 1962

DIFFERENTIAL -7 CROSS SECTIONS: EVIDENCE FOR THE SPIN OF THE p MESON™

D. Duane Carmony’ and Remy T. Van de wallel

Lawrence Radiation Laboratory, University of California, Berkeley, California
(Received November 6, 1961; revised manuseript received December 27, 1961)
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Helicity

® Helicity operator is the spin projection
along the momentum of the particle

® cigenvalues:A=-3S5,...,S
® invariant under rotation

® Helicities of stable final state particles are
not measured and must be summed over
when computing decay distributions

>

J
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=

decay axis:

1o, ¢) /
(s 7

X—->1+2
initial state X: |Jm)
two-particle final state: |6, ¢, 4, 1,)

N>

decay amplitude « D]{Z AP, 0, — PA)

where: A =4, — 4,
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Decay Kinematics

initial p configuration spinless pions
in the helicity frame each have helicity zero

so the helicity sum is zero
J=1,m=0 and in this frame: m’' =0

Rotation between frames given by

Dy 0 B,7) = €S, L (B)e

m’,m

For the sketch above: a =y =0and f =6
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P

Dalitz Plots

spinless particle = 3 spinless
particles: X = | 23

Mx2 = M22 + M232 + M32

® for any X, dynamics is a
function of two variables:
M2 and M3

All information about decay can
be learned by studying a Dalitz
plot of M22 vs. M232

® phase space is uniform on
this plot
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38

Dt = K*K-1T

PRD 83,052001

1 1.5 2 2.5 3 3.5
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Dalitz Plots

Homework: the decay of a
spinless particle to 3 spinless
particles can be described by 3 x
4-vectors = |2 numbers.

Use symmetry arguments and
conservation laws to show that
|0 of the 12 unknowns can be
eliminated leaving only two
remaining variables to describe
the physics of the decay.

Any two variables will work, the
Dalitz plot is a common choice.
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Dt = K*K-1T

PRD 83,052001
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Experimental Strategy

® Search for new particles

® bumps in invariant mass spectra

® unique decay patterns (angular distributions) in phase space
® Use experiment to determine properties of mesons:

® mass and width

® decay modes

® quantum numbers: JPC

® Patterns of mesons then test predictions of the hadron spectrum
from models or direct calculations of QCD
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Summary

® QCD exhibits interesting behavior at the low-energy/long-
distance limit: strong gluon-gluon interactions and confinement

® How do hadrons and their properties emerge from the
underlying theory of QCD?

® Are there particles like hybrid mesons or glueballs that would
be unique manifestations of the gluonic degrees of freedom in

QCD?

® Spectroscopy provides insight into the fundamental structure of
hadrons, and can do so over both the long and short distance
regimes of QCD.

® A wide variety of experiments can be used to produce and study
hadrons: properties relevant for spectroscopy such as mass,
width and J©C can be inferred from experimental data
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