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and its normalization is chosen such that, upon replacing the SU(3) transformations with

an Abelian U(1) transformation, the QED Lagrangian is recovered.2 The CP odd term,

L(CP/ )
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g
2
Nf

32�2
⇧µ⌦�⇥Tr(G

µ⌦
G

�⇥), (1.7)

is irrelevant for most of QCD phenomenology as the experimental value of its corresponding

strength, characterized by the parameter ⌥̄, is unexpectedly close to zero, ⌥̄ ⇥ 10�9.3 Nf

denotes the number of quark flavors (up, down, strange, etc.), and ⇧µ⌦�⇥ is the fully anti-

symmetric Levi-Civita tensor.

The Lagrange density of QCD, neglecting the CP-odd contribution and taking into

account di⌥erent quark flavor sectors, can be written in the explicit form,
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where F
i
µ⌦  ⇢µA

i
⌦ � ⇢⌦A

i
µ. The striking feature of this Lagrange density is the self inter-

actions among gluons which makes the vacuum of the theory nontrivial compared to QED.

This is not a surprise as in any non-Abelian gauge theory, the gauge field A
i
µ carries a char-

acteristic charge (color in the case of QCD) corresponding to the internal space of the gauge

group, and must be able to interact with other charged members of the gauge multiplet.

The other feature of the QCD Lagrange density is that the coupling of gauge fields to the

quark fields cannot be arbitrary and is constrained by the Lie algebra of the group to be the

same among quarks with di⌥erent colors and from di⌥erent families, and should match that

of self-gluon couplings. This is again in contrast with QED where, although the interaction

Lagrangian has a universal form, di⌥erent matter fields can couple to the EM field with

di⌥erent strengths, characterized by their distinct electric charges.

The two important properties of QCD, asymptotic freedom and color confinement, can

be deduced from an analytical approach based on perturbation theory. The former, as is a

2This also justifies the factor of 1
ig in the definition of Gµ⌥ as it would result in the usual normalization

of the kinetic term of gluons.

3The convention used for the normalization of this term ensures that, in the absence of massive quarks,

the contribution from such term vanishes upon setting ⌃̄ = 2�, where � is the parameter of the U(1)A
transformation, q � ei�⇤5 , whose current, Jµ

5 ⌅ q̄⇤µ⇤5q, is anomalous.

Gluons kinetic and interaction terms

Quark/gluon interactionsQuark kinetic and mass term

Quantum chromodynamics (QCD) in continuum:
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Quark/gluon interactionsQuark kinetic and mass term

Observe that:

i) There are only                input parameters plus QCD coupling. Fix them by a few 
quantities and all strongly-interacting aspects of nuclear physics is predicted (in 
principle)!

ii) QCD is asymptotically free such that:

1 +Nf

Positive constant for Nf  16

11

1.1. To parametrize the characteristic scale at which the theory becomes strong, we can

define the scale ⇤QCD such that b0�s(µ) log
µ2

⇤2
QCD

= 1, then one can rewrite Eq. (1.11) as

following

�s(µ
 ) =

1

2b0 log
µ⇧

⇤QCD

. (1.12)

As can be seen, perturbation theory is only valid if µ ✏ ⇤QCD. Experimentally ⇤QCD �

200 MeV which is of the order of the inverse size of the light hadrons. This is consistent

with our realization of hadrons being composed of strongly interacting constituents when

low-energy probes are used. In fact at low energies, these hadrons are the e⌥ective degrees

of freedom of QCD, and the details of their properties and interactions, although sensitive

to the short distance theory of QCD, can be studied in a systematic low-energy expansion.

This requires understanding QCD symmetries and the mechanism for the breaking of some

of these symmetries. We discuss this topic in the next section, Sec. 1.1.2.

1.1.2 QCD at low energies

Although quarks and gluons do not show up as explicit degrees of freedom in the spectrum

at energies of the order of ⇤QCD, the imprint of their interactions can be found in the

spectrum of hadrons. For example, the low-lying spectrum of (negative parity) mesons and

(positive parity) baryons, as illustrated in Fig. 1.2, exhibits several interesting patterns

whose origin can be understood via the fundamental theory of QCD. As is seen, pions are

noticeably lighter than the rest of hadrons and come in an almost degenerate triplet. The

next multiplet of mesons, while remain low in mass compared to baryons, are not as light as

pions. On the other hand, the ⌃ meson that has the same quark content as that of ⌃ in the

quark model is surprisingly heavier than ⌃. Baryons have masses at the order of >� 1 GeV

and like mesons come in various nearly degenerate multiplets. Moreover, the parity partners

of mesons and baryons have been observed to have di⌥erent masses, e.g., the di⌥erence in

the mass of the nucleons � 940 MeV and their negative parity counterpart N(1535) is as

large as 600 MeV.

To understand these features all together, it su⌦ces to study the underlying symmetries

of the QCD Lagrangian. In the limit of zero quark masses (chiral limit), the left-handed and

QCD is a SU(3) Yang-Mills theory augmented with several flavors of massive quarks:
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wavefunction renormalization factors. Then a two-loop calculation shows that

⇥(�s) = �(b0�
2
s + b1�

3
s) +O(�4

s), (1.10)

with b0 = 1
12↵ (33� 2Nf ) and b1 = 1

24↵2 (153� 19Nf ) [58]. For the current discussion let us

ignore the NLO correction to the ⇥-function and solve Eq. (1.10). Explicitly, we want to

know given the coupling constant at scale µ, what the value of the coupling would be at

scale µ
 . It easily follows that

�s(µ
 ) =

�s(µ)

1 + b0�s(µ) log
µ⇧2

µ2

. (1.11)

Given the positive sign of b1 for QCD with Nf = 6, it is evident that �s(µ ) decreases
9. Quantum chromodynamics 33

QCD αs(Mz) = 0.1185 ± 0.0006
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Figure 9.4: Summary of measurements of �s as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of �s is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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Figure 1.1: The coupling of QCD as a function of a characteristic energy scale µ = Q, obtained

from matching the QCD perturbative calculation to a given order (as given in brackets) to the

experimental measurements of several quantities. There is also one point which is obtained by

matching to a lattice QCD calculation [58]. Figure is reproduced with the permission of Michael

Barnett on behalf of the Particle Data Group.

as µ increases, indicating the theory tends to become free at asymptotically high energies.

Experimental determinations of �s for a range of energies have resulted in values that lie

on the predicted scale-dependence curve to an extremely well precision, as is shown in Fig.
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Let’s enumerate the steps toward numerically simulating this theory nonperturbatively…

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

Step III: Form the correlation functions by contracting the quark fields. Need to 
specify the interpolating operators for the state under study.

Step IV: Extract energies and matrix elements from correlation functions.

Step V: Make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

See e.g., ZD, arXiv:1409.1966 [hep-lat]

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic 
lattice. Wick rotate to imaginary times. 
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lattice. Wick rotate to imaginary times. 
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Figure 1.8: A 2 + 1 dimensional cubic lattice is shown in the left panel. The (trace of) plaquette

and the product of quark, the link variable and the antiquark (right panel) are two examples of

gauge-invariant constituents of the lattice gauge theories in their compact formalism.

where Z =
R

DAµDqDq̄ eiSQCD denotes the QCD partition function, SQCD =
R

d4x LQCD

is the action and LQCD is given in Eq. (1.8). Evaluating this path integral in practice

requires several steps to be followed:

1) A discrete action: The path integral in Eq. (1.49) is only defined rigorously if the

degrees of freedom of the theory are discrete. Numerical evaluations become plausible in

practice, firstly, with a measure that is nonoscillatory. This can be achieved by a Wick

rotation of the coordinates to Euclidean spacetime, t ! i⌧ so that iSQCD ! �S(E)
QCD where

S(E)
(QCD) is purely real. Secondly, the number of degrees of freedom of the integration must

be finite, requiring the spacetime to be truncated to a finite region in both spatial and

temporal directions and to be discretized. Lattices with geometry of a hypercube are the

most convenient choices in LQCD calculations, see Fig. 1.8, although the anisotropic cubic

lattices with lattice spacing in the temporal direction being finer than that of the spatial

direction are being also used. The spacing between two adjacent lattice sites, a, must be

small compared with the hadronic scale, a ⌧ ⇤�1
QCD, while the spatial extent of the volume,

L, must be large compared with the Compton wavelength of the pions which sets the range

of hadronic interactions, L � m�1
⇡ , see Sec. 1.3.

Quark fields are placed on the lattice sites, and a choice for defining the gauge fields, as

Link
Two conditions:
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QCD, while the spatial extent of the volume,

L, must be large compared with the Compton wavelength of the pions which sets the range

of hadronic interactions, L ✏ m
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Quark fields are placed on the lattice sites, and a choice for defining the gauge fields, as

T, L � m�1
⇡

31

plotted in Fig. 1.8, is through the Wilson link variables,

Uµ(n)  e
igAµ(n)

. (1.50)

These are the elements of the SU(3) Lie group and transform under a local gauge transfor-

mation as

Uµ(n)⇣ Uµ(n)
 = V (n)Uµ(n)V

†(n+ µ̂), (1.51)

where V is an element of the Lie group. The use of link variables, which is called the compact

formulation of lattice gauge theories, is a convenient choice as it makes the implementation of

gauge invariance on the lattice straightforward. In fact, the only gauge invariant quantities

are the gauge links starting and ending at the quark fields, and the trace of any closed loop

formed by the gauge links, Fig. 1.8. With these gauge invariant blocks, we can write down

a Lagrangian for QCD interactions on the lattice that recovers the Lagrangian in Eq. (1.8)

once the continuum limit is taken. A common choice of action is the Wilson action [361]

which uses the elementary plaquette, defined as Pµ⌦;n  Uµ(n)U⌦(n + µ̂)U †
µ(n + ↵̂)U †

⌦ (n),

see Fig. 1.8, for gluons and the Wilson fermions formulation for the quarks,

S
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(1.52)

where n runs over all the N3
s ⇤Nt lattice points and ⇥  2Nc

g2 is the lattice coupling constant

with Nc = 3 for QCD. Note that the action is written in terms of dimensionless fields and

parameters. Explicitly, the continuum field q at point na is replaced by a
�3/2

qn and the

continuum bare mass of the quarks m(0) is replaced by a
�1

m
(0). r is the Wilson parameter

whose value is commonly set to 1 in the calculations. The sum over quark flavors is left

implicit.

The gluonic part of the action clearly recovers the continuum action in Eq. (1.6) up

to corrections that scale as a2, and leads to the following lattice propagator in momentum

Plaquette
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a Lagrangian for QCD interactions on the lattice that recovers the Lagrangian in Eq. (1.8)

once the continuum limit is taken. A common choice of action is the Wilson action [361]

which uses the elementary plaquette, defined as Pµ⌦;n  Uµ(n)U⌦(n + µ̂)U †
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see Fig. 1.8, for gluons and the Wilson fermions formulation for the quarks,

S
(E)
Wilson =

⇥

Nc

(

n

(

µ<⌦

⇠Tr[ � Pµ⌦;n]

�
(

n

q̄n[m
(0) + 4]qn +

(

n

(

µ

�
q̄n

r � ⇤µ

2
Uµ(n)qn+µ̂ + q̄n

r + ⇤µ

2
U

†
µ(n� µ̂)qn�µ̂

✏
,

(1.52)

where n runs over all the N3
s ⇤Nt lattice points and ⇥  2Nc

g2 is the lattice coupling constant

with Nc = 3 for QCD. Note that the action is written in terms of dimensionless fields and

parameters. Explicitly, the continuum field q at point na is replaced by a
�3/2

qn and the

continuum bare mass of the quarks m(0) is replaced by a
�1

m
(0). r is the Wilson parameter

whose value is commonly set to 1 in the calculations. The sum over quark flavors is left

implicit.

The gluonic part of the action clearly recovers the continuum action in Eq. (1.6) up

to corrections that scale as a2, and leads to the following lattice propagator in momentum
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which uses the elementary plaquette, defined as Pµ⌦;n  Uµ(n)U⌦(n + µ̂)U †
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where n runs over all the N3
s ⇤Nt lattice points and ⇥  2Nc

g2 is the lattice coupling constant

with Nc = 3 for QCD. Note that the action is written in terms of dimensionless fields and

parameters. Explicitly, the continuum field q at point na is replaced by a
�3/2

qn and the

continuum bare mass of the quarks m(0) is replaced by a
�1

m
(0). r is the Wilson parameter

whose value is commonly set to 1 in the calculations. The sum over quark flavors is left

implicit.

The gluonic part of the action clearly recovers the continuum action in Eq. (1.6) up

to corrections that scale as a2, and leads to the following lattice propagator in momentum

An example of a discretized action by K. Wilson:

Wilson parameter. Gives the naive action if set 
to zero and has doublers problem.

Plaquette

= 2/g2

For discussions of actions consistent with chiral symmetry of continuum see: 
Kaplan, arXiv:0912.2560 [hep-lat].

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic 
lattice. Wick rotate to imaginary times. 
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p 6= 0,

2) be proportional to �µpµ in the continuum limit, and 3) anticommute with �5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, �5} = aD�5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z

Z
DUµDqDq̄ e�S

(G)
lattice[U ]�S

(F )
lattice[U,q,q̄]

Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z

Z
DUµ e�S

(G)
lattice[U ]

ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.
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and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.
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fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16
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fermions, including the chiral anomaly, are exactly reproduced as long as the operator D
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fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the
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where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as
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1
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16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.

Quark part of expectation values
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fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z

Z
DUµDqDq̄ e�S

(G)
lattice[U ]�S

(F )
lattice[U,q,q̄]

Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z

Z
DUµ e�S

(G)
lattice[U ]

ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.
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where the path integral over gauge links U are separated from that of the fermionic path

integrals with

,Ô-F =
1

ZF

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

%
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄] =

)

f

detDf , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e

�S
(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D
† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1

N

N(

i

,Ô-F [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.

Define:

Quark part of expectation values
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Carlo sampling integration with the probability measure 1
Z e

�S
(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D
† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1
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,Ô-F [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p 6= 0,

2) be proportional to �µpµ in the continuum limit, and 3) anticommute with �5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, �5} = aD�5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z

Z
DUµDqDq̄ e�S

(G)
lattice[U ]�S

(F )
lattice[U,q,q̄]

Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z

Z
DUµ e�S

(G)
lattice[U ]

ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.

34
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p �= 0,

2) be proportional to ⇤µpµ in the continuum limit, and 3) anticommute with ⇤5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with ⇤5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, ⇤5} = aD⇤5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].
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lattice[U,q,q̄] Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as
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16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the

domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark

propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap

operator, see Refs. [218,231,234] for more details.
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s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration
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are generated, the statistical average
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18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most
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where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z

Z
DUµ e�S

(G)
lattice[U ]

ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.
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(F )
lattice[U,q,q̄]

O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

P
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =

Z
DqDq̄ e�S

(F )
lattice[U,q,q̄] =

Y

f

det Df , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value hÔiF is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e�S

(G)
lattice[U ] Q

f det Df . An im-

portant property of the lattice Dirac operators, the �5-hermiticity D† = �5D�5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇥ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

hÔi =
1

N

NX

i

hÔiF [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion
determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-
nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely
heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-
abled abandoning this approximation and has made the use of dynamical configurations viable in most
calculations.

34

where the path integral over gauge links U are separated from that of the fermionic path

integrals with
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18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

,Ô- = 1

Z

*
DUµDqDq̄ e

�S
(G)
lattice[U ]�S

(F )
lattice[U,q,q̄] Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

,Ô- = 1

Z

*
DUµ e

�S
(G)
lattice[U ]ZF [U ] ,Ô-F , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the

domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark

propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap

operator, see Refs. [218,231,234] for more details.
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where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value hÔiF is computed, the full expectation value can be computed using a Monte
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portant property of the lattice Dirac operators, the �5-hermiticity D† = �5D�5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇥ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

hÔi =
1

N

NX

i

hÔiF [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion
determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-
nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely
heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-
abled abandoning this approximation and has made the use of dynamical configurations viable in most
calculations.
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18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.

Dirac matrix



Example: Consider a lattice with: L/a = 48, T/a = 256

Sampling SU(3) matrices. Already for one 
sample requires storing

c-numbers in the computer!

Requires tens of thousands of uncorrelated 
samples. Molecular-dynamics-inspired hybrid 
Monte Carlo sampling algorithms often used.

8⇥ 483 ⇥ 256 = 226, 492, 416

Steps II is computationally costly…

Requires calculating determinant of a large matrix.



Step III: Form the correlation functions by contracting the quarks. Need to specify 
the interpolating operators for the state under study.
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abled abandoning this approximation and has made the use of dynamical configurations viable in most
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18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most
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ū
dd̄

u ūd
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u ūd

d̄ u
ū
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Figure 1.10: The Wick contractions in the evaluation of the �
0 two-point correlation functions.

For flavor-singlet quantities, such as �0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the �
0

correlator with Ô = 1
2
(u⇤5u� d⇤

5
d), we have
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⌅
+ {u ⌘ d}, (1.63)

eigenvalues of the Dirac operator causes di⇧culties in numerical evaluations of the inverse matrix given the

limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community

in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see

Refs. [2, 7, 8, 19, 115,138,352].

Ô = u�5de.g.,
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uū
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For flavor-singlet quantities, such as ⇡0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the ⇡0

correlator with Ô = 1p
2
(u�5u � d�5d), we have
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eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
Refs. [2, 7, 8, 19, 115,138,352].
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dd̄

u
ūd
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hÔ⇡0
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eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
Refs. [2, 7, 8, 19, 115,138,352].
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ū
dd̄

u ūd
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ūd

d̄ u
ū
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ū
dd̄

u ūd
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u ūd

d̄ u
ū
dd̄

u ūd
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(n)Ô⇡0†(0)iF = �

1

2
Tr

⇥
�5D�1

u (n, 0)�5D�1
u (0, n)

⇤

+
1

2
Tr

⇥
�5D�1

u (n, n)
⇤
Tr

⇥
�5D�1

u (0, 0)
⇤

�
1

2
Tr

⇥
�5D�1

u (n, n)
⇤
Tr

⇥
�5D�1

d (0, 0)
⇤
+ {u $ d}, (1.63)

eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
Refs. [2, 7, 8, 19, 115,138,352].

34

where the path integral over gauge links U are separated from that of the fermionic path

integrals with

,Ô-F =
1

ZF

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

%
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄] =

)

f

detDf , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e

�S
(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D
† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1

N

N(

i

,Ô-F [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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For flavor-singlet quantities, such as �0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the �
0
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eigenvalues of the Dirac operator causes di⇧culties in numerical evaluations of the inverse matrix given the

limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community

in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see

Refs. [2, 7, 8, 19, 115,138,352].

Ô = u�5de.g.,

Quark disconnected diagrams. Require expensive all-to-all propagators.



Example: Consider a lattice with: L/a = 48, T/a = 256

Dirac 
matrix

Quark 
propagator

Source

Solving

Requires taking determinant and inverting 
a matrix with dimensions:

Lattice QCD:
Solvers and Quark Propagators

light-quark propagator Source

Iterative using Krylov-subspace solvers
CG, BiCGstab

Condition number of  D gets larger as quark mass is reduced toward physical 
- critical slowing down in convergence

Preconditioning used to improve condition number

46

(4⇥ 3⇥ 483 ⇥ 256)2 =
339, 738, 624⇥ 339, 738, 624

Steps III is computationally costly…



Show that for the correlation function of the charged pion:

EXERCISE 1
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is an estimator of the the expectation value in Eq. (1.58), where U
(i) is the i

th generated

configuration.

3) Form the correlation functions: The next step of the calculation is observable depen-

dent and requires both analytical and numerical evaluation to determine ,Ô-F . Here we are

interested in the n-point correlation functions of (multi) hadrons from which one can extract

masses and the low-lying energies. Let Ô† denote the interpolating operator that creates a

(multi-)hadron states from the vacuum of QCD and Ô be an interpolator that annihilates

the state. With the notation used in Eq. (1.57), Ô  ÔÔ
†. In order for an interpolating

operator to have overlap with a desired state, it must share the same quantum numbers, e.g.

the particle number, flavor, spin, parity, charge conjugation, etc., as that of the state. For

example the �
+ state can be created by a bilinear quark operator O

↵+† = u⇤5d. In order

to calculate the correlation function, we need to perform the fermionic path integral that

appears in the expectation value ,Ô-F which is a usual Grassmann integration. This part

is called the quark Wick contractions and for the case of �+ two-point correlation function

can be performed as following

,Ô↵+
(n)Ô↵+†(0)-F = ,da,�(n)⇤5�⇥ua⇥(n) ub,�⇧(0)⇤5�⇧⇥⇧d

b
⇥⇧(0)-F

= �⇤5�⇥⇤5�⇧⇥⇧ ,db⇥⇧(0)da,�(n)-d ,ua⇥(n)ub,�⇧(0)-u

= �⇤5�⇥⇤5�⇧⇥⇧ (D�1
d )ba,⇥⇧�(0, n)(D

�1
u )ab,⇥�⇧(n, 0)

= �Tr
⇤
⇤
5
D

�1
u (n, 0)⇤5D�1

d (0, n)
⌅

= �Tr
⇤
D

�1
u (n, 0)D�1

d (n, 0)
⌅
, (1.62)

where we have chosen to create the pion at the origin and annihilate it at coordinate n.

The trace is taken over spin and color degrees of freedom and the negative sign has been

resulted from anti-commutation of the Dirac fields in the second line. In the last line the

⇤
5-hermiticity of the Dirac operator has been used. The resulting correlation function has

been pictorially shown in Fig. 1.9. The value of the inverse Dirac operator depends on

the value of the link variable, therefore for each gauge-field configuration generated in the

previous step, the inverse of the Dirac operator must be evaluated.19

19When the value of the light-quark masses that are used are close to their physical values, the small
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where         and          denote the the inverse Dirac matrix (the quark propagator) for the u 
and d quarks, respectively. Trace is over spin and color degrees of freedom.
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previous step, the inverse of the Dirac operator must be evaluated.19

19When the value of the light-quark masses that are used are close to their physical values, the small
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is an estimator of the the expectation value in Eq. (1.58), where U
(i) is the i

th generated

configuration.

3) Form the correlation functions: The next step of the calculation is observable depen-

dent and requires both analytical and numerical evaluation to determine ,Ô-F . Here we are

interested in the n-point correlation functions of (multi) hadrons from which one can extract

masses and the low-lying energies. Let Ô† denote the interpolating operator that creates a

(multi-)hadron states from the vacuum of QCD and Ô be an interpolator that annihilates

the state. With the notation used in Eq. (1.57), Ô  ÔÔ
†. In order for an interpolating

operator to have overlap with a desired state, it must share the same quantum numbers, e.g.

the particle number, flavor, spin, parity, charge conjugation, etc., as that of the state. For

example the �
+ state can be created by a bilinear quark operator O

↵+† = u⇤5d. In order

to calculate the correlation function, we need to perform the fermionic path integral that

appears in the expectation value ,Ô-F which is a usual Grassmann integration. This part

is called the quark Wick contractions and for the case of �+ two-point correlation function

can be performed as following

,Ô↵+
(n)Ô↵+†(0)-F = ,da,�(n)⇤5�⇥ua⇥(n) ub,�⇧(0)⇤5�⇧⇥⇧d

b
⇥⇧(0)-F

= �⇤5�⇥⇤5�⇧⇥⇧ ,db⇥⇧(0)da,�(n)-d ,ua⇥(n)ub,�⇧(0)-u

= �⇤5�⇥⇤5�⇧⇥⇧ (D�1
d )ba,⇥⇧�(0, n)(D

�1
u )ab,⇥�⇧(n, 0)

= �Tr
⇤
⇤
5
D

�1
u (n, 0)⇤5D�1

d (0, n)
⌅

= �Tr
⇤
D

�1
u (n, 0)D�1

d (n, 0)
⌅
, (1.62)

where we have chosen to create the pion at the origin and annihilate it at coordinate n.

The trace is taken over spin and color degrees of freedom and the negative sign has been

resulted from anti-commutation of the Dirac fields in the second line. In the last line the

⇤
5-hermiticity of the Dirac operator has been used. The resulting correlation function has

been pictorially shown in Fig. 1.9. The value of the inverse Dirac operator depends on

the value of the link variable, therefore for each gauge-field configuration generated in the

previous step, the inverse of the Dirac operator must be evaluated.19

19When the value of the light-quark masses that are used are close to their physical values, the small

BONUS EXERCISE 1

Show that for the correlation function of the neutral pion:

36

ū
dd̄

u ūd
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Figure 1.9: The Wick contractions in the evaluation of the �
+ two-point correlation functions.
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dd̄

u
ūd
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ū
dd̄

u ūd
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Figure 1.10: The Wick contractions in the evaluation of the �
0 two-point correlation functions.

For flavor-singlet quantities, such as �0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the �
0

correlator with Ô = 1
2
(u⇤5u� d⇤

5
d), we have

,Ô↵0
(n)Ô↵0†(0)-F = �1

2
Tr

⇤
⇤
5
D

�1
u (n, 0)⇤5D�1

u (0, n)
⌅

+
1

2
Tr

⇤
⇤
5
D

�1
u (n, n)

⌅
Tr

⇤
⇤
5
D

�1
u (0, 0)

⌅

�1

2
Tr

⇤
⇤
5
D

�1
u (n, n)

⌅
Tr

⇤
⇤
5
D

�1
d (0, 0)

⌅
+ {u ⌘ d}, (1.63)

eigenvalues of the Dirac operator causes di⇧culties in numerical evaluations of the inverse matrix given the

limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community

in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see

Refs. [2, 7, 8, 19, 115,138,352].



Step IV: Extract energies and matrix elements from correlation functions

10

L3
⇥ T � bmq b [fm] L [fm] T [fm] m⇡L m⇡T Ncfg Nsrc

243
⇥ 48 6.1 -0.2450 0.1453(16) 3.4 6.7 14.3 28.5 3822 96

323
⇥ 48 6.1 -0.2450 0.1453(16) 4.5 6.7 19.0 28.5 3050 72

483
⇥ 64 6.1 -0.2450 0.1453(16) 6.7 9 28.5 38.0 1905 54

1

TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as

C
Ô,Ô0(⌧ ;d) =

X

x

e2⇡id·x/Lh0|Ô
0(x, ⌧)Ô†(0, 0)|0i = Z

0

0Z
†

0e
�E(0)⌧ + Z

0

1Z
†

1e
�E(1)⌧ + . . . , (15)

Ground state and a tower of excited 
states are, in principle, accessible!
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TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as

C
Ô,Ô0(⌧ ;d) =

X

x

e2⇡id·x/Lh0|Ô
0(x, ⌧)Ô†(0, 0)|0i = Z

0

0Z
†

0e
�E(0)⌧ + Z
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1Z
†

1e
�E(1)⌧ + . . . , (15)

Ground state and a tower of excited 
states are, in principle, accessible!

2MN243 ⇥ 48 323 ⇥ 48 483 ⇥ 64

Beane et al (NPLQCD), arXiv:1705.09239, Wagman et al (NPLQCD), arXiv:1706.06550.

Example: What should we make of 
the volume dependence?



[STILL CONTINUING ON] LECTURE I: 
LATTICE QCD FORMALISM AND METHODOLOGY



[Recap] Steps involved in any lattice QCD calculation:

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

Step III: Form the correlation functions by contracting the quark fields. Need to 
specify the interpolating operators for the state under study.

Step IV: Extract energies and matrix elements from correlation functions.

Step V: Make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

See e.g., ZD, arXiv:1409.1966 [hep-lat]

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic 
lattice. Wick rotate to imaginary times. 



Step V: Make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc. Still not fully developed and presents challenge in multi-hadron 
systems.

Example: two-hadron scattering



Let’s discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

i) Finite-volume effects in the single-hadron sector

ii) Finite-volume formalism for two-hadron elastic scattering

iii) Finite-volume formalism for coupled-channel two-hadron inelastic 
scattering and resonances

v) Finite-volume formalism for three-hadron scattering and resonances and 
decays

iv) Finite-volume formalism for transition amplitudes and resonance form factors

vi) Finite-volume effects in lattice QED+QCD studies of hadrons
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iii) Finite-volume formalism for coupled-channel two-hadron inelastic 
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iv) Finite-volume formalism for transition amplitudes and resonance form factors
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Let’s discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

i) Finite-volume effects in the single-hadron sector

ii) Finite-volume formalism for two-hadron elastic scattering

iii) Finite-volume formalism for coupled-channel two-hadron inelastic 
scattering and resonances

v) Finite-volume formalism for three-hadron scattering and resonances and 
decays

iv) Finite-volume formalism for transition amplitudes and resonance form factors

vi) Finite-volume effects in lattice QED+QCD studies of hadrons

See e.g., ZD, arXiv:1409.1966 [hep-lat, Briceno, Dudek and Young, 
Rev. Mod. Phys. 90.025001, Ann. Rev. Nucl. Part. Sci. 69 (2019).



Kim, Sachrajda and Sharpe, 
Nucl.Phys.B727(2005)218-243.

Let’s derive the Luescher’s formula first. A QFT 
derivation goes as follows:



V�KV ��0 V �V�KV�0 �KV ��0CV = ++ + . . .
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Let’s derive the Luescher’s formula first. A QFT 
derivation goes as follows:
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Let’s derive the Luescher’s formula first. A QFT 
derivation goes as follows:
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Let’s derive the Luescher’s formula first. A QFT 
derivation goes as follows:
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= +

T ! 1, a ! 0
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VV AA0 VV M1 VV M1 M1A AA0 A0
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+= C1+
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Nucl.Phys.B727(2005)218-243.

T ! 1, a ! 0
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= +

Let’s derive the Luescher’s formula first. A QFT 
derivation goes as follows:



EXERCISE 2

By rearranging the diagrams in        (the first line in the upper panel) using the relations in 
the lower panel, verify the expansion in the second line in the upper panel. What is the 
relation between            and            ?

CV

�(�0) A(A0)
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Finite-volume function Scattering amplitude
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Let’s derive the Luescher’s formula first. A QFT 
derivation goes as follows:
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S-wave approximation, 
valid at low energies:

S-wave phase shift
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EXERCISE 3

Derive the S-wave limit of Luescher’s quantization condition from the master relation.

Plot the S-wave finite-volume function        for a range of momenta      , including negative 
values. At what values of        do you observe singularities? What do these momenta 
correspond to?

BONUS EXERCISE 2

q⇤2

q⇤2
c00
0



Now let’s see an application of Luescher’s method to obtain elastic scattering amplitudes 
of two nucleon from lattice QCD (at a large quark mass!): 

Wagman et al.(NPLQCD), Phys.Rev.D 96,114510(2017).



Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

Beane et al (NPLQCD), arXiv:1705.09239, Wagman et al (NPLQCD), arXiv:1706.06550.

Step 1: Obtain the lowest-lying spectra
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Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

Beane et al (NPLQCD), arXiv:1705.09239, Wagman et al (NPLQCD), arXiv:1706.06550.

Step 1: Obtain the lowest-lying spectra
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FIG. 6: The shifts in the energy of the two-baryon systems in the 27, 10, 10 and 8A irreps from that of two
non-interacting baryons at rest in the three lattice volumes, i.e., �E = EBB � 2MB. Energies are expressed
in lattice units (l.u.). Different columns correspond to different volumes and boosts, as indicated.

Figs. 3–5. The energy shifts and their uncertainties are denoted as horizontal bands in the R plots,
and are compiled for all two-baryon channels studied in this work in Fig. 6. The corresponding
values are tabulated in Tables X-XIII of Appendix C for reference.

Recently, there have been comments by Iritani, et al. [95–97] questioning the extraction of en-
ergy eigenvalues from the late-time behavior of correlation functions, and methods for identification
of energies such as those used here. These authors present an example of two-nucleon correlation
functions that exhibit a considerable mismatch in the location of the naive plateaus in the EMPs
when different source and sink operators are used (namely locally-smeared and wall sources). How-
ever, as is shown by the PACS-CS collaboration [98], such a mismatch disappears once both the
single-nucleon and the two-nucleon systems are required to be in their ground states. The failure of
wall sources to overlap well onto the ground state at early times is a well-known problem, and has
no bearing on the results reported by other groups using more optimal sources, such as those used
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determined in three volumes, a controlled extrapolation to infinite volume is possible in the present
work. Fitting to the truncated form of the FV QC for negative k⇤2 values, Eq. (8), the infinite-
volume binding momenta, (1), can be obtained in each channel. These results are presented in
Table III for measurements with d = (0, 0, 0) and (0, 0, 2), with complete agreement seen between
the two determinations. The bootstrap samples of extracted (1) values from each case can be
combined to obtain a conservative estimate of the binding momenta and their uncertainties, given
in the last row of Table III. The omitted terms in the truncated form in Eq. (8) are negligible as
e�

p
3(1)L is at most ⇠ 10�3 for the channels belonging to the 27, 10 and 8A irreps. The stability

of the extracted binding momenta has been verified by excluding lower-order terms and by adding
higher-order terms to the fits.

Table III also includes the (1) values for the channels belonging to the 10 irrep. As is seen from
Fig. 11, the ground-state energy in the largest volume is close to threshold. Nonetheless, assuming
that there is a bound state in this channel, a determination of (1) based on the fit to Eq. (8) is
fully consistent with the ground-state energies at the largest volume, as well as with the location of
the pole in the scattering amplitude. From these results, the existence of a bound state in the 10
irrep cannot be confirmed or excluded with statistical significance. Future calculations with higher
statistics are needed in order to draw robust conclusions about the nature of the ground state in
the 10 irrep.

In physical units, the binding energies of these states are:

27 irrep: B = 20.6(+1.8)
(�2.4)

(+2.8)
(�1.6) MeV, (25)

10 irrep: B = 27.9(+3.1)
(�2.3)

(+2.2)
(�1.4) MeV, (26)

10 irrep: B = 6.7(+3.3)
(�1.9)

(+1.8)
(�6.2) MeV, (27)

8A irrep: B = 40.7(+2.1)
(�3.2)

(+2.4)
(�1.4) MeV, (28)

where B = �2
q

�(1)2 + M2
B + 2MB. Again, the first uncertainty is statistical and the second

uncertainty encompasses both a fitting uncertainty and an uncertainty encoding variation among
multiple analyses. The uncertainty in the lattice spacing is small compared with other uncertainties.
These binding energies are consistent with our previous determination in Ref. [20, 21], and with
the binding energies obtained on the same ensembles of gauge-field configurations in Ref. [99] for
the ground states of the two-nucleon channels in the 27 and 10 irreps.

4. S-wave baryon-baryon interactions and naturalness

Interactions are considered unnatural if they give rise to some characteristic length scale of the
system that is much larger than their range. There are at least two measures to assess naturalness
in a two-particle system. For scattering states at low energies, scattering length defines a charac-
teristic length scale, and the range of interactions can be approximated by the effective range. As
an example, S-wave interactions in the spin-singlet and spin-triplet two-nucleon channels in nature
produce effective range to scattering length ratios, r/a, that are ⇡ �0.14 and ⇡ 0.32, respectively.
This indicates that both channels are unnatural, particularly the spin-singlet channel. When inter-
actions support a bound state, another characteristic length scale of the two-particle system is the
inverse of the binding momentum, which defines an intrinsic size for the bound state. Considering
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Let’s discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

i) Finite-volume effects in the single-hadron sector

ii) Finite-volume formalism for two-hadron elastic scattering

iii) Finite-volume formalism for coupled-channel two-hadron elastic scattering 
and resonances

v) Finite-volume formalism for three-hadron scattering and resonances

iv) Finite-volume formalism for transition amplitudes and resonance form factors

vi) Finite-volume effects in lattice QED+QCD studies of hadrons

See e.g., ZD, arXiv:1409.1966 [hep-lat, Briceno, Dudek and Young, 
Rev. Mod. Phys. 90.025001, Ann. Rev. Nucl. Part. Sci. 69 (2019).





det
⇥
�GV (E⇤) +M�1(E⇤)

⇤
= 0Det

Briceno and ZD, Phys. 
Rev.D88,094507(2013).

Hansen and Sharpe, Phys. 
Rev. D86, 016007(2012).
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Now let’s see an application of the coupled-channel formalism: Hunting resonances using 
lattice QCD in the  P-wave coupled                   channel Wilson et al.(HadSpec), 

Phys.Rev. D92 (2015), 094502
⇡⇡ �KK
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FIG. 6. The spectra obtained from various choices of operator basis in the T�
1 lattice irrep. The leftmost column contains

all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†

|0i, obtained from the variational solutions. See [28, 29] for
more details.

vant in this energy region, and later show that indeed the
⇡⇡ F -wave amplitude and higher play no significant role.
When partial waves above ` = 1 are negligible, then us-
ing Eq. 1 one can obtain an estimate of �1(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.

In order to describe the resonant content of the scatter-
ing amplitude we may explore energy-dependent param-
eterizations. We will consider various choices of energy-
dependent parameterization in the �

2 minimization de-
scribed above and will later discuss their pole content,
finding that all choices capable of describing the finite
volume spectrum have a pole at the same location in
the complex-energy plane, corresponding to a single res-
onance.

In elastic scattering, the Breit-Wigner parameteriza-
tion is commonly used to describe isolated resonances –
in our case, with s = E

2
cm, this takes the form

t(s) =
1

⇢(s)

p
s�(s)

m2
R � s� i

p
s�(s)

, (2)

with the energy dependent width, �(s) = g2
R

6⇡
k3

s , includ-
ing a coupling constant, gR, and the threshold behavior
required in P -wave scattering. Attempting to describe
22 levels below 4⇡ threshold, we find the following pa-
rameters,

mR = 0.13171 (36) (6) · a�1
t


1 0.04

1

�

gR = 5.691 (70) (25)

�
2
/Ndof =

24.92
22�2 = 1.25 ,

(3)

where the first set of errors describes the statistical un-
certainty and the second comes from varying the pion
mass and anisotropy, ⇠, within their uncertainties. The
matrix illustrates the statistical correlation between pa-
rameters, which in this case is seen to be very small. The
corresponding �1(Ecm) is plotted in Figure 8.
Modifications to the Breit-Wigner form which tame

the k
3 barrier behavior at higher energies can be con-

sidered [22, 41] – fits to 22 levels with these forms yield
barely improved �

2 values and values of mR and gR that
are statistically compatible with those given above. Re-
stricting the energy region being described by the Breit-
Wigner of Eq. 2 to 0.117 < atEcm < 0.146, i.e. excluding
the tails of the resonance, leaves 14 energy levels – fitting
these also leads to mR, gR values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
ity in the single-channel and coupled-channel cases. Our
implementation is presented in [16] and reads, for `-wave
scattering,

t
�1
ij (s) =

1

(2ki)`
K

�1
ij (s)

1

(2kj)`
+ Iij(s) , (4)

where Kij(s) is a real function, and Iij(s) is the
Chew-Mandelstam function whose imaginary part above

Example: T1 irrep
energies

Now let’s see an application of the coupled-channel formalism: Hunting resonances using 
lattice QCD in the  P-wave coupled                   channel Wilson et al.(HadSpec), 

Phys.Rev. D92 (2015), 094502
⇡⇡ �KK

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3
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FIG. 6. The spectra obtained from various choices of operator basis in the T�
1 lattice irrep. The leftmost column contains

all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†

|0i, obtained from the variational solutions. See [28, 29] for
more details.
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⇡⇡ F -wave amplitude and higher play no significant role.
When partial waves above ` = 1 are negligible, then us-
ing Eq. 1 one can obtain an estimate of �1(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.
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finding that all choices capable of describing the finite
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certainty and the second comes from varying the pion
mass and anisotropy, ⇠, within their uncertainties. The
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rameters, which in this case is seen to be very small. The
corresponding �1(Ecm) is plotted in Figure 8.
Modifications to the Breit-Wigner form which tame

the k
3 barrier behavior at higher energies can be con-

sidered [22, 41] – fits to 22 levels with these forms yield
barely improved �

2 values and values of mR and gR that
are statistically compatible with those given above. Re-
stricting the energy region being described by the Breit-
Wigner of Eq. 2 to 0.117 < atEcm < 0.146, i.e. excluding
the tails of the resonance, leaves 14 energy levels – fitting
these also leads to mR, gR values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
ity in the single-channel and coupled-channel cases. Our
implementation is presented in [16] and reads, for `-wave
scattering,

t
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ij (s) =
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(2ki)`
K
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where Kij(s) is a real function, and Iij(s) is the
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FIG. 7. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift extracted from energy levels plotted in Figures 3 and 4, assuming
F -wave and higher partial-wave amplitudes are negligible in this energy region. Two points whose phase-shift values have
rather large error bars are not shown. Grey dashed vertical line shows the ⇡⇡⇡⇡ threshold.

FIG. 8. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift.
Points as in Figure 7. Curve shows the Breit-Wigner descrip-
tion whose parameters are given in Eq. 3.

thresholds, Im Iij(s) = ��ij ⇢i(s), ensures unitarity, and
whose real part is defined by a dispersive integral that
ensures that t(s) has no pseudothreshold branch point
(at s = 0).

In single-channel ⇡⇡ scattering with ` = 1, the K-
matrix is just a single function, and a convenient form
is

K(s) =
g
2

m2 � s
+

NX

n=0

�n

✓
s

s0

◆n

, (5)

with s0 = 4m2
⇡. Along with a suitable subtraction in the

dispersive integral for I(s) so that Re I(s = m
2) = 0, this

gives a t(s) behavior that is similar to a Breit-Wigner, but
with the polynomial allowing more freedom in the en-
ergy dependence. The 22 energy levels below 4⇡ thresh-

FIG. 9. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift.
Points as in Figure 7. Curves show the Breit-Wigner fit to
the whole elastic region (grey), a Breit-Wigner with Hippel-
Quigg [41] barrier corrections (orange), and a Breit-Wigner
description of a narrower energy region around the resonance
peak (red).

old have been described by this form for three choices,
N = 0, 1, 2, and without any polynomial term at all –
the results are presented in Table III. There is negli-
gible improvement in the �

2
/Ndof adding terms linear

or quadratic in s, and the corresponding parameters are
found to possess an increasingly large degree of correla-
tion. The phase-shifts corresponding to the fits in Ta-
ble III are plotted in Figure 10.
The assumption that ⇡⇡ F -wave scattering plays a

negligible role in determining the spectrum in the elas-
tic region, as was assumed in the previous analysis, can
be tested using the energy levels we have determined.
The irreps [100] B1 and B2 have J

P = 3� as their

P-wave        phase shift as a function of energy⇡⇡Example: T1 irrep
energies

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3

Wilson et al.(HadSpec), 
Phys.Rev. D92 (2015), 094502
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FIG. 6. The spectra obtained from various choices of operator basis in the T�
1 lattice irrep. The leftmost column contains

all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†

|0i, obtained from the variational solutions. See [28, 29] for
more details.
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⇡⇡ F -wave amplitude and higher play no significant role.
When partial waves above ` = 1 are negligible, then us-
ing Eq. 1 one can obtain an estimate of �1(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.
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finding that all choices capable of describing the finite
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certainty and the second comes from varying the pion
mass and anisotropy, ⇠, within their uncertainties. The
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rameters, which in this case is seen to be very small. The
corresponding �1(Ecm) is plotted in Figure 8.
Modifications to the Breit-Wigner form which tame

the k
3 barrier behavior at higher energies can be con-

sidered [22, 41] – fits to 22 levels with these forms yield
barely improved �

2 values and values of mR and gR that
are statistically compatible with those given above. Re-
stricting the energy region being described by the Breit-
Wigner of Eq. 2 to 0.117 < atEcm < 0.146, i.e. excluding
the tails of the resonance, leaves 14 energy levels – fitting
these also leads to mR, gR values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
ity in the single-channel and coupled-channel cases. Our
implementation is presented in [16] and reads, for `-wave
scattering,
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vant in this energy region, and later show that indeed the
⇡⇡ F -wave amplitude and higher play no significant role.
When partial waves above ` = 1 are negligible, then us-
ing Eq. 1 one can obtain an estimate of �1(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.

In order to describe the resonant content of the scatter-
ing amplitude we may explore energy-dependent param-
eterizations. We will consider various choices of energy-
dependent parameterization in the �
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scribed above and will later discuss their pole content,
finding that all choices capable of describing the finite
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finding that all choices capable of describing the finite
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by the equation,

det
h
�ij�``0�nn0

+ i⇢i(Ecm) t
(`)
ij (Ecm)

⇣
�``0�nn0 + iM

~P,⇤
`n;`0n0(q2i )

⌘ i
= 0.

(1)

where the determinant is over the channel indices
i and the partial-waves, `, subduced into irrep ⇤.
⇢i(Ecm) = 2ki/Ecm is the phase space for channel i,

and the finite-volume dependent matrix M
~P,⇤
`n;`0n0 , with

qi = kiL/2⇡ where ki is the cm momentum in channel i,
is described in Eq. 7 of Ref. [16] and Eq. 89 of Ref. [7].
This expression was derived in Refs. [11–14], and in the
case of a single open channel, reduces to the conditions
presented earlier in [6] and [7, 8]. In the elastic case,

t
(`) = 1

⇢e
i�` sin �`, and scattering can be described by a

single real function, the scattering phase-shift, �`(Ecm).
For a given t-matrix, the solutions of Eq. 1 provide

the finite volume spectrum, {En}, in each lattice ir-
rep ⇤ with some overall momentum ~P . In the elastic
case, if higher partial-waves have negligibly small am-
plitudes, as one expects at low energies, the equation
can be solved for �1(En) for each calculated En. In a
two-channel scattering problem there are three unknown
functions of energy to determine for each partial-wave4

so for a given level En this equation is underconstrained.
If higher partial waves are not negligible, there will be
still further unknowns. Fortunately, we are able to ex-
tract multiple energy levels in many irreps and these can
be simultaneously used to constrain the scattering am-
plitude as a function of energy. By parameterizing the
energy-dependence of the t-matrix, we can minimise a
�
2 function describing the di↵erence between the calcu-

lated spectrum and the spectrum given by solutions of
Eq. 1 for the t-matrix parameterization5. This method
was first applied to a coupled-channel situation using lat-
tice QCD energy levels in Ref. [15] and further details of
this method and our implementation may be found in
Ref. [16].

A. Elastic ⇡⇡ scattering

We first study the elastic region, by considering only
those levels extracted below the 4⇡ threshold, which lies
slightly below the KK threshold. We will initially pro-
ceed assuming that only ⇡⇡ scattering in P -wave is rele-

4 three independent parameters are required to describe a unitary,
time-reversal invariant, two-channel t-matrix

5 The explicit form of the �2 is provided in Eq. 9 of ref. [22]

M(s)
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the tails of the resonance, leaves 14 energy levels – fitting
these also leads to mR, gR values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
ity in the single-channel and coupled-channel cases. Our
implementation is presented in [16] and reads, for `-wave
scattering,
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Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3
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Using a range of parametrizations:
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Type Explicit form Npars �2/Ndof

K�matrix

Kij =
gigj
m2�s

+ �(0)
ij ; gKK̄ = 0 5 1.75

Kij =
gigj
m2�s

+ �(0)
ij ; �⇡⇡,KK̄ = 0 5 1.48

Kij =
gigj
m2�s

+ �(0)
ij ; �KK̄,KK̄ = 0 5 1.37

Kij =
gigj
m2�s

+ �(0)
ij 6 1.37

Kij =
gigj
m2�s

+ �(1)
ij s 6 1.41

Kij =
gigj
m2�s

+ �(0)
ij + �(1)

ij s; gKK̄ = 0 8 1.52

Kij =
gigj
m2�s

+ �(0)
ij + �(1)

ij s 9 1.39

K�matrix
with g(s)

Kij =
gi(s)gj(s)

m2�s
+ �(0)

ij ;
6 1.34

gi(s) = g(0)i + g(1)i s; �KK̄,KK̄ = 0, �⇡⇡,KK̄ = 0

Kij =
gi(s)gj(s)

m2�s
+ �(0)

ij ;
6 1.33

gi(s) = g(0)i + g(1)i s; �⇡⇡,⇡⇡ = 0, �⇡⇡,KK̄ = 0

Kij =
gi(s)gj(s)

m2�s
+ �(0)

ij ;
7 1.38

g⇡⇡(s) = g(0)⇡⇡ + g(1)⇡⇡ s, gKK̄(s) = g(0)
KK̄

Kij =
gi(s)gj(s)

m2�s
+ �(0)

ij ;
7 1.35

g⇡⇡(s) = g(0)⇡⇡ , gKK(s) = g(0)
KK̄

+ g(1)
KK̄

s

Kij =
gi(s)gj(s)

m2�s
+ �(0)

ij ;
8 1.37

gi(s) = g(0)i + g(1)i s

K�matrix
with

Ii(s) = �i⇢i(s)

Kij =
gigj
m2�s

+ �(0)
ij ; gKK = 0 5 1.57

Kij =
gigj
m2�s

+ �(0)
ij ; �⇡⇡,KK̄ = 0 5 1.40

Kij =
gigj
m2�s

+ �(0)
ij ; �KK̄,KK̄ = 0 5 1.58

Kij =
gigj
m2�s

+ �(0)
ij 6 1.45

TABLE IV. Coupled-channel K-matrix parameterizations.
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III. RESONANCE INTERPRETATION

Although we constrain partial-wave t-matrices only for
real values of energy, either from experimental scatter-
ing, or in this case from finite-volume spectra, the am-
plitudes may be considered to be functions of a complex
value of s = E

2
cm. That the singularity structure of t(s)

might be important is already apparent if we consider the
elastic unitarity condition, Im t(s) = ⇢(s) |t(s)|2, where
⇢(s) = 2kcm(s)/

p
s has a square root branch cut begin-

ning at the kinematic threshold. It follows that t(s) also
has this branch cut and remains single-valued only if we
consider two Riemann sheets, one where Im kcm is posi-
tive, the “physical” sheet, named because physical scat-
tering corresponds to energies s + i✏ on this sheet, and
one where Im kcm is negative, the “unphysical” sheet. As
more two-body channels open, a greater multiplicity of
sheets arises, corresponding to the increased number of
channel momenta.

The rapid phase and amplitude variation that we as-
sociate with a narrow resonance can be caused by a pole

at complex values of s = s0 =
�
m� i

1
2�

�2
on unphysical

sheets6. We may consider our parameterized t-matrices,
looking for poles at complex values of s, of the form
tij(s) ⇠

cicj
s0�s where we factorize the residue of the pole

into couplings to each channel, i.
We find that in every case we considered capable of

describing the finite-volume spectrum, both in single-
channel and coupled-channels, there is a statistically
well-determined pole near at

p
s0 =

�
0.1306� i

20.015
�
.

Parameterizations that do not contain the freedom for a
resonance pole to occur were not capable of successfully
describing the finite volume spectra. Figure 14 illustrates
the position of the found pole, with the lower portion of
the diagram showing a zoomed region in which the de-
termined pole is shown for a range of di↵erent parame-
terizations. A best estimate for the pole position, whose
uncertainties allow for the spread over parameterizations
is

at
p
s0 =

✓
0.13055(36)�

i

2
0.0150(14)

◆
.

The corresponding coupling to the ⇡⇡ channel also shows
very little variation under parameterizations with a good
estimate being at c⇡⇡ = 0.049(3) e�i⇡ 0.06(1). The cou-
pling to KK, which only arises in coupled-channel anal-
ysis is not well determined, having a large statistical un-
certainty. Along with the observation that the elastic
data can be very well described without invoking any
KK amplitude, we conclude that we have not reliably
constrained cKK . This is to be expected as the e↵ect
of the KK amplitude on the spectrum in finite-volume

6 a conjugate pole must also be present at s⇤0, but this pole is
usually much further from the region of physical scattering.

decays exponentially as we go lower in energy below the
KK threshold.
If we follow the procedure used in previous calcula-

tions, making use of the ⌦ baryon mass determined on
these lattice configurations, to set a physical scale we find
at =

atm⌦

mphys
⌦

, where atm⌦ is determined using lattice QCD

computation and m
phys
⌦ = 1672.5MeV is the experimen-

tal mass. Using 16 distillation vectors on this lattice we
have determined atm⌦ = 0.2789(16), which leads to an
approximate pion mass of m⇡ = 236 MeV.
With this scale setting, the resonance pole is located

at
p
s0 =

⇥
783(2)� i

290(8)
⇤
MeV. The scale-set Breit-

Wigner mass and width of Eq. 3 are mBW = 790(2)MeV,
�BW = 87(2)MeV, and a plot of the corresponding
phase-shift with the scale-set energy is presented in Fig-
ure 15.
An earlier calculation by the Hadron Spectrum Col-

laboration considered elastic ⇡⇡ scattering using lattice
configurations with the same quark and gluon action, but
with a larger value of the u, d quark mass, such that
the pion had a mass of 391MeV [22]. We compare the
Breit-Wigner parameters in this study with those deter-
mined for m⇡ = 391MeV in Table III7. The correspond-

-0.04

-0.03

-0.02

-0.01

0.08 0.10 0.12 0.14 0.16

-0.018

-0.017

-0.016

-0.015

-0.014

-0.013

-0.012

0.128 0.129 0.130 0.131 0.132 0.133

FIG. 14. Resonance pole position on first unphysical sheet.
Zoomed region shows the pole found for a variety of pa-
rameterizations: various descriptions of the elastic amplitude
(red), various K-matrix descriptions of the coupled-channel
t-matrix, using the Chew-Mandelstam phase-space (orange),
and using the simple phase-space (blue).

7 The results presented in [22] su↵er from a small error in the
computation of the o↵-diagonal data covariance, which we fix
here, leading to a very small shift (at the level of 1�) in the
quoted Breit-Wigner parameters with respect to that reference.

Pole position: All three scattering parameters:

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3

Wilson et al.(HadSpec), 
Phys.Rev. D92 (2015), 094502
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If there’s time, we will also discuss at least two methods to obtain structure functions such as 
PDFs from lattice QCD:

Moments of structure functions through 
matrix elements of local operators.

Quasi-PDFs from matrix elements in 
the large-momentum frame

Let’s enumerate some of the methods that give access to structure quantities in general:

Background-field 
methods

For e.g., EM moments and 
polarizabilities, charge 
radius, form factors and 
transition amplitudes.

Three(four)-point 
functions

For e.g., form factors, 
moments of structure 
functions, Compton 
amplitude, transition 

amplitudes

Feynman-Hellmann 
inspired methods

Similar to background 
fields. For e.g., axial charge, 
form factors, EM moments, 

transition amplitudes
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4.2. Three-Point Functions and Matrix Elements 29

where C is the charge-conjugation matrix, defined by the relation

C“µC≠1 = ≠“T

µ
. (4.46)

These are contracted with the Dirac projector

�unpol © 1
2(I + “4) , (4.47)

which projects definite positive parity. One may show using the transformation
properties of the fermion fields in Eqs. (4.23) and (4.24) that this projector achieves
the correct parity transformation for the interpolators of Eq. (4.44). Unlike in the
meson case, the forwards and backwards-propagating state of a baryon correlation
function are not in general symmetric or anti-symmetric. After projection to definite
parity, the forwards and backwards-propagating states are parity partners, and hence
it is standard to merely fit to the plateau region of the forwards propagating state,
and ignore the other half of the correlator.

The two-point function of the proton is given by

Cp(�unpol; xÕ, x) © [�unpol]–—

e
[‰p(xÕ)]

–
[ Â‰p(x)]

—

f
, (4.48)

which after considering all possible fully Wick contracted combinations becomes

Cp(�unpol; xÕ, x) ¥ ‘a
Õ
b

Õ
c

Õ
‘abc[C“5]–Õ—Õ [C“5]–—

[�unpol]““Õ
5 e

[Sd(xÕ, x)]b
Õ
b

—Õ—[Su(xÕ, x)]a
Õ
a

–Õ–[Su(xÕ, x)]c
Õ
c

“Õ“

f

latt

≠
e
[Sd(xÕ, x)]b

Õ
b

—Õ—[Su(xÕ, x)]a
Õ
c

–Õ“[Su(xÕ, x)]c
Õ
a

“Õ–

f

latt

6
, (4.49)

where no all-to-all propagators are involved. This is a general property for baryon two-
point functions, where the creation and annihilation operators are always constructed
from adjoint fermion and fermion fields respectively. We can construct the Fourier-
projected two-point function,

Gp(p = 0; �t) =
ÿ

xÕ
�3xÕ Cp(xÕ, x) large �tÃ e≠mN�t , (4.50)

which is shown in Fig. 4.4, as calculated on an N = 342 subset of Ensemble 1,
with mfi = 470 MeV. In this case we only show early times where we observe the
forwards-propagating state, and see the expected exponential decay of Eq. (4.50).
Fig. 4.5 shows the corresponding e�ective mass. We see the expected exponential
decay of the correlator, and the plateau in the e�ective mass at large times.

From an exponential fit to the plateau region, we extract the nucleon mass

amN = 0.4540(66) =∆ mN = 1211(38) MeV . (4.51)

This is consistent with the value calculated on the full ensemble, mN = 1246(36) MeV.

4.2 Three-Point Functions and Matrix Elements
Aside from hadron energies, hadronic matrix elements are some of the most commonly
calculated quantities in lattice QCD. These are accessed through the Euclidean three-
point function, defined as

CÂ‰O‰
(xÕ, y, x) © È‰(xÕ)O(y) Â‰(x)Í . (4.52)A three-point (3pt) 

function:
Create the state

Annihilate the state
Insert the 
operator
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where C is the charge-conjugation matrix, defined by the relation

C“µC≠1 = ≠“T

µ
. (4.46)

These are contracted with the Dirac projector

�unpol © 1
2(I + “4) , (4.47)

which projects definite positive parity. One may show using the transformation
properties of the fermion fields in Eqs. (4.23) and (4.24) that this projector achieves
the correct parity transformation for the interpolators of Eq. (4.44). Unlike in the
meson case, the forwards and backwards-propagating state of a baryon correlation
function are not in general symmetric or anti-symmetric. After projection to definite
parity, the forwards and backwards-propagating states are parity partners, and hence
it is standard to merely fit to the plateau region of the forwards propagating state,
and ignore the other half of the correlator.

The two-point function of the proton is given by

Cp(�unpol; xÕ, x) © [�unpol]–—

e
[‰p(xÕ)]

–
[ Â‰p(x)]

—
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, (4.48)

which after considering all possible fully Wick contracted combinations becomes
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where no all-to-all propagators are involved. This is a general property for baryon two-
point functions, where the creation and annihilation operators are always constructed
from adjoint fermion and fermion fields respectively. We can construct the Fourier-
projected two-point function,

Gp(p = 0; �t) =
ÿ

xÕ
�3xÕ Cp(xÕ, x) large �tÃ e≠mN�t , (4.50)

which is shown in Fig. 4.4, as calculated on an N = 342 subset of Ensemble 1,
with mfi = 470 MeV. In this case we only show early times where we observe the
forwards-propagating state, and see the expected exponential decay of Eq. (4.50).
Fig. 4.5 shows the corresponding e�ective mass. We see the expected exponential
decay of the correlator, and the plateau in the e�ective mass at large times.

From an exponential fit to the plateau region, we extract the nucleon mass

amN = 0.4540(66) =∆ mN = 1211(38) MeV . (4.51)

This is consistent with the value calculated on the full ensemble, mN = 1246(36) MeV.

4.2 Three-Point Functions and Matrix Elements
Aside from hadron energies, hadronic matrix elements are some of the most commonly
calculated quantities in lattice QCD. These are accessed through the Euclidean three-
point function, defined as

CÂ‰O‰
(xÕ, y, x) © È‰(xÕ)O(y) Â‰(x)Í . (4.52)A three-point (3pt) 

function:
Create the state
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Insert the 
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have

C
‰OÂ‰(xÕ, y, x) =

ÿ

X,k
Y,l

⁄ �3k

(2fi)3
�3l

(2fi)3
e≠EX(k)(tÕ

≠·)

2EX(k)
e≠EY(l)(·≠t)

2EY(l) eik·(xÕ
≠y)eil·(y≠x)

È�|‰(0)|X(k)Í ÈX(k)|O(0)|Y(l)Í ÈY(l)| Â‰(0)|�Í . (4.53)

We define the Fourier-projected three-point function as

G
‰OÂ‰(pÕ, p; tÕ, ·, t) ©
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�3xÕ �3y e≠ipÕ

·(xÕ
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‰OÂ‰(xÕ, y, x) , (4.54)

where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have

G
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È�|‰(0)|X(pÕ)Í ÈX(pÕ)|O(0)|Y(p)Í ÈY(p)| Â‰(0)|�Í . (4.55)

This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have

G
‰OÂ‰(pÕ, p; tÕ, ·, t) large t

Õ
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È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.56)

Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity

R
‰OÂ‰(pÕ, p; tÕ, ·, t) large t

Õ
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rÕ,r

È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.57)

While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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where C is the charge-conjugation matrix, defined by the relation

C“µC≠1 = ≠“T

µ
. (4.46)

These are contracted with the Dirac projector

�unpol © 1
2(I + “4) , (4.47)

which projects definite positive parity. One may show using the transformation
properties of the fermion fields in Eqs. (4.23) and (4.24) that this projector achieves
the correct parity transformation for the interpolators of Eq. (4.44). Unlike in the
meson case, the forwards and backwards-propagating state of a baryon correlation
function are not in general symmetric or anti-symmetric. After projection to definite
parity, the forwards and backwards-propagating states are parity partners, and hence
it is standard to merely fit to the plateau region of the forwards propagating state,
and ignore the other half of the correlator.

The two-point function of the proton is given by

Cp(�unpol; xÕ, x) © [�unpol]–—
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–
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which after considering all possible fully Wick contracted combinations becomes
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where no all-to-all propagators are involved. This is a general property for baryon two-
point functions, where the creation and annihilation operators are always constructed
from adjoint fermion and fermion fields respectively. We can construct the Fourier-
projected two-point function,

Gp(p = 0; �t) =
ÿ

xÕ
�3xÕ Cp(xÕ, x) large �tÃ e≠mN�t , (4.50)

which is shown in Fig. 4.4, as calculated on an N = 342 subset of Ensemble 1,
with mfi = 470 MeV. In this case we only show early times where we observe the
forwards-propagating state, and see the expected exponential decay of Eq. (4.50).
Fig. 4.5 shows the corresponding e�ective mass. We see the expected exponential
decay of the correlator, and the plateau in the e�ective mass at large times.

From an exponential fit to the plateau region, we extract the nucleon mass

amN = 0.4540(66) =∆ mN = 1211(38) MeV . (4.51)

This is consistent with the value calculated on the full ensemble, mN = 1246(36) MeV.

4.2 Three-Point Functions and Matrix Elements
Aside from hadron energies, hadronic matrix elements are some of the most commonly
calculated quantities in lattice QCD. These are accessed through the Euclidean three-
point function, defined as

CÂ‰O‰
(xÕ, y, x) © È‰(xÕ)O(y) Â‰(x)Í . (4.52)A three-point (3pt) 

function:
Create the state

Annihilate the state
Insert the 
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have

C
‰OÂ‰(xÕ, y, x) =

ÿ

X,k
Y,l

⁄ �3k

(2fi)3
�3l

(2fi)3
e≠EX(k)(tÕ

≠·)

2EX(k)
e≠EY(l)(·≠t)

2EY(l) eik·(xÕ
≠y)eil·(y≠x)

È�|‰(0)|X(k)Í ÈX(k)|O(0)|Y(l)Í ÈY(l)| Â‰(0)|�Í . (4.53)

We define the Fourier-projected three-point function as

G
‰OÂ‰(pÕ, p; tÕ, ·, t) ©

ÿ

xÕ,y
�3xÕ �3y e≠ipÕ

·(xÕ
≠y)e≠ip·(y≠x)C

‰OÂ‰(xÕ, y, x) , (4.54)

where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have

G
‰OÂ‰(pÕ, p; tÕ, ·, t) =

ÿ
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e≠EX(pÕ)(tÕ
≠·)

2EX(pÕ)
e≠EY(p)(·≠t)

2EY(p)
È�|‰(0)|X(pÕ)Í ÈX(pÕ)|O(0)|Y(p)Í ÈY(p)| Â‰(0)|�Í . (4.55)

This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have

G
‰OÂ‰(pÕ, p; tÕ, ·, t) large t

Õ
≠·,·≠t≠æ e≠EX0 (pÕ)(tÕ
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È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.56)

Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity

R
‰OÂ‰(pÕ, p; tÕ, ·, t) large t

Õ
≠·,·≠tÃ

ÿ
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È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.57)

While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have

C
‰OÂ‰(xÕ, y, x) =

ÿ

X,k
Y,l

⁄ �3k

(2fi)3
�3l

(2fi)3
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≠y)eil·(y≠x)

È�|‰(0)|X(k)Í ÈX(k)|O(0)|Y(l)Í ÈY(l)| Â‰(0)|�Í . (4.53)

We define the Fourier-projected three-point function as

G
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�3xÕ �3y e≠ipÕ

·(xÕ
≠y)e≠ip·(y≠x)C

‰OÂ‰(xÕ, y, x) , (4.54)

where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have

G
‰OÂ‰(pÕ, p; tÕ, ·, t) =

ÿ

X,Y

e≠EX(pÕ)(tÕ
≠·)

2EX(pÕ)
e≠EY(p)(·≠t)

2EY(p)
È�|‰(0)|X(pÕ)Í ÈX(pÕ)|O(0)|Y(p)Í ÈY(p)| Â‰(0)|�Í . (4.55)

This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have

G
‰OÂ‰(pÕ, p; tÕ, ·, t) large t
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È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.56)

Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity

R
‰OÂ‰(pÕ, p; tÕ, ·, t) large t
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While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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where C is the charge-conjugation matrix, defined by the relation

C“µC≠1 = ≠“T

µ
. (4.46)

These are contracted with the Dirac projector

�unpol © 1
2(I + “4) , (4.47)

which projects definite positive parity. One may show using the transformation
properties of the fermion fields in Eqs. (4.23) and (4.24) that this projector achieves
the correct parity transformation for the interpolators of Eq. (4.44). Unlike in the
meson case, the forwards and backwards-propagating state of a baryon correlation
function are not in general symmetric or anti-symmetric. After projection to definite
parity, the forwards and backwards-propagating states are parity partners, and hence
it is standard to merely fit to the plateau region of the forwards propagating state,
and ignore the other half of the correlator.

The two-point function of the proton is given by

Cp(�unpol; xÕ, x) © [�unpol]–—
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where no all-to-all propagators are involved. This is a general property for baryon two-
point functions, where the creation and annihilation operators are always constructed
from adjoint fermion and fermion fields respectively. We can construct the Fourier-
projected two-point function,

Gp(p = 0; �t) =
ÿ

xÕ
�3xÕ Cp(xÕ, x) large �tÃ e≠mN�t , (4.50)

which is shown in Fig. 4.4, as calculated on an N = 342 subset of Ensemble 1,
with mfi = 470 MeV. In this case we only show early times where we observe the
forwards-propagating state, and see the expected exponential decay of Eq. (4.50).
Fig. 4.5 shows the corresponding e�ective mass. We see the expected exponential
decay of the correlator, and the plateau in the e�ective mass at large times.

From an exponential fit to the plateau region, we extract the nucleon mass

amN = 0.4540(66) =∆ mN = 1211(38) MeV . (4.51)

This is consistent with the value calculated on the full ensemble, mN = 1246(36) MeV.

4.2 Three-Point Functions and Matrix Elements
Aside from hadron energies, hadronic matrix elements are some of the most commonly
calculated quantities in lattice QCD. These are accessed through the Euclidean three-
point function, defined as

CÂ‰O‰
(xÕ, y, x) © È‰(xÕ)O(y) Â‰(x)Í . (4.52)A three-point (3pt) 
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have

C
‰OÂ‰(xÕ, y, x) =
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X,k
Y,l
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È�|‰(0)|X(k)Í ÈX(k)|O(0)|Y(l)Í ÈY(l)| Â‰(0)|�Í . (4.53)

We define the Fourier-projected three-point function as
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where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have
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This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have
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Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity
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While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have

C
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We define the Fourier-projected three-point function as
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where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have
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This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have

G
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Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity

R
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While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
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Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity

R
‰OÂ‰(pÕ, p; tÕ, ·, t) large t

Õ
≠·,·≠tÃ

ÿ

rÕ,r

È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.57)

While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
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QCD. It includes the matrix elements of the operator O for all states coupling to
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Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
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While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function



EXERCISE 4

If the computational resources do not allow large source, operator and sink time 
separations to be achieved, one should worry about the effect of excited states. One way to 
have more confidence over the extracted ground state to ground state matrix element is to 
perform a multi-exponential fits to the ratio of 3pt to 2pt functions as a function of both the 
source-sink and the source-operator separations. Assume that both the ground state and the 
first excited states contribute significantly to such a ratio. Write down a generic form for 
such a multi-exponential function.

In the above exercise, sum over the time insertions of the operator and write down a new 
form for the ratio of 3pt to 2pt functions, which now is only a function of the source-sink 
time separation. This is referred to as the summation method in literature.

BONUS EXERCISE 3



Hadron Structure Martha Constantinou

ΠR(Γ,!q) = ZOΠ(Γ,!q) . (2.4)

Finally, the nucleon matrix elements can be parameterized in terms of Generalized Form Fac-
tors (GFFs). As an example we take the axial current insertion which decomposes into two Lorentz
invariant Form Factors (FFs), the axial (GA) and pseudoscalar (Gp):

〈N(p′,s′)|ψ̄(x)γµ γ5ψ(x)|N(p,s)〉= i

(

m2
N

EN(p′)EN(p)

)1/2

ūN(p′,s′)

[

GA(q2)γµγ5+
qµγ5

2mN
Gp(q2)

]

uN(p,s) ,

(2.5)
where q2 is the momentum transfer in Minkowski space (hereafter, Q2 =−q2).

In these proceedings I will mostly consider the flavor isovector combination for which the
disconnected contribution cancels out; strictly speaking, this happens for actions with exact isospin
symmetry. Another advantage of the isovector combination is that the renormalization simplifies
considerably.

2.1 Nucleon Axial Charge

One of the fundamental nucleon observables is the axial charge, gA ≡ GA(0), which is deter-
mined from the forward matrix element of the axial current. gqA gives the intrinsic quark spin in the
nucleon. It governs the rate of β -decay and has been measured precisely. In the lattice QCD it can
be determined directly from the evaluation of the matrix element and thus, there is no ambiguity
asocciated to fits. For this reasons, gA is an optimal benchmark quantity for hadron structure com-
putations. It is thus essential for lattice QCD to reproduce its experimental value or if a deviation
is observed to understand its origin.
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Figure 2: Collection of lattice results for gA. In chronological order these correspond to: Nf=2+1 DWF
(RBC/UKQCD [11, 12], RBC/UKQCD [13], χQCD [14]), Nf=2+1 DWF on asqtad sea (LHPC [15]),
Nf=2 TMF (ETMC [16]), Nf=2 Clover (QCDSF/UKQCD [17], CLS/MAINZ [18], QCDSF [19],
RQCD [20, 21]), Nf=1+2 Clover (LHPC [22], CSSM [23]), Nf=2+1+1 TMF (ETMC [24]), Nf=2+1+1
HISQ (PNDME [25, 26]), Nf=2 TMF with Clover (ETMC [27]). The asterisk is the experimental value.
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Nucleon spinorAxial-vector current Axial and pseudo scalar form factors
GA(0) = gA

Example: The application of 3pt function method to 
obtain the axial charge/form factors of the nucleon

Constantinou, arXiv:1411.0078 [hep-lat].
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fraction, as well as the nucleon spin, including disconnected contributions. The systematic un-
certainties are investigated and where possible we compare with experimental / phenomenological
data. Recent results on Generalized Form Factors for other baryons and mesons are also presented,
as well as, perspectives and future directions.

2. Nucleon Sector
Although the nucleon is the only stable hadron in the Standard Model, its structure is not fully

understood. Being one of the building-blocks in the universe, the nucleon provides an extremely
valuable laboratory for studying strong dynamics providing important input that can also shed
light in new Physics searches. There have been numerous recent lattice QCD results on nucleon
observables. Here, we discuss selected achievements, as well as, challenges involved in these
computations.

In a nutshell, in the evaluation of nucleon matrix elements in lattice QCD there are two type
of diagrams entering shown in Fig. 1. The disconnected diagram has been neglected in most of the
studies because it is very noisy and expensive to compute. During the last few years a number of
groups are studying various techniques for its computation and first results already appear in the
literature [7 – 10].

q = p p

(x , t)
(x i , ti)(x f , tf )

O Γ

q = p ′ − p

(x , t)
(x i , ti)(x f , tf )

O Γ

Figure 1: Connected (left) and disconnected (right) contributions to the nucleon three-point function.

In the computation of nucleon matrix elements one needs appropriate two- and three-point
correlation functions defined as:

G2pt(!q, t f ) = ∑
!x f
e−i!x f ·!qΓ0βα 〈Jα(!x f , t f )Jβ (0)〉 , (2.1)

G3pt
O

(Γµ ,!q, t f ) = ∑
!x f ,!x

ei!x·!q e−i!x f ·!p
′
Γµβα 〈Jα(!x f , t f )O(!x, t)Jβ (0)〉 . (2.2)

The projectors Γµ are defined as Γ0 ≡ 1
4(1+ γ0), Γk ≡ Γ0 · γ5 · γk . Other Γ-variations can be em-

ployed, in order to compute the quantities of interest. The lattice data are extracted from dimen-
sionless ratio of the two- and three-point correlation functions:

RO(Γ,!q, t, t f )=
G3pt

O
(Γ,!q, t)

G2pt(!0, t f )
×

√

G2pt(−!q, t f−t)G2pt(!0, t)G2pt(!0, t f )
G2pt(!0, t f−t)G2pt(−!q, t)G2pt(−!q, t f )

→
t f−t→∞
t−ti→∞

Π(Γ,!q) . (2.3)

The above ratio is considered optimized since it does not contain potentially noisy two-point func-
tions at large separations and because correlations between its different factors reduce the statistical
noise. The most common method to extract the desired matrix element is to look for a plateau with
respect to the current insertion time, t (or, alternatively, the sink time, t f ), which should be located
at a time well separated from the creation and annihilation times in order to ensure single state
dominance. To establish proper connection to experiments we apply renormalization which, for
the quantities discussed in this review, is multiplicative:
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ΠR(Γ,!q) = ZOΠ(Γ,!q) . (2.4)

Finally, the nucleon matrix elements can be parameterized in terms of Generalized Form Fac-
tors (GFFs). As an example we take the axial current insertion which decomposes into two Lorentz
invariant Form Factors (FFs), the axial (GA) and pseudoscalar (Gp):

〈N(p′,s′)|ψ̄(x)γµ γ5ψ(x)|N(p,s)〉= i
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)1/2
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[

GA(q2)γµγ5+
qµγ5

2mN
Gp(q2)

]

uN(p,s) ,

(2.5)
where q2 is the momentum transfer in Minkowski space (hereafter, Q2 =−q2).

In these proceedings I will mostly consider the flavor isovector combination for which the
disconnected contribution cancels out; strictly speaking, this happens for actions with exact isospin
symmetry. Another advantage of the isovector combination is that the renormalization simplifies
considerably.

2.1 Nucleon Axial Charge

One of the fundamental nucleon observables is the axial charge, gA ≡ GA(0), which is deter-
mined from the forward matrix element of the axial current. gqA gives the intrinsic quark spin in the
nucleon. It governs the rate of β -decay and has been measured precisely. In the lattice QCD it can
be determined directly from the evaluation of the matrix element and thus, there is no ambiguity
asocciated to fits. For this reasons, gA is an optimal benchmark quantity for hadron structure com-
putations. It is thus essential for lattice QCD to reproduce its experimental value or if a deviation
is observed to understand its origin.
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Figure 2: Collection of lattice results for gA. In chronological order these correspond to: Nf=2+1 DWF
(RBC/UKQCD [11, 12], RBC/UKQCD [13], χQCD [14]), Nf=2+1 DWF on asqtad sea (LHPC [15]),
Nf=2 TMF (ETMC [16]), Nf=2 Clover (QCDSF/UKQCD [17], CLS/MAINZ [18], QCDSF [19],
RQCD [20, 21]), Nf=1+2 Clover (LHPC [22], CSSM [23]), Nf=2+1+1 TMF (ETMC [24]), Nf=2+1+1
HISQ (PNDME [25, 26]), Nf=2 TMF with Clover (ETMC [27]). The asterisk is the experimental value.
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(vanishes at isospin limit for isovector quantities)      

Example: The application of 3pt function method to 
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FIG. 9. Comparison between the 2⇤ and 3⇤ fits to the axial charge gu�d

A
data from the a ⇡ 0.15 fm (top row) and a ⇡ 0.12 fm

(bottom 4 rows) ensembles. The results of the fits are summarized in Table XIII along with the number of points tskip skipped.
The first two columns show 2⇤ fits to data versus t at a single value of ⌧ , while the third panel shows the 3⇤ fit using data at
multiple values of ⌧ . The labels give the ensemble ID, and the values of ⌧ used in the fits. The ⌧ ! 1 value is given by the
grey band in each panel.
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FIG. 9. Comparison between the 2⇤ and 3⇤ fits to the axial charge gu�d

A
data from the a ⇡ 0.15 fm (top row) and a ⇡ 0.12 fm

(bottom 4 rows) ensembles. The results of the fits are summarized in Table XIII along with the number of points tskip skipped.
The first two columns show 2⇤ fits to data versus t at a single value of ⌧ , while the third panel shows the 3⇤ fit using data at
multiple values of ⌧ . The labels give the ensemble ID, and the values of ⌧ used in the fits. The ⌧ ! 1 value is given by the
grey band in each panel.

Source-sink separation

t

⌧

Operator-source 
separation

13

g
u
−
d

A

a [fm]

a15m310
a12m310
a12m220L
a12m220
a12m220S

a09m310
a09m220
a09m130
a06m310
a06m220

a06m135
extrap.
1-extrap.

1.2

1.3

0 0.03 0.06 0.09 0.12 0.15

g
u
−
d

A

M2π [GeV
2]

1.2

1.3

0.02 0.04 0.06 0.08 0.1 0.12

g
u
−
d

A

MπL

1.2

1.3

3 4 5 6 7

g
u
−
d

S

a [fm]

a15m310
a12m310
a12m220L
a12m220
a12m220S

a09m310
a09m220
a09m130
a06m310
a06m220

a06m135
extrap.
1-extrap.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 0.03 0.06 0.09 0.12 0.15

g
u
−
d

S

M2π [GeV
2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0.02 0.04 0.06 0.08 0.1 0.12

g
u
−
d

S

MπL

0.7

0.8

0.9

1.0

1.1

1.2

1.3

3 4 5 6 7

g
u
−
d

T

a [fm]

a15m310
a12m310
a12m220L
a12m220
a12m220S

a09m310
a09m220
a09m130
a06m310
a06m220

a06m135
extrap.
1-extrap.

1.0

1.1

0 0.03 0.06 0.09 0.12 0.15

g
u
−
d

T

M2π [GeV
2]

1.0

1.1

0.02 0.04 0.06 0.08 0.1 0.12

g
u
−
d

T

MπL

1.0

1.1

3 4 5 6 7

FIG. 2. The 11-point CCFV fit using Eq. (12) to the data for the renormalized isovector charges gu�d
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scheme at 2 GeV. The result of the simultaneous extrapolation to the physical point defined by a ! 0, M⇡ ! Mphys

⇡0 = 135 MeV
and M⇡L ! 1 are marked by a red star. The pink error band in each panel is the result of the simultaneous fit but shown as
a function of a single variable. The overlay in the left (middle) panels with the dashed line within the grey band is the fit to
the data versus a (M2

⇡), i.e., neglecting dependence on the other two variables. The symbols used to plot the data are defined
in the left panels.
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Compilation of results

16

Error From gu�d

A
gu�d

S
gu�d

T

SESC 0.02 * 0.03 * 0.01 +

Z 0.01 + 0.04 * 0.03 +

a 0.02 + 0.04 * 0.01 +

Chiral 0.01 * 0.01 + 0.02 +

Finite volume 0.01 * 0.01 * 0.01 *

Guesstimate error 0.033 0.066 0.04
Error quoted 0.025 0.080 0.032
Fit ansatz 0.03 0.06 0.01

TABLE IX. Estimates of the error budget for the three isovec-
tor charges due to each of the five systematic e↵ects described
in the text. The symbols * and + indicate the direction in
which a given systematic is observed to drive the central value
obtained from the 11-point fit. The sixth row gives a guessti-
mate of error obtained by combining these five systematics
in quadrature. This guesstimate is consistent with the actual
errors obtained from the 11-point fit and quoted in Eq. 13
and reproduced in the seventh row. The last row gives the
additional systematic error assigned to account for possible
uncertainty due to the using the CCFV fit ansatz with just
the lowest order correction terms as described in the text.

MN �MP Nf {md,mu}
QCD

(MeV) Flavors (MeV)

2.58(32) 2+1 md = 4.68(14)(7),mu = 2.16(9)(7) [50]

2.73(44) 2+1+1 md = 5.03(26),mu = 2.36(24) [50]

2.41(27) 2+1 md �mu = 2.41(6)(4)(9) [51]

2.63(27) 2+1+1 md = 4.690(54),mu = 2.118(38) [52]

TABLE X. Results for the mass di↵erence (MN � MP )
QCD

obtained using the CVC relation with our estimate gu�d

S
=

1.022(80)(60) and lattice results for the up and down quark
masses from the FLAG review [50] and recent results [51, 52].

Figs. 5, 6 and 7. They show the steady improvement in
results from lattice QCD. In this section we compare our
results with two calculations published after the analy-
sis and the comparison presented in Ref. [3], and that
include data from physical pion mass ensembles. These
are the ETMC [36, 37, 53] and CalLat results [47].

The ETMC results gu�d

A
= 1.212(40), gu�d

S
= 0.93(33)

and g
u�d

T
= 1.004(28) [36, 37, 53] were obtained from

a single physical mass ensemble generated with 2-flavors
of maximally twisted mass fermions with a clover term
at a = 0.0938(4) fm, M⇡ = 130.5(4) MeV and M⇡L =
2.98. Assuming that the number of quark flavors and
finite volume corrections do not make a significant di↵er-
ence, one could compare them against our results from
the a09m130W ensemble with similar lattice parame-
ters: g

u�d

A
= 1.249(21), gu�d

S
= 0.952(74) and g

u�d

T
=

1.011(30). We remind the reader that this comparison is
at best qualitative since estimates from di↵erent lattice
actions are only expected to agree in the continuum limit.

Based on the trends observed in our CCFV fits shown
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FIG. 5. A summary of results for the axial isovec-
tor charge, gu�d

A
, for Nf = 2- 2+1- and 2+1+1-

flavors. Note the much finer x-axis scale for the plot
showing experimental results for gu�d

A
. The lattice re-

sults (top panel) are from: PNDME’18 (this work);
PNDME’16 [3]; CalLat’18 [47]; LHPC’14 [54]; LHPC’10 [55];
RBC/UKQCD’08 [56]; Lin/Orginos’07 [57]; ETMC’17 [37,
53]; Mainz’17 [58] RQCD’14 [59]; QCDSF/UKQCD’13 [60];
ETMC’15 [61] and RBC’08 [62]. Phenomenological and other
experimental results (middle panel) are from: AWSR’16 [63]
and COMPASS’15 [64]. The results from neutron de-
cay experiments (bottom panel) have been taken from:
Brown’17 [9]; Mund’13 [10]; Mendenhall’12 [8]; Liu’10 [65];
Abele’02 [66]; Mostovoi’01 [67]; Liaud’97 [68]; Yerozolim-
sky’97 [69] and Bopp’86 [70]. The lattice-QCD estimates in
red indicate that estimates of excited-state contamination,
or discretization errors, or chiral extrapolation were not pre-
sented. When available, systematic errors have been added to
statistical ones as outer error bars marked with dashed lines.

in Figs. 2–4, we speculate where one may expect to see a
di↵erence due to the lack of a continuum extrapolation in
the ETMC results. The quantities that exhibit a signifi-
cant slope versus a are g

u�d

A
and g

u�d

S
. Again, under the

assumptions stated above, we would expect ETMC val-
ues gu�d

A
= 1.212(40) to be larger and g

u�d

S
= 0.93(33) to

be smaller than our extrapolated values given in Eq. (13).
We find that the scalar charge (ignoring the large error)
fits the expected pattern, but the axial charge does not.
We also point out that the ETMC error estimates are

taken from a single ensemble and a single value of the
source-sink separation using the plateau method. Our re-
sults from the comparable calculation on the a09m130W
ensemble with ⌧ = 14 (see Figs. 10 and 16 and results in
Table XIII), have much smaller errors.
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in Figs. 2–4, we speculate where one may expect to see a
di↵erence due to the lack of a continuum extrapolation in
the ETMC results. The quantities that exhibit a signifi-
cant slope versus a are g
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and g
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. Again, under the

assumptions stated above, we would expect ETMC val-
ues gu�d

A
= 1.212(40) to be larger and g
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= 0.93(33) to

be smaller than our extrapolated values given in Eq. (13).
We find that the scalar charge (ignoring the large error)
fits the expected pattern, but the axial charge does not.
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taken from a single ensemble and a single value of the
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FIG. 4. Electric (left) and isovector axial (right) form factors of the nucleon vs Q2 = �q2. Data
from Ref. [66, 75].

tors for a long time. A representative set of recent work can be found in Refs. [60–74]
Significant improvements have been made to investigate the quark-mass, finite-volume, and
finite-lattice-spacing dependence, and the e↵ects of excited-state contamination in the corre-
lation functions. With these technical and algorithmic advances, lattice QCD can calculate
not only the isovector contribution but also the computationally more demanding isoscalar
and strange-quark contributions, which are needed for neutral-current processes, discussed
below.

Sample lattice-QCD calculations [66, 75] of the nucleon isovector electric and axial form
factors—GE and FA—are shown in Fig. 4. Eight di↵erent 2 + 1 + 1-flavor HISQ ensembles
generated by the MILC collaboration [40] with lattice spacings in the range 0.06–0.12 fm
and pion mass in the range 130–310 MeV are employed. In this calculation, excited-state
contamination is controlled via a three-state fit. The results are in good agreement with the
experimental data for the nucleon electromagnetic form factorGE(q2) On the other hand, the
axial form factor is not as steep as experimental determinations with mA ⇡ 1 GeV [76], yet
is compatible with MiniBooNE’s mA ⇡ 1.35 GeV [55]. Despite the many laudable aspects
of Ref. [66], a full and robust accounting of all systematics involved in these lattice-QCD
calculations has not yet been feasible. Reliable confrontation with precise experimental
data for GE—and, hence, a solid prediction of FA—requires an increase in computational
resources to overcome the technical obstacles to nucleon matrix elements, discussed in Sec. I.

The status of lattice-QCD calculations of gA and r2
A is shown in Fig. 5. The left plot [77],

for gA, shows that lattice-QCD is at this time much less precise than the results from neutron
� decay.2 Note, however, that bottle and beam experiments measuring the neutron lifetime
yield values of gA that di↵er by 3�. For example, a 2015 bottle measurement leads to
gA = 1.2749(11) [80], while a 2013 beam measurement leads to gA = 1.2684(20) [81]. It
would be interesting to know the answer from lattice QCD. The precision required depends
on whether the (average of several) calculation(s) lands between the two neutron-lifetime
values or outside the interval. In the latter case, at least percent-level precision is needed,
which is likely to be achieved with three years (assuming sustained computing support). If

2 The color code here is adapted from the Flavor Lattice Averaging Group [78], as specified in the Appendix

of Ref. [79].
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Quark spin Total gluon 
angular 
momentum

2

pseudoscalar renormalization function determined non-
perturbatively in the MS at 2 GeV [17].

Matrix elements: We use Ji’s sum rule [20], that pro-
vides a gauge invariant decomposition of the nucleon spin
as

JN=
X

q=u,d,s,c···

✓
1

2
�⌃q + Lq

◆
+ Jg,

where 1
2�⌃q is the contribution from the intrinsic quark

spin, Lq the quark orbital angular momentum and Jg is
the gluon total angular momentum. The quark intrinsic
spin 1

2�⌃q is obtained from the first Mellin moment of
the polarized parton distribution function (PDF), which
is the nucleon matrix element of the axial-vector opera-
tor. The total quark angular momentum, Jq, can be ex-
tracted by computing the second Mellin moment of the
unpolarized nucleon PDF, which is the nucleon matrix
element of the vector one-derivative operator at zero mo-
mentum transfer. These matrix elements in Euclidean
space are given by

hN(p, s0)|Oµ
A|N(p, s)i=ūN (p, s0)

h
gqA�

µ�5
i
uN (p, s),

hN(p0, s0)|Oµ⌫
V |N(p, s)i=ūN (p0, s0)⇤q

µ⌫(Q
2)uN (p, s),

⇤µ⌫
q (Q2)=Aq

20(Q
2)�{µP ⌫} +Bq

20(Q
2)
�{µ↵q↵P ⌫}

2m

+ Cq
20(Q

2)
1

m
Q{µQ⌫}, (1)

with Q=p0�p the momentum transfer and P=(p0+p)/2
the total momentum. The axial-vector operator is
O

µ
A=q̄�µ�5q and the one-derivative vector operator

O
µ⌫
V =q̄�{µ !D ⌫}q, where the curly brackets in OV rep-

resent a symmetrization over pairs of indices and a sub-
traction of the trace. ⇤µ⌫

q is decomposed in terms of
three Lorentz invariant generalized form factors (GFFs)
Aq

20(Q
2), Bq

20(Q
2) and Cq

20(Q
2). A corresponding decom-

position can also be made for the nucleon matrix element
of the gluon operator O

µ⌫
g . The quark (gluon) total an-

gular momentum can be written as Jq(g)=
1
2 [A

q(g)
20 (0) +

Bq(g)
20 (0)], while the average momentum fraction is deter-

mined from Aq(g)
20 (0)=hxiq(g) and gqA⌘�⌃q where gqA is

the nucleon axial charge. While Aq
20(0) can be extracted

directly at Q2=0, Bq
20(0) needs to be extrapolated to

Q2=0 using the values obtained at finite Q2.
We compute the gluon momentum fraction by consid-

ering the Q2=0 nucleon matrix element of the operator
O

µ⌫
g =2Tr[Gµ�G⌫�], taking the combination Og⌘O44 �

1
3Ojj ,

hN(p, s0)|Og|N(p, s)i=

✓
� 4E2

N �
2

3
~p2
◆
hxig, (2)

where we further take the nucleon momentum ~p=0.

In lattice QCD the aforementioned nucleon matrix ele-
ments are extracted from a ratio, R�(ts, tins), of a three-
point function G3pt

� (ts, tins) constructed with an opera-
tor � coupled to a quark divided by the nucleon two-
point functions G2pt(ts), where tins is the time slice of
the operator insertion relative to the time slice where
a state with the quantum numbers of the nucleon is
created (source). For su�ciently large time separations
ts � tins and tins the ratio R�(ts, tins), yields the appro-
priate nucleon matrix element. To determine B20(Q2)
we need the nucleon matrix element for Q2

6= 0, which
can be extracted by defining an equivalent ratio as de-
scribed in detail in Refs. [21–23]. An extrapolation of
B20(Q2) is then carried out to obtain B20(0). We em-
ploy three approaches in order to check that the time
separations ts � tins and tins are su�ciently large to sup-
press higher energy states with the same quantum num-
bers with the nucleon. These are: i) Plateau method.
Identify the range of tins for which the ratio R�(ts, tins)
becomes time-independent and perform a constant fit;
ii) Summation method. Summing R�(ts, tins) over
tins, to yield

P
tins

R�(ts, tins)=Rsum
� (ts)=C + tsM +

O
�
e�(E1�E0)ts)

�
+ · · · , where C is a constant. The ma-

trix elementM is then obtained from the slope of a linear
fit with respect to ts; iii) Two-state fit method. We per-
form a simultaneous fit to the three- and two-point func-
tion varying tins for several values of ts include the first
excited state in the fit function. If excited states are sup-
pressed, the plateau method should yield consistent val-
ues when increasing ts within a su�ciently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
these values are compatible with the results extracted
from the two-state fit and the summation method. We
take the di↵erence between the plateau and two-state fit
values as a systematic error due to residual excited states.

The three-point functions for the axial-vector and
vector one-derivative operators entering the ratio
R�(ts, tins), receive two contributions, one when the op-
erator couples to the valence up and down quarks (so-
called connected) and when it couples to sea quarks and
gluons (disconnected). The connected contributions are
computed by employing sequential inversion through the
sink [24]. Disconnected diagrams are computationally
very demanding, due to the fact that they involve a
closed quark loop and thus a trace over the quark prop-
agator. A feasible alternative is to employ stochastic
techniques [25] to obtain an estimate of the all-to-all
propagator needed for the evaluation of the closed quark
loop. For the up and down quarks, we utilize exact defla-
tion [26, 27], by computing the Nev lowest eigenmodes of
the Dirac matrix to precondition the conjugate gradient
(CG) solver. Taking Nev=500 yields an improvement of
about twenty times, compared to the standard conjugate
gradient method. We also exploit the properties of the
twisted mass action to improve our computation using
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where we further take the nucleon momentum ~p=0.

In lattice QCD the aforementioned nucleon matrix ele-
ments are extracted from a ratio, R�(ts, tins), of a three-
point function G3pt

� (ts, tins) constructed with an opera-
tor � coupled to a quark divided by the nucleon two-
point functions G2pt(ts), where tins is the time slice of
the operator insertion relative to the time slice where
a state with the quantum numbers of the nucleon is
created (source). For su�ciently large time separations
ts � tins and tins the ratio R�(ts, tins), yields the appro-
priate nucleon matrix element. To determine B20(Q2)
we need the nucleon matrix element for Q2

6= 0, which
can be extracted by defining an equivalent ratio as de-
scribed in detail in Refs. [21–23]. An extrapolation of
B20(Q2) is then carried out to obtain B20(0). We em-
ploy three approaches in order to check that the time
separations ts � tins and tins are su�ciently large to sup-
press higher energy states with the same quantum num-
bers with the nucleon. These are: i) Plateau method.
Identify the range of tins for which the ratio R�(ts, tins)
becomes time-independent and perform a constant fit;
ii) Summation method. Summing R�(ts, tins) over
tins, to yield

P
tins

R�(ts, tins)=Rsum
� (ts)=C + tsM +

O
�
e�(E1�E0)ts)

�
+ · · · , where C is a constant. The ma-

trix elementM is then obtained from the slope of a linear
fit with respect to ts; iii) Two-state fit method. We per-
form a simultaneous fit to the three- and two-point func-
tion varying tins for several values of ts include the first
excited state in the fit function. If excited states are sup-
pressed, the plateau method should yield consistent val-
ues when increasing ts within a su�ciently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
these values are compatible with the results extracted
from the two-state fit and the summation method. We
take the di↵erence between the plateau and two-state fit
values as a systematic error due to residual excited states.

The three-point functions for the axial-vector and
vector one-derivative operators entering the ratio
R�(ts, tins), receive two contributions, one when the op-
erator couples to the valence up and down quarks (so-
called connected) and when it couples to sea quarks and
gluons (disconnected). The connected contributions are
computed by employing sequential inversion through the
sink [24]. Disconnected diagrams are computationally
very demanding, due to the fact that they involve a
closed quark loop and thus a trace over the quark prop-
agator. A feasible alternative is to employ stochastic
techniques [25] to obtain an estimate of the all-to-all
propagator needed for the evaluation of the closed quark
loop. For the up and down quarks, we utilize exact defla-
tion [26, 27], by computing the Nev lowest eigenmodes of
the Dirac matrix to precondition the conjugate gradient
(CG) solver. Taking Nev=500 yields an improvement of
about twenty times, compared to the standard conjugate
gradient method. We also exploit the properties of the
twisted mass action to improve our computation using
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fraction, as well as the nucleon spin, including disconnected contributions. The systematic un-
certainties are investigated and where possible we compare with experimental / phenomenological
data. Recent results on Generalized Form Factors for other baryons and mesons are also presented,
as well as, perspectives and future directions.

2. Nucleon Sector
Although the nucleon is the only stable hadron in the Standard Model, its structure is not fully

understood. Being one of the building-blocks in the universe, the nucleon provides an extremely
valuable laboratory for studying strong dynamics providing important input that can also shed
light in new Physics searches. There have been numerous recent lattice QCD results on nucleon
observables. Here, we discuss selected achievements, as well as, challenges involved in these
computations.

In a nutshell, in the evaluation of nucleon matrix elements in lattice QCD there are two type
of diagrams entering shown in Fig. 1. The disconnected diagram has been neglected in most of the
studies because it is very noisy and expensive to compute. During the last few years a number of
groups are studying various techniques for its computation and first results already appear in the
literature [7 – 10].

q = p p

(x , t)
(x i , ti)(x f , tf )

O Γ

q = p ′ − p

(x , t)
(x i , ti)(x f , tf )

O Γ

Figure 1: Connected (left) and disconnected (right) contributions to the nucleon three-point function.

In the computation of nucleon matrix elements one needs appropriate two- and three-point
correlation functions defined as:

G2pt(!q, t f ) = ∑
!x f
e−i!x f ·!qΓ0βα 〈Jα(!x f , t f )Jβ (0)〉 , (2.1)

G3pt
O

(Γµ ,!q, t f ) = ∑
!x f ,!x

ei!x·!q e−i!x f ·!p
′
Γµβα 〈Jα(!x f , t f )O(!x, t)Jβ (0)〉 . (2.2)

The projectors Γµ are defined as Γ0 ≡ 1
4(1+ γ0), Γk ≡ Γ0 · γ5 · γk . Other Γ-variations can be em-

ployed, in order to compute the quantities of interest. The lattice data are extracted from dimen-
sionless ratio of the two- and three-point correlation functions:

RO(Γ,!q, t, t f )=
G3pt

O
(Γ,!q, t)

G2pt(!0, t f )
×

√

G2pt(−!q, t f−t)G2pt(!0, t)G2pt(!0, t f )
G2pt(!0, t f−t)G2pt(−!q, t)G2pt(−!q, t f )

→
t f−t→∞
t−ti→∞

Π(Γ,!q) . (2.3)

The above ratio is considered optimized since it does not contain potentially noisy two-point func-
tions at large separations and because correlations between its different factors reduce the statistical
noise. The most common method to extract the desired matrix element is to look for a plateau with
respect to the current insertion time, t (or, alternatively, the sink time, t f ), which should be located
at a time well separated from the creation and annihilation times in order to ensure single state
dominance. To establish proper connection to experiments we apply renormalization which, for
the quantities discussed in this review, is multiplicative:
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pseudoscalar renormalization function determined non-
perturbatively in the MS at 2 GeV [17].

Matrix elements: We use Ji’s sum rule [20], that pro-
vides a gauge invariant decomposition of the nucleon spin
as

JN=
X

q=u,d,s,c···

✓
1

2
�⌃q + Lq

◆
+ Jg,

where 1
2�⌃q is the contribution from the intrinsic quark

spin, Lq the quark orbital angular momentum and Jg is
the gluon total angular momentum. The quark intrinsic
spin 1

2�⌃q is obtained from the first Mellin moment of
the polarized parton distribution function (PDF), which
is the nucleon matrix element of the axial-vector opera-
tor. The total quark angular momentum, Jq, can be ex-
tracted by computing the second Mellin moment of the
unpolarized nucleon PDF, which is the nucleon matrix
element of the vector one-derivative operator at zero mo-
mentum transfer. These matrix elements in Euclidean
space are given by

hN(p, s0)|Oµ
A|N(p, s)i=ūN (p, s0)
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uN (p, s),
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Q{µQ⌫}, (1)

with Q=p0�p the momentum transfer and P=(p0+p)/2
the total momentum. The axial-vector operator is
O

µ
A=q̄�µ�5q and the one-derivative vector operator

O
µ⌫
V =q̄�{µ !D ⌫}q, where the curly brackets in OV rep-

resent a symmetrization over pairs of indices and a sub-
traction of the trace. ⇤µ⌫

q is decomposed in terms of
three Lorentz invariant generalized form factors (GFFs)
Aq

20(Q
2), Bq

20(Q
2) and Cq

20(Q
2). A corresponding decom-

position can also be made for the nucleon matrix element
of the gluon operator O

µ⌫
g . The quark (gluon) total an-

gular momentum can be written as Jq(g)=
1
2 [A

q(g)
20 (0) +

Bq(g)
20 (0)], while the average momentum fraction is deter-

mined from Aq(g)
20 (0)=hxiq(g) and gqA⌘�⌃q where gqA is

the nucleon axial charge. While Aq
20(0) can be extracted

directly at Q2=0, Bq
20(0) needs to be extrapolated to

Q2=0 using the values obtained at finite Q2.
We compute the gluon momentum fraction by consid-

ering the Q2=0 nucleon matrix element of the operator
O

µ⌫
g =2Tr[Gµ�G⌫�], taking the combination Og⌘O44 �

1
3Ojj ,

hN(p, s0)|Og|N(p, s)i=
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hxig, (2)

where we further take the nucleon momentum ~p=0.

In lattice QCD the aforementioned nucleon matrix ele-
ments are extracted from a ratio, R�(ts, tins), of a three-
point function G3pt

� (ts, tins) constructed with an opera-
tor � coupled to a quark divided by the nucleon two-
point functions G2pt(ts), where tins is the time slice of
the operator insertion relative to the time slice where
a state with the quantum numbers of the nucleon is
created (source). For su�ciently large time separations
ts � tins and tins the ratio R�(ts, tins), yields the appro-
priate nucleon matrix element. To determine B20(Q2)
we need the nucleon matrix element for Q2

6= 0, which
can be extracted by defining an equivalent ratio as de-
scribed in detail in Refs. [21–23]. An extrapolation of
B20(Q2) is then carried out to obtain B20(0). We em-
ploy three approaches in order to check that the time
separations ts � tins and tins are su�ciently large to sup-
press higher energy states with the same quantum num-
bers with the nucleon. These are: i) Plateau method.
Identify the range of tins for which the ratio R�(ts, tins)
becomes time-independent and perform a constant fit;
ii) Summation method. Summing R�(ts, tins) over
tins, to yield

P
tins

R�(ts, tins)=Rsum
� (ts)=C + tsM +

O
�
e�(E1�E0)ts)

�
+ · · · , where C is a constant. The ma-

trix elementM is then obtained from the slope of a linear
fit with respect to ts; iii) Two-state fit method. We per-
form a simultaneous fit to the three- and two-point func-
tion varying tins for several values of ts include the first
excited state in the fit function. If excited states are sup-
pressed, the plateau method should yield consistent val-
ues when increasing ts within a su�ciently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
these values are compatible with the results extracted
from the two-state fit and the summation method. We
take the di↵erence between the plateau and two-state fit
values as a systematic error due to residual excited states.

The three-point functions for the axial-vector and
vector one-derivative operators entering the ratio
R�(ts, tins), receive two contributions, one when the op-
erator couples to the valence up and down quarks (so-
called connected) and when it couples to sea quarks and
gluons (disconnected). The connected contributions are
computed by employing sequential inversion through the
sink [24]. Disconnected diagrams are computationally
very demanding, due to the fact that they involve a
closed quark loop and thus a trace over the quark prop-
agator. A feasible alternative is to employ stochastic
techniques [25] to obtain an estimate of the all-to-all
propagator needed for the evaluation of the closed quark
loop. For the up and down quarks, we utilize exact defla-
tion [26, 27], by computing the Nev lowest eigenmodes of
the Dirac matrix to precondition the conjugate gradient
(CG) solver. Taking Nev=500 yields an improvement of
about twenty times, compared to the standard conjugate
gradient method. We also exploit the properties of the
twisted mass action to improve our computation using
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V |N(p, s)i=ūN (p0, s0)⇤q

µ⌫(Q
2)uN (p, s),

⇤µ⌫
q (Q2)=Aq

20(Q
2)�{µP ⌫} +Bq

20(Q
2)
�{µ↵q↵P ⌫}

2m

+ Cq
20(Q

2)
1

m
Q{µQ⌫}, (1)

with Q=p0�p the momentum transfer and P=(p0+p)/2
the total momentum. The axial-vector operator is
O

µ
A=q̄�µ�5q and the one-derivative vector operator

O
µ⌫
V =q̄�{µ !D ⌫}q, where the curly brackets in OV rep-

resent a symmetrization over pairs of indices and a sub-
traction of the trace. ⇤µ⌫

q is decomposed in terms of
three Lorentz invariant generalized form factors (GFFs)
Aq

20(Q
2), Bq

20(Q
2) and Cq

20(Q
2). A corresponding decom-

position can also be made for the nucleon matrix element
of the gluon operator O

µ⌫
g . The quark (gluon) total an-

gular momentum can be written as Jq(g)=
1
2 [A

q(g)
20 (0) +

Bq(g)
20 (0)], while the average momentum fraction is deter-

mined from Aq(g)
20 (0)=hxiq(g) and gqA⌘�⌃q where gqA is

the nucleon axial charge. While Aq
20(0) can be extracted

directly at Q2=0, Bq
20(0) needs to be extrapolated to

Q2=0 using the values obtained at finite Q2.
We compute the gluon momentum fraction by consid-

ering the Q2=0 nucleon matrix element of the operator
O

µ⌫
g =2Tr[Gµ�G⌫�], taking the combination Og⌘O44 �

1
3Ojj ,

hN(p, s0)|Og|N(p, s)i=

✓
� 4E2

N �
2

3
~p2
◆
hxig, (2)

where we further take the nucleon momentum ~p=0.

In lattice QCD the aforementioned nucleon matrix ele-
ments are extracted from a ratio, R�(ts, tins), of a three-
point function G3pt

� (ts, tins) constructed with an opera-
tor � coupled to a quark divided by the nucleon two-
point functions G2pt(ts), where tins is the time slice of
the operator insertion relative to the time slice where
a state with the quantum numbers of the nucleon is
created (source). For su�ciently large time separations
ts � tins and tins the ratio R�(ts, tins), yields the appro-
priate nucleon matrix element. To determine B20(Q2)
we need the nucleon matrix element for Q2

6= 0, which
can be extracted by defining an equivalent ratio as de-
scribed in detail in Refs. [21–23]. An extrapolation of
B20(Q2) is then carried out to obtain B20(0). We em-
ploy three approaches in order to check that the time
separations ts � tins and tins are su�ciently large to sup-
press higher energy states with the same quantum num-
bers with the nucleon. These are: i) Plateau method.
Identify the range of tins for which the ratio R�(ts, tins)
becomes time-independent and perform a constant fit;
ii) Summation method. Summing R�(ts, tins) over
tins, to yield

P
tins

R�(ts, tins)=Rsum
� (ts)=C + tsM +

O
�
e�(E1�E0)ts)

�
+ · · · , where C is a constant. The ma-

trix elementM is then obtained from the slope of a linear
fit with respect to ts; iii) Two-state fit method. We per-
form a simultaneous fit to the three- and two-point func-
tion varying tins for several values of ts include the first
excited state in the fit function. If excited states are sup-
pressed, the plateau method should yield consistent val-
ues when increasing ts within a su�ciently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
these values are compatible with the results extracted
from the two-state fit and the summation method. We
take the di↵erence between the plateau and two-state fit
values as a systematic error due to residual excited states.

The three-point functions for the axial-vector and
vector one-derivative operators entering the ratio
R�(ts, tins), receive two contributions, one when the op-
erator couples to the valence up and down quarks (so-
called connected) and when it couples to sea quarks and
gluons (disconnected). The connected contributions are
computed by employing sequential inversion through the
sink [24]. Disconnected diagrams are computationally
very demanding, due to the fact that they involve a
closed quark loop and thus a trace over the quark prop-
agator. A feasible alternative is to employ stochastic
techniques [25] to obtain an estimate of the all-to-all
propagator needed for the evaluation of the closed quark
loop. For the up and down quarks, we utilize exact defla-
tion [26, 27], by computing the Nev lowest eigenmodes of
the Dirac matrix to precondition the conjugate gradient
(CG) solver. Taking Nev=500 yields an improvement of
about twenty times, compared to the standard conjugate
gradient method. We also exploit the properties of the
twisted mass action to improve our computation using

g
g

2

pseudoscalar renormalization function determined non-
perturbatively in the MS at 2 GeV [17].

Matrix elements: We use Ji’s sum rule [20], that pro-
vides a gauge invariant decomposition of the nucleon spin
as

JN=
X

q=u,d,s,c···

✓
1

2
�⌃q + Lq

◆
+ Jg,

where 1
2�⌃q is the contribution from the intrinsic quark

spin, Lq the quark orbital angular momentum and Jg is
the gluon total angular momentum. The quark intrinsic
spin 1

2�⌃q is obtained from the first Mellin moment of
the polarized parton distribution function (PDF), which
is the nucleon matrix element of the axial-vector opera-
tor. The total quark angular momentum, Jq, can be ex-
tracted by computing the second Mellin moment of the
unpolarized nucleon PDF, which is the nucleon matrix
element of the vector one-derivative operator at zero mo-
mentum transfer. These matrix elements in Euclidean
space are given by

hN(p, s0)|Oµ
A|N(p, s)i=ūN (p, s0)
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V |N(p, s)i=ūN (p0, s0)⇤q

µ⌫(Q
2)uN (p, s),

⇤µ⌫
q (Q2)=Aq

20(Q
2)�{µP ⌫} +Bq

20(Q
2)
�{µ↵q↵P ⌫}

2m

+ Cq
20(Q

2)
1

m
Q{µQ⌫}, (1)

with Q=p0�p the momentum transfer and P=(p0+p)/2
the total momentum. The axial-vector operator is
O

µ
A=q̄�µ�5q and the one-derivative vector operator

O
µ⌫
V =q̄�{µ !D ⌫}q, where the curly brackets in OV rep-

resent a symmetrization over pairs of indices and a sub-
traction of the trace. ⇤µ⌫

q is decomposed in terms of
three Lorentz invariant generalized form factors (GFFs)
Aq

20(Q
2), Bq

20(Q
2) and Cq

20(Q
2). A corresponding decom-

position can also be made for the nucleon matrix element
of the gluon operator O

µ⌫
g . The quark (gluon) total an-

gular momentum can be written as Jq(g)=
1
2 [A

q(g)
20 (0) +

Bq(g)
20 (0)], while the average momentum fraction is deter-

mined from Aq(g)
20 (0)=hxiq(g) and gqA⌘�⌃q where gqA is

the nucleon axial charge. While Aq
20(0) can be extracted

directly at Q2=0, Bq
20(0) needs to be extrapolated to

Q2=0 using the values obtained at finite Q2.
We compute the gluon momentum fraction by consid-

ering the Q2=0 nucleon matrix element of the operator
O

µ⌫
g =2Tr[Gµ�G⌫�], taking the combination Og⌘O44 �

1
3Ojj ,

hN(p, s0)|Og|N(p, s)i=

✓
� 4E2

N �
2

3
~p2
◆
hxig, (2)

where we further take the nucleon momentum ~p=0.
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point function G3pt

� (ts, tins) constructed with an opera-
tor � coupled to a quark divided by the nucleon two-
point functions G2pt(ts), where tins is the time slice of
the operator insertion relative to the time slice where
a state with the quantum numbers of the nucleon is
created (source). For su�ciently large time separations
ts � tins and tins the ratio R�(ts, tins), yields the appro-
priate nucleon matrix element. To determine B20(Q2)
we need the nucleon matrix element for Q2

6= 0, which
can be extracted by defining an equivalent ratio as de-
scribed in detail in Refs. [21–23]. An extrapolation of
B20(Q2) is then carried out to obtain B20(0). We em-
ploy three approaches in order to check that the time
separations ts � tins and tins are su�ciently large to sup-
press higher energy states with the same quantum num-
bers with the nucleon. These are: i) Plateau method.
Identify the range of tins for which the ratio R�(ts, tins)
becomes time-independent and perform a constant fit;
ii) Summation method. Summing R�(ts, tins) over
tins, to yield
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trix elementM is then obtained from the slope of a linear
fit with respect to ts; iii) Two-state fit method. We per-
form a simultaneous fit to the three- and two-point func-
tion varying tins for several values of ts include the first
excited state in the fit function. If excited states are sup-
pressed, the plateau method should yield consistent val-
ues when increasing ts within a su�ciently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
these values are compatible with the results extracted
from the two-state fit and the summation method. We
take the di↵erence between the plateau and two-state fit
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agator. A feasible alternative is to employ stochastic
techniques [25] to obtain an estimate of the all-to-all
propagator needed for the evaluation of the closed quark
loop. For the up and down quarks, we utilize exact defla-
tion [26, 27], by computing the Nev lowest eigenmodes of
the Dirac matrix to precondition the conjugate gradient
(CG) solver. Taking Nev=500 yields an improvement of
about twenty times, compared to the standard conjugate
gradient method. We also exploit the properties of the
twisted mass action to improve our computation using
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h
gqA�

µ�5
i
uN (p, s),

hN(p0, s0)|Oµ⌫
V |N(p, s)i=ūN (p0, s0)⇤q
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In Fig. 1 we show the result of the three analyses car-
ried out to extract the disconnected contribution to the
isoscalar axial charge gu+d

A and quark momentum fraction
hxiu+d. Taking the value at ts=14a=1.3 fm is consistent
with the result from the two-state fit and summation
method, for both quantities. We take the plateau value
at ts=14a as our final result and assign as systematic
error due to excited states the di↵erence between this
value and the mean value determined from the two-state
fit. The same analysis is performed for the strange and
charm disconnected contributions. The analysis for the
valence quark contributions at lower statistics was pre-
sented in Ref. [40] and it is followed also here.

Results: In Fig. 2 we present our results on the up,
down and strange quark contributions to the nucleon ax-
ial charge that yield the quark intrinsic spin contributions
to the nucleon spin. Since we are using a single ensemble
we cannot directly assess finite volume and lattice spac-
ings e↵ects. However, previous studies carried out us-
ing Nf=2 and Nf=2+1+1 twisted mass fermion (TMF)
ensembles at heavier than physical pion masses for the
connected contributions allow us to assess cut-o↵ and
volume e↵ects [21, 41]. In Fig. 2 we include TMF results
for Nf=2 ensembles at m⇡⇠465 MeV one with lattice
spacing a=0.089 fm and one with a=0.07 fm with similar
spatial lattice length L, as well as, at m⇡=260 MeV, one
with a=0.089 fm and another with a=0.056 fm and sim-
ilar L. At both pion masses the results are in complete
agreement as we vary the lattice spacing from 0.089 fm
to 0.056 fm pointing to cut-o↵ e↵ects smaller than our
statistical errors. For assessing finite volume e↵ects we
compare two Nf=2 ensembles both with a=0.089 fm and
m⇡⇠300 MeV, but one with m⇡L=3.3 and the other
with m⇡L=4.3. The values are completely compatible
showing that volume e↵ects are also within our statisti-
cal errors. To assess possible strange quenching e↵ects
we compare in Fig. 2 results for the connected contribu-
tions using Nf=2 and Nf=2+1+1 TMF ensembles both
at m⇡⇠375 MeV and find very good agreement [51]. The
latter is a high statistics analysis yielding very small er-
rors. We note, however, that the limited accuracy of the
Nf=2 result would still allow a quenching e↵ect of the or-
der of its statistical error and only an accurate calculation
usingNf=2+1+1 simulations at the physical point would
be able to resolve this completely. In Fig. 2, we also
compare recent lattice QCD results on the strange in-
trinsic spin, 1

2�⌃s, at heavier than physical pion masses
and find agreement among lattice QCD results, indicat-
ing that lattice artifacts are within the current statistical
errors. We note, in particular, that all lattice QCD re-
sults yield a non-zero and negative strange quark intrinsic
spin contribution 1

2�⌃s. We also compute the charm ax-
ial charge and momentum fraction, at the physical point,
and find that both are consistent with zero.

To determine the total quark angular momentum Jq,
we need, beyond Aq

20(0), the generalized form factor
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FIG. 2: The up (upper), down (center) and strange (lower)
quark intrinsic spin contributions to the nucleon spin versus
the pion mass. Open symbols show results with only con-
nected contributions while filled symbols denote both con-
nected and disconnected contributions using the same ensem-
ble as the one for the connected only. Red diamonds are the
results of this work. Circles are Nf=2 results, and squares are
Nf=2+1+1 [30, 31, 41] by ETMC. We compare with lattice
QCD results from other O(a)-improved actions from Refs.[42]
(filled magenta triangle) by QCDSF, [43] (light blue cross)
and [44] by CSSM/QCDSF (yellow filled right triangle). We
also show results using a hybrid action from PNDME [45]
(open blue triangles). Experiment is denoted by the black
asterisks [46, 47].

Bq
20(0), which is extracted from the nucleon matrix el-

ement of the vector one-derivative operator for Q2
6= 0

as described in Ref. [21]. For the isovector case, we
find Bu�d

20 (0)=0.313(19), and for the isoscalar connected

contribution Bu+d,conn.
20 (0)=0.012(20). We observe that

the latter is consistent with zero, as is the disconnected
contribution Bu+d,disc.

20 (Q2=0.074 GeV2). Similarly, the
strange and charm Bs,c

20 (Q
2) are zero, which implies

Js,c=
1
2 hxis,c. In what follows we will also take the gluon

Bg
20(0) to be zero and thus Jg=

1
2 hxig.

Our final values for the quark total and angular mo-
mentum contributions are given in Table II. The value
of hxiu�d=0.194(9)(11) is on the upper bound as com-
pared to the recent phenomenological value extracted in
Ref. [7]. Determinations of hxiu�d within lattice QCD
using simulations with larger than physical pion masses
have yielded larger values, an e↵ect that is partly un-
derstood to be due to contribution of excited states to
the ground state matrix element [48]. We note that our
value is in agreement with that determined by RQCD us-
ing Nf=2 clover fermions at pion mass of 151 MeV [49]
and that lattice QCD results on hxiu�d and Ju�d for en-
sembles with larger than physical pion masses including
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TABLE II: Our results for the intrinsic spin ( 12�⌃), angular
(L) and total (J) momentum contributions to the nucleon
spin and to the nucleon momentum hxi, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2�⌃ J L hxi

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

ours are in overall agreement [41]. Results within lattice
QCD for the individual quark hxiq and Jq contributions
are scarce. The current computation is the first one using
dynamical light quarks with physical masses. A recent
quenched calculation yielded values of hxiu,d consistent
with ours.

In Fig. 3 we show schematically the various contri-
butions to the spin and momentum fraction. Using a
di↵erent approach to ours, the gluon helicity was re-
cently computed within lattice QCD and found to be
0.251(47)(16) [8]. Although we instead compute the
gluon total angular momentum and the two approaches
have di↵erent systematic uncertainties, we both find non-
negligible gluon contributions to the proton spin.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calculation of
the quark and gluon contributions to the proton spin,
directly at the physical point.

Having a single ensemble, we can only assess lat-
tice systematic e↵ects due to the quenching of the
strange quark, the finite volume and the lattice spac-
ing indirectly from other twisted mass ensembles. A
direct evaluation of these systematic errors is cur-
rently not possible and will be carried out in the fu-
ture. Individual components are computed for the up,

down, strange and charm quarks, including both con-
nected (valence) and disconnected (sea) quark contri-
butions. Our final numbers are collected in Table II.
The quark intrinsic spin from connected and discon-
nected contributions is 1

2�⌃u+d+s=0.299(12)(3)|conn. �
0.098(12)(4)|disc.=0.201(17)(5), while the total quark
angular momentum is Ju+d+s=0.255(12)(3)|conn. +
0.153(60)(47)|disc.=0.408(61)(48). Our result for the
intrinsic quark spin contribution agrees with the up-
per bound set by a recent phenomenological analy-
sis of experimental data from COMPASS [50], which
found 0.13 < 1

2�⌃ < 0.18. Using the spin
sum one would deduce that Jg=

1
2�Jq=0.092(61)(48),

which is consistent with taking Jg=
1
2 hxig=0.133(11)(14)

via the direct evaluation of the gluon momen-
tum fraction, which suggests that Bg

20(0) is indeed
small. Furthermore, we find that the momentum
sum is satisfied

P
qhxiq + hxig=0.497(12)(5)|conn. +

0.307(121)(95)|disc.+0.267(12)(10)|gluon=1.07(12)(10) as
is the spin sum of quarks and gluons giving JN=

P
q Jq+

Jg=0.408(61)(48) + 0.133(11)(14)=0.541(62)(49) resolv-
ing a long-standing puzzle.
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0.251(47)(16) [8]. Although we instead compute the
gluon total angular momentum and the two approaches
have di↵erent systematic uncertainties, we both find non-
negligible gluon contributions to the proton spin.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calculation of
the quark and gluon contributions to the proton spin,
directly at the physical point.

Having a single ensemble, we can only assess lat-
tice systematic e↵ects due to the quenching of the
strange quark, the finite volume and the lattice spac-
ing indirectly from other twisted mass ensembles. A
direct evaluation of these systematic errors is cur-
rently not possible and will be carried out in the fu-
ture. Individual components are computed for the up,

down, strange and charm quarks, including both con-
nected (valence) and disconnected (sea) quark contri-
butions. Our final numbers are collected in Table II.
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Jg=0.408(61)(48) + 0.133(11)(14)=0.541(62)(49) resolv-
ing a long-standing puzzle.
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If there’s time, we will also discuss at least two methods to obtain structure functions such as 
PDFs from lattice QCD:

Moments of structure functions through 
matrix elements of local operators.

Quasi-PDFs from matrix elements in 
the large-momentum frame

Let’s enumerate a some of the methods that give access to structure quantities in general:

Background-field 
methods

For e.g., EM moments and 
polarizabilities, charge 
radius, form factors and 
transition amplitudes.

Three(four)-point 
functions

For e.g., form factors, 
moments of structure 
functions, Compton 
amplitude, transition 

amplitudes

Feynman-Hellmann 
inspired methods

Similar to background 
fields. For e.g., axial charge, 
form factors, EM moments, 

transition amplitudes



Background fields are non-dynamical, i.e., 
there will be no pair creation and annihilation 
in vacuum with a classical EM background 
field. This mean the photon zero mode is no 
problem: it is absent in the calculation!

d ~A d ~A

~E

U (QCD) ! U (QCD) ⇥ U (QED)

Modify the links when forming the quark propagators (quench approx).



Background fields are non-dynamical, i.e., 
there will be no pair creation and annihilation 
in vacuum with a classical EM background 
field. This mean the photon zero mode is no 
problem: it is absent in the calculation!

d ~A d ~A

~E

Magnetic moments

Electric and magnetic polarizabilities

See e.g., BEANE et al (NPLQCD), Phys.Rev.Lett. 113 (2014) 25, 252001 and Phys.Rev. D92 (2015) 11, 
114502. for nuclear-physics calculations.

Traditionally they are used for constraining the 
response of hadrons/nuclei to external probes:

U (QCD) ! U (QCD) ⇥ U (QED)

Modify the links when forming the quark propagators (quench approx).
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The proton radius puzzle

Measure the 2S − 2P splitting in µp

↓

determine the proton rms radius rp
(10× better )

But large discrepancy observed:
• 4σ from H spectroscopy value
• 6σ from e-proton scattering value

A. Antognini
MPQ, Garching, Germany
ETH, Zurich, Switzerland

A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.1

2) Electric quadrupole moment

3) Form factors
4) Axial background fields

p

p

n
p

e+⌫e

ZD and Detmold, Phys. Rev. D 93, 014509 (2016).ZD and 
Detmold, 
Phys. Rev. 
D 93, 
014509 
(2016).

Detmold, Phys.Rev. D71, 054506 (2005).

Beane at al, Phys.Rev. Lett, 115 132001 (2015).

Various other structure properties of hadrons and nuclei, as well as their transitions, can be 
studied using more complex background fields:



Here’s an application of the background-field technique to obtain magnetic moment and 
polarizabilities of the nucleon:

Landau levels for 
charged particles

Magnetic 
moment

Magnetic polarizabilities

7

Ch;jz(t;B) on the source location xi is suppressed. This location averaging e↵ectively projects the
source interpolating operator onto zero momentum and is discussed in detail in Appendix A. In
most cases, two correlation functions are constructed for each nuclear state using the smeared and
point sink interpolators, although for larger nuclei there are more possibilities than are calculated.

C. Magnetic Field Strength Dependence of Energies

In a uniform background magnetic field, the energy eigenvalues of a hadron, h, either a nucleon
or nucleus, with spin j  1 polarized in the z-direction, with magnetic quantum number jz, are of
the form

Eh;jz(B) =
q
M

2

h + P
2

k + (2nL + 1)|QheB|� µh ·B� 2⇡�(M0)

h |B|
2
� 2⇡�(M2)

h hT̂ijBiBji+ . . . ,

(7)

where Mh is the mass of the hadron, Pk is its momentum parallel to the magnetic field, Qh is
its charge in units of e, and nL is the quantum number of the Landau level that it occupies.
For a nucleon or nucleus with spin j �

1

2
, there is a contribution from the magnetic moment,

µh, that is linear in the magnetic field. The magnetic polarizability is conveniently decomposed

into multipoles, with �h ⌘ �
(M0)

h denoting the scalar polarizability and �
(M2)

h denoting the tensor

polarizability (the latter contributes for hadrons with j � 1). T̂ij is a traceless symmetric tensor
operator which, when written in terms of angular momentum generators, is of the form

T̂ij =
1

2


ĴiĴj + Ĵj Ĵi �

2

3
�ij Ĵ

2

�
, (8)

and h...i in Eq. (7) denotes its expectation value.4 Note that the polarizabilities defined here
represent the full quadratic response to the field and di↵er from other conventions used in the
literature where Born terms are explicitly removed (for a discussion, see e.g. Ref. [57]). The ellipses
denote contributions that involve three or more powers of the magnetic field. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hEh(B)i ⌘
1

2j + 1

jX

jz=�j

Eh;jz(B) =
q
M

2

h + P
2

k + (2nL + 1)|QheB| � 2⇡�(M0)

h |B|
2 + ... ,(9)

where the ellipsis denotes contributions of O(|B|
4) and higher. For spin-j states, the energy

di↵erence between jz = ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy

4
For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB

2
i =

�
j2z �

1
3 j(j + 1)

�
B2

. This

vanishes for both the j = 0 and j =
1
2 states, and takes the values hT̂ijBiBji =

1
3B

2
for j = 1, jz = ±1 states and

hT̂ijBiBji = �
2
3B

2
for j = 1, jz = 0 states.
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2

�
, (8)

and h...i in Eq. (7) denotes its expectation value.4 Note that the polarizabilities defined here
represent the full quadratic response to the field and di↵er from other conventions used in the
literature where Born terms are explicitly removed (for a discussion, see e.g. Ref. [57]). The ellipses
denote contributions that involve three or more powers of the magnetic field. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hEh(B)i ⌘
1

2j + 1

jX

jz=�j

Eh;jz(B) =
q
M

2

h + P
2

k + (2nL + 1)|QheB| � 2⇡�(M0)

h |B|
2 + ... ,(9)

where the ellipsis denotes contributions of O(|B|
4) and higher. For spin-j states, the energy

di↵erence between jz = ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy

4
For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB

2
i =

�
j2z �

1
3 j(j + 1)

�
B2

. This

vanishes for both the j = 0 and j =
1
2 states, and takes the values hT̂ijBiBji =

1
3B

2
for j = 1, jz = ±1 states and

hT̂ijBiBji = �
2
3B

2
for j = 1, jz = 0 states.

3

d

3He

3H

-0.2

-0.1

0.0

0.1

�
δ�

(�
)

0 1 2 3 4

|�� |

FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

ment. The energy splitting is extracted from a correlated
�2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show the
energy splittings of the nucleons and nuclei as a function
of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form �E(B) = �2µ |B|+ � |B|

3, where � is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µp = 1.792(19)(37) NM (nu-
clear magnetons) and µn = �1.138(03)(10) NM, respec-

FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of m⇡ ⇠ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt

N ,
where M latt

N is the mass of the nucleon at the quark
masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
netic moments are µp = 3.119(33)(64) nNM and µn =
�1.981(05)(18) nNM. These values at this unphysical
pion mass can be compared with those of nature, µexpt

p =
2.792847356(23) NM and µexpt

n = �1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, gA.

In Figure 2, we also show �E(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
nNM for the deuteron, µ3He = �2.29(03)(12) nNM for
3He and µ3H = 3.56(05)(18) nNM for the triton. These
can be compared with the experimental values of µexpt

d =
0.8574382308(72) NM, µexpt

3He
= �2.127625306(25) NM

and µexpt

3H
= 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He

= µn (where
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of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form �E(B) = �2µ |B|+ � |B|

3, where � is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µp = 1.792(19)(37) NM (nu-
clear magnetons) and µn = �1.138(03)(10) NM, respec-

FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of m⇡ ⇠ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt

N ,
where M latt

N is the mass of the nucleon at the quark
masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
netic moments are µp = 3.119(33)(64) nNM and µn =
�1.981(05)(18) nNM. These values at this unphysical
pion mass can be compared with those of nature, µexpt

p =
2.792847356(23) NM and µexpt

n = �1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, gA.

In Figure 2, we also show �E(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
nNM for the deuteron, µ3He = �2.29(03)(12) nNM for
3He and µ3H = 3.56(05)(18) nNM for the triton. These
can be compared with the experimental values of µexpt

d =
0.8574382308(72) NM, µexpt

3He
= �2.127625306(25) NM

and µexpt

3H
= 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He

= µn (where

A quanta of magnetic field

Nucleon Light nuclei

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm
Beane et al.(NPLQCD), phys.rev.lett.113 (2014) 25, 
252001.
Beane et al.(NPLQCD), phys.rev. D92 (2015) 11, 114502.



Here’s an application of the background-field technique to obtain magnetic moment and 
polarizabilities of the nucleon:

Landau levels for 
charged particles

Magnetic 
moment

Magnetic polarizabilities

7

Ch;jz(t;B) on the source location xi is suppressed. This location averaging e↵ectively projects the
source interpolating operator onto zero momentum and is discussed in detail in Appendix A. In
most cases, two correlation functions are constructed for each nuclear state using the smeared and
point sink interpolators, although for larger nuclei there are more possibilities than are calculated.

C. Magnetic Field Strength Dependence of Energies

In a uniform background magnetic field, the energy eigenvalues of a hadron, h, either a nucleon
or nucleus, with spin j  1 polarized in the z-direction, with magnetic quantum number jz, are of
the form

Eh;jz(B) =
q
M

2

h + P
2

k + (2nL + 1)|QheB|� µh ·B� 2⇡�(M0)

h |B|
2
� 2⇡�(M2)

h hT̂ijBiBji+ . . . ,

(7)

where Mh is the mass of the hadron, Pk is its momentum parallel to the magnetic field, Qh is
its charge in units of e, and nL is the quantum number of the Landau level that it occupies.
For a nucleon or nucleus with spin j �

1

2
, there is a contribution from the magnetic moment,

µh, that is linear in the magnetic field. The magnetic polarizability is conveniently decomposed

into multipoles, with �h ⌘ �
(M0)

h denoting the scalar polarizability and �
(M2)

h denoting the tensor

polarizability (the latter contributes for hadrons with j � 1). T̂ij is a traceless symmetric tensor
operator which, when written in terms of angular momentum generators, is of the form

T̂ij =
1

2


ĴiĴj + Ĵj Ĵi �

2

3
�ij Ĵ

2

�
, (8)

and h...i in Eq. (7) denotes its expectation value.4 Note that the polarizabilities defined here
represent the full quadratic response to the field and di↵er from other conventions used in the
literature where Born terms are explicitly removed (for a discussion, see e.g. Ref. [57]). The ellipses
denote contributions that involve three or more powers of the magnetic field. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hEh(B)i ⌘
1

2j + 1

jX

jz=�j

Eh;jz(B) =
q
M

2

h + P
2

k + (2nL + 1)|QheB| � 2⇡�(M0)

h |B|
2 + ... ,(9)

where the ellipsis denotes contributions of O(|B|
4) and higher. For spin-j states, the energy

di↵erence between jz = ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy

4
For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB

2
i =

�
j2z �

1
3 j(j + 1)

�
B2

. This

vanishes for both the j = 0 and j =
1
2 states, and takes the values hT̂ijBiBji =

1
3B

2
for j = 1, jz = ±1 states and

hT̂ijBiBji = �
2
3B

2
for j = 1, jz = 0 states.
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

ment. The energy splitting is extracted from a correlated
�2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show the
energy splittings of the nucleons and nuclei as a function
of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form �E(B) = �2µ |B|+ � |B|

3, where � is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µp = 1.792(19)(37) NM (nu-
clear magnetons) and µn = �1.138(03)(10) NM, respec-
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of m⇡ ⇠ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt

N ,
where M latt

N is the mass of the nucleon at the quark
masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
netic moments are µp = 3.119(33)(64) nNM and µn =
�1.981(05)(18) nNM. These values at this unphysical
pion mass can be compared with those of nature, µexpt

p =
2.792847356(23) NM and µexpt

n = �1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, gA.

In Figure 2, we also show �E(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
nNM for the deuteron, µ3He = �2.29(03)(12) nNM for
3He and µ3H = 3.56(05)(18) nNM for the triton. These
can be compared with the experimental values of µexpt

d =
0.8574382308(72) NM, µexpt

3He
= �2.127625306(25) NM

and µexpt

3H
= 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He

= µn (where
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Ch;jz(t;B) on the source location xi is suppressed. This location averaging e↵ectively projects the
source interpolating operator onto zero momentum and is discussed in detail in Appendix A. In
most cases, two correlation functions are constructed for each nuclear state using the smeared and
point sink interpolators, although for larger nuclei there are more possibilities than are calculated.

C. Magnetic Field Strength Dependence of Energies

In a uniform background magnetic field, the energy eigenvalues of a hadron, h, either a nucleon
or nucleus, with spin j  1 polarized in the z-direction, with magnetic quantum number jz, are of
the form

Eh;jz(B) =
q
M
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h + P
2

k + (2nL + 1)|QheB|� µh ·B� 2⇡�(M0)

h |B|
2
� 2⇡�(M2)

h hT̂ijBiBji+ . . . ,

(7)

where Mh is the mass of the hadron, Pk is its momentum parallel to the magnetic field, Qh is
its charge in units of e, and nL is the quantum number of the Landau level that it occupies.
For a nucleon or nucleus with spin j �

1

2
, there is a contribution from the magnetic moment,

µh, that is linear in the magnetic field. The magnetic polarizability is conveniently decomposed

into multipoles, with �h ⌘ �
(M0)

h denoting the scalar polarizability and �
(M2)

h denoting the tensor

polarizability (the latter contributes for hadrons with j � 1). T̂ij is a traceless symmetric tensor
operator which, when written in terms of angular momentum generators, is of the form

T̂ij =
1

2


ĴiĴj + Ĵj Ĵi �

2

3
�ij Ĵ

2
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, (8)

and h...i in Eq. (7) denotes its expectation value.4 Note that the polarizabilities defined here
represent the full quadratic response to the field and di↵er from other conventions used in the
literature where Born terms are explicitly removed (for a discussion, see e.g. Ref. [57]). The ellipses
denote contributions that involve three or more powers of the magnetic field. The spin-averaged
energy eigenvalues project onto the scalar contributions,
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2
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where the ellipsis denotes contributions of O(|B|
4) and higher. For spin-j states, the energy

di↵erence between jz = ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy

4
For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB

2
i =

�
j2z �

1
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. This

vanishes for both the j = 0 and j =
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

ment. The energy splitting is extracted from a correlated
�2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show the
energy splittings of the nucleons and nuclei as a function
of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form �E(B) = �2µ |B|+ � |B|

3, where � is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µp = 1.792(19)(37) NM (nu-
clear magnetons) and µn = �1.138(03)(10) NM, respec-
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of m⇡ ⇠ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt

N ,
where M latt

N is the mass of the nucleon at the quark
masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
netic moments are µp = 3.119(33)(64) nNM and µn =
�1.981(05)(18) nNM. These values at this unphysical
pion mass can be compared with those of nature, µexpt

p =
2.792847356(23) NM and µexpt

n = �1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, gA.

In Figure 2, we also show �E(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
nNM for the deuteron, µ3He = �2.29(03)(12) nNM for
3He and µ3H = 3.56(05)(18) nNM for the triton. These
can be compared with the experimental values of µexpt

d =
0.8574382308(72) NM, µexpt

3He
= �2.127625306(25) NM

and µexpt

3H
= 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He

= µn (where
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the complete cross section. Using the physical scattering parameters and the LQCD calculations
of the correlated short-distance two-nucleon interactions with the magnetic field, a cross section
of s lqcd = 332.4+54.

�4.7 mb is calculated at a neutron incident speed of v = 2200 m/s, which is to be
compared with the experimental value of s exit = 334.2±0.5 mb.

The curvature of the energy of the nucleon or nucleus, after removing the contribution from
the Landau level, provides a determination of its magnetic polarizability. In nature, there is signif-
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Figure 10: The magnetic polarizabilities of the lightest nuclei at a pion mass of mp ⇠ 805 MeV [2]. The
left panel is in units of the naive D-pole contribution, e2/M2

N(MD �MN), while the right panel is in physical
units.

icant cancellation between the contribution from the D-pole and from chiral loops to the magnetic
polarizability, a cancellation that is expected to diminish as the quark masses are increased [28]
(the D-nucleon mass splitting is relatively insensitive to the light-quark mass). A large isovector
component to the nucleon magnetic polarizability is found, and as mentioned previously, while
the isoscalar polarizabilities are subject to modifications (that are expected to be small) due to the
omission of disconnected diagrams, the isovector contributions are complete at the flavor-SU(3)
symmetry point. It is interesting that, as shown in Fig. 10, the magnetic polarizabilities of the light
nuclei are found to be near that of the proton.

The precision with which we have been able to determine the neutron systems is sufficient to
determine that, while the di-neutron is bound at these heavier quark masses, there are values of the
magnetic field for which it unbinds and the ground state becomes two isolated neutrons. This is a
QCD Feshbach resonance! Figure 11 shows the results of the LQCD calculation at mp = 805 MeV
of the energy difference between the bound di-neutron and two isolated neutrons. Clearly, the
di-neutron is becoming less bound with increasing magnetic field, and is consistent with being
unbound, and hence the two-neutron system having an infinite scattering length, near ñ ⇠ 5.

In summary, Lattice QCD is emerging from an extended research and development phase into
the production phase. Calculations of the binding and properties of light nuclei are now possible,
and I have presented the state-of-the-art of such calculations. The magnetic moments are providing
important insights into the nature of nuclei and their stability with regard to changes in the fun-
damental parameters of nature. The first inelastic nuclear reaction, np ! dg , has been calculated
and when extrapolated to the physical point is found to be in agreement with experiment. The
magnetic polarizabilities of light nuclei have been calculated, and a large isovector component has
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If there’s time, we will also discuss at least two methods to obtain structure functions such as 
PDFs from lattice QCD:

Moments of structure functions through 
matrix elements of local operators.

Quasi-PDFs from matrix elements in 
the large-momentum frame

Let’s enumerate a some of the methods that give access to structure quantities in general:

Background-field 
methods

For e.g., EM moments and 
polarizabilities, charge 
radius, form factors and 
transition amplitudes.

Three(four)-point 
functions

For e.g., form factors, 
moments of structure 
functions, Compton 
amplitude, transition 

amplitudes

Feynman-Hellmann 
inspired methods

Similar to background 
fields. For e.g., axial charge, 
form factors, EM moments, 

transition amplitudes


