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The methoa:

Density functional theory
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Physics and degrees of freedom
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FIG. 1 (color online). Number of publications per year (1975-
2014) on topics (““density functional” or “DFT"), according to the
Web of Science Core Collection (February 2015). The inset shows
data near 1990 on an expanded scale. The number of publications
depends on the precise search criteria, but the overall picture is
unchanged. From Mavropoulos, 2015.



Density functional theory is based on a constraint variational approach that
uses observables as variational parameters.

We now solve the constraint variational equation for the routhian R:

R=H-)O.

that is,

J

_ 9E(p) ,9Q(p)
Ipi o

S(H-XQ) = V(H-AQ) = VE-AVQ = B e

= i,

E(p)-2Q(p)]

where A is called Lagrange multiplier.



After solving variational equation (2.3) for all A we obtain the "path” p(\), and

E(A) = E(p(N)).
QA) = Q(p(A))
R(A) = R(p(A) = E(\) = AQ(A).

E(Q) = minE
(@) =min E(P)| 5410



Energy E is now a function of observable (). By minimizing E(Q), Ey =
ming £(Q) that is, by solving

d
@E(Q) = 0, (2.6)

we obtain Ey and Qg

Density functional theory is based on replacing the exact variational
method with a two-stage variational method:

1: Minimization of energy E under constraint on value Q of observable
(2, which gives energy E(Q) as function of Q).

2: Minimization of energy E(Q) with respect to Q.

In this way the minimization of energy E(()) gives the exact ground-state
energy Ey and exact value of observable ).




Depending on which observable we pick, we can have very different DFT's:

5<H—)\Q> =0 = E=E«Q),
K
5 <H ~> MQk ) =0 = E=E(Qu).
=0 = FE = E[Q(q)],

§<I:I+/(lr Ur)p(r) ) =0 = E = E|[p(r)],

) <H+ Z /(lr U(r;o)p(r;o) ) =0 = FE = E|p(r;0)),

oo’

5<I:I+ Z /dr U(r;o'r',or)p(r;or,0't') ) =0 = E = E[p(r;or,d'7')],

or,o't’"

5 <H + /(lr (U(r),a(r) & ]\[(r)i—(r)) =0 = E=E[p(r),r(r),

6<I;’+](ir/.dr’U(r’.r)f)(r.'r") =0 = E = E[p(r,r')],

)
i
B <H +3° /(lr Ulr;o'a)p(r: m-,r')> =0 = E = E[p(r;o0’)],
)
)
)

=0 = E = E[p(z,z)].



(8 + [ ar (U)ptr) + M@)#) ) =0 = B = Elp(r).7(r)]

One-body density operator is the DFT observable:

The position-dependent Lagrange multipliers are identical to one-body (mean-field) potentials

Ulr): ; :
<U> — </dfr U(r)ﬁ(r)> - / dr U (r)p(r),

(p(r)) = p(r).

for



for

This gives

H+ [dr (U(r),a(r) - M(r)%(r)» =0 = E=FEp(r),7(r)]

T(r) = — ivi 0(r—1;)V; = V(a:f) - V(ar),

1=1



J <V . / dr {U(r)p"(r) + ( i 4+ M(r)) 'F(r)} >

=& <V> 4 5/(17' [U(r)p(fr) + (5_2 + M(r)

2m

which gives the functional:

h2

)7

Elp, 1] = 5 / dr7(r) + Vip, 7,

m

with the kinetic energy explicitly and exactly singled out.



We now minimize this functional with respect to density and kinetic density under the con-
dition that the number of particles is A. For that we again minimize the Routhian:

2
Rlp, 7] = Elp,7] — )\/dfr e} = 271_ /d'r' T(r)+ Vip, 7] — )\/dr p(r).
m
This gives variational equations:
YR p, W p,
Hlotl _ BTl o i) — =
op(r) op(r)
2
IR|[p, 7] _ oV p, 7] 1 h M(r) =0

57(r) sr(r) | 2m



Steepest-descent minimization of the functional E[p, 7| can proceed as fol-
lows.

1° Begin with reasonable initial guesses for the densities p®)(r) and
7O (7). Set the iteration number k = 0.

2° (Calculate the derivatives:

SV [pF) 7(*)] SV[pR) (k)] K2
U = . Mg = ' . T3]
W ="5mm o M=y T 25D
3° Calculate new approximatiosn to densities:
pF () = pW(r) —e(Ugyy(r) — N). (2.32a)
() = 78 () — eMyy(r). (2.32b)

4° lIterate the loop 2°-3° until convergence is reached.




Hohenberg-Kohn theorem (1964)

The exact energy of a quantum mechanical many body
system is a functional of the local density p(r)

Elp] = (V|H|w)

This functional is universal. It does not depend on the
system, only on the interaction.

One obtains the exact density p(r) by a variation of
the functional with respect to the density

note:
p(r) is a function of 3 variables.

W(ry...ry) is a function of 3NV variables.



The Kohn-Sham Approach (1965)

Reference

W. Kohn and L.J. Sham, Phys. Rev. (1965) 140, A1133
http://prola.aps.org/abstract/PR/v140/i4A/pA1133_1

W. Kohn L.J.Sham

PHYSICAL REVIEW VOLUME 140, NUMBER 4A 15§ NOVEMBER 1965

Self-Consistent Equations Including Exchange and Correlation Effects*

W. Koax axp L. J. Seax
University of California, San Diego, La Jolla, California
(Received 21 June 1965)

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to_self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of §.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.




Kohn and Sham made a key assumption:

For a real (interacting) system, for which the ground state density
is p(r), there exists a reference system (non-interacting) that has
exactly the same ground-state density.

The densities for which there exists such reference system are called
pure-state non-interacting v-representable or just Kohn-Sham
representable.

A larger class of densities are the densities which are representable by
some wavefunction of the Slater determinant form (not necessarily
ground-states).



For any interacting system, there exists a local single-particle
potential vs(r), such that the exact ground-state density of the
interacting system equals the ground-state density of the auxiliary
non-interacting system:
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... there exists a unique energy functional:

Bl = T[] + [ d*r va(x)p(r)

for which the variational equation yields the exact ground-state density ns.
Ts[n] - universal kinetic energy functional of non-interacting particles.

Us {[)(I‘)} = l.-’(]ﬁ') + U[p(]f‘)} T Vs [[)(1")}

external potential exchange-correlation

'Hartree term



Density functional theory in nuclei:

In nuclel DFT has been introduced by effective Hamiltonians:

E = (U|H|W) ~ (B H, ()| ®) = Ej]

More degrees of freedom: spin, isospin, “pairing”

Nuclei are self-bound systems.
The exact density is a constant. p(r) = const
Hohenberg-Kohn theorem is true, but wseless:-
n(r) has to be replaced by the intrinsic density:

. L= . - I —_
/)[(T’) = p(?“ -+ RC[\[) with Roay = ZZT,

Density functional theory in nuclei is probably not exact,
but a very good approximation.

Skyrme
Gogny
Rel. MF




How do we proceed? E(p)

‘(I)> Slater determinant N I(A) density matrix ( p* = p )

A
D) =A(p (1)@, ) A= |p.m)) 0]
i=1
Mean field: Eigenfunctions: Interaction:
~ OF - )
h=— h¢i>:gi‘¢i> V=—"=
Sp 000 0

Extensions: Pairing correlations



The general nuclear Hamiltoninan reads

= o Z VZ Hr Z Vi + Z Vz’jk + - -+ 4+ n-body terms

i<j i<j<k

where v;; is the 2-body Nucleon-Nucleon interaction (NN) and Vj;;, is the 3-body one.

Lj
A possible representation of the 2-body interaction looks like

l’l_] — Z UP(I.ZJ)O])

p=1,n

which is a form factor (typically a sum of Yukawa potential > exp~Fa” /1) times an operator.
To reproduce scattering data a minimum of 8 operators is required

Of)J:lS — 137‘.1-’,11,’-,(Tl'_(Tj= (TiTj)(O‘.szj)._ S,jj, Sij(TiTj),L -.S.L- ST;‘,TJ‘



To reproduce with more accuracy data, extra operators are needed, typically 14 or 18.
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the shape of the NN potential for the different channels of spin and isospin.



Hartree-Fock method

replacing the nuclear potential

E g == E Uj
i

1<J

The total Hamiltonian of the system reads

A
HPE = " h(i)

P
The corresponding energy of the system ngF can be seen as an approximation to the ex-
act ground state energy of the system. The total wave-function of the system is a Slater

determinant ®(1,..., A)
_ _ 17AT
|HF) =|®(1,...,A)) =1]"a;|-)
where a:r is the single particle creator operator. To calculate the single particle wave functions
or(2) we need to solve a system of coupled equations of the form

h(i)op(i) = epdp (i) with i = (r,0,7)



Hartree-Fock method

Single particle levels: occupy and empty; Fermi energy is between the last occupied and the first empty orbital.



Hartree-Fock method

= exp Z ,,,a ap) u ul|()) (Thouless theorem, p for particle, A for hole)

ph
We define the HF energy as
_2mz)
(Z|12)
The variational principle d Eyp = 0 means
===/ =/=/=/====== i
B (ZIH'(S_J_Z) : a orthogonal variation of |Z :> |5J_2> = |4 Z) ((ZZ|TZZ))| zZy |
(212) e
: , (Z|H5.2)
éi= 3y B2 0Z) = Z()' oh@) fan|Z) 0Fgp = ——————
I; paZ,,,, — 5 —> (Z 1Z)
16,.2) = ZdZ;jh (a;f,u;, - p;,_,,) |Z) = (Z| 2 Z|H|Z5th (a ap — p,r,l,) |Z)
ph ph
Set Zero! |:> (Zo|H | (a};ah — [)th) |Zo) =0

70" means a product state that obeys this variational principle.



Apply Wick on the Hamiltonian

1
H=T+V= Z ’l},,,u;flu,, + 1 Z V;t)\,,,,n}:aj\a.ﬁa,,

Hv pAvT
by doing that we get
28| (ahow = pn)12) = (AHlafal2) = pu2IHIZ) - — — — — — S
= ([)h(l - [J))’-,,, I“!ll(ll‘(‘ h;u/ - I}m + F,m/. I

r,u.u = Z)\‘.’r V,u)\wrf’w)\ I

We can summarise the result by showing that the product state |Zo) obeys the variational
Hartree-Fock condition if its density matrix py obeys

lho, po] =0



To solve this equation we have to set up a self-consistent procedure as illustrated in

Trial sp wave-func. {i}
3
calc. of mean-field
hlp] = ;)—m + Vur(p)

Solve HF eq. hlplle:) = €ili)

{90:'}

Convergence



We can now calculate the HF energy

1
EFF = TvTp+ STrTr(pip)
1
= TrTp+ §T7‘(pF)
1
= TrTp+ §T7‘(ph — pT)
1 i}

= §T7“'Tp + §T7'I‘zp

in canonical basis

A

1
EHF Sl 5 Z(Thh. T Eh.)
h=1

13, are the diagonal matrix element of the kinetic energy operator



The HFB Theory

Bogoliubov transformation

B\ (Ut Vi a w_ (U v
gt )=\ vl uT )\ o ) “\v U

Unitarity of the Bogoliubov transformation

WWTH = Wiw = 1.

Nikolay Bogolyubov (1909-1992)



The HFB Theory

From particles to quasiparticles (and back)

W BB} = {a.a'} = (a| 3),
Wt . {a,a'} = {B,87} = (Bla).

Quasiparticle (Bogoliubov, HFB) vacuum

Np
@) =[] B.10). V. B.|®) =0

pu=1
with N, < M

Quasiparticles represent excitations of the system: the vacuum is the state with no excitation
(ground-state). Contrary to HF, HFB gives a recipe for both the g.s. and the excited states.

Quasiparticle operators {3, 37} are fermionic operators and the HFB vacuum is a product
state: general conditions for the Wick theorem apply.



If the reference state |®) is a HFB vacuum (product state of quasiparticle
operators), then

p=V*vT, k=v*U". (6.18)

Therefore, there is a one-to-one mapping between the set of densities, the
reference state and the matrices of the Bogoliubov transformation

|P) & (U,V) & (p,K) (6.19)

Generalized density

R:(P*lfﬁ).7ﬁzn Rt=R




The HFB Theory

For the HFB ansatz and a two-body Hamiltonian,

i ~ 1 _ *
E = Z tijpji + 9 E VijklPLj Pi T+ 7! Z VijklKij Kkl -
ij ijkl ijkl

Variational principle for E as a functional of R (or equivalently of p, p*, k, £*) is expressed

as
OF
(sh‘ =0 = z (';RH' = ()
‘AL; IRy
Notations
OF 1 OF | [
= —hy, and — = =hj.
dprr 2 opy, 2
and
JFE 1 JIE 1
~A¥, and —==Ay.
Orgg 2 K M e T M

HFB matrix

where the HFB matrix

e is defined by 3Hy = OE/ORy
e obeys the HFB equation [H,R] =0

e is such that 6E = 1Tr(HR)



Effective Interaction: Skyrme force

PO (r) = to(1+20P?)3(ry = 1)
s z‘l(l + x1P7) [ (r; — ro)k™® 4 k%6(r; — rz)] Momentum Dependent

—|—1‘2(1 + 2o P?)K™6(r1 —r2) - k Momentum Dependent
= 1‘3(1 + z3P%)p*(R)d(ry — ro) Density Dependent
—I—Ino((fl + o9)k*d(r; —ro) x k Spin—Orbit

with k the relative momentum operator

k= (Vl — Vo).
21



Skyrme potential is local, zero-range

VSkyrme(rla TQ) X 6(T1 — r2)5(T1 - T"l)(S(TQ - TIQ)

which leads to a functional of the local density p(r) and derivatives 7(r), etc.,

Elp| = /d3'r H(r), H(r)=CPPp*>+CPTpr+ ...



Time even fields

pi(r, 1) Zl/’ (r,o,7);(x, 0, 7),

+(r) =V - V’p(r. o | M

ji(r) = th(I‘-r’”r:r’-
Time odd fields

pr (ro.ro’) (o’ |o|a),

Ti(r) = V » Vs, 1) |o—pr,
Ji(r) = k @ s (r, I")|r=r’-

particle density,

kinetic energy density,

current density,

spin density,

spin kinetic energy density,

spin current density,



where 10; are the Kohn-Sham wavefunctions that determine the Kohn-Sham densities.

It determines the following energy densities for the odd and even fields,
ES(r) = CPp? + CPPpiAp+ CT Ci2 + 0 eV -
f (r) t Pt T O ptAp+ Gy pee + 0y + 0y 7 pe Vo Je,
EXr) =Cfs2 4+ C %, - As 4+ Cl'sy Ty + C/ 12 4+ CY7/8,V x I,
giving the total energy density as

ey =Y & +&.

Where C' are constants combinations of the coupling constants of the functional generator
(¢;, =; and Wy; cf. [24] for a complete and definitive list) which depends on the symmetries
assumed, in particular the density depenedent term is reabsorbed in

Cf = Cf + CPP° 5.



Effective Interaction: Pairing force

Surface-Volume pairing force

‘A/pan-(rl.rg) = Z Vi (1 — /)(R)) d(ry —ro),

)
i=np 0

with R = (r; +13)/2, po = 0.16 fm " is the saturation density. If a = 1, we have a surface
pairing force, if a = 0 we have a volume pairing force; often, v = 1/2.



Effective Interaction: Gogny force

§EoBY (115 = 2;2.(3) =1 e mr2)/uj i(W;+ BjP? — HjP™ — M;P°P")  sum of Gaussians,
+t3(1 + x3P%)p (R)5 (ri —rs) Density Dependent,
+iWo(o1 + 02)k*0(r; —r2) X k Spin—Orbit.

Gogny potential is local, finite range
‘A/ ’T’ r L= / /
Gogny (T1,72) oce™ V1T 2)*/w? d(ry —1ry)d(re — 15)

which leads to a functional of the non-local density p(r.7’).

Elp| /(137°/<13r’ H(r,r'), H(r,r')=CrPp2(r,re =)V 4



The physics:

Clustering in nuclei



Excitation energy

o- cluster states in N=Z light nuclel

Introduction: Ikeda diagram

t 8Be l?c 160

Ne

00 000 0000 O00C0

T.27 14 44

7.16

©

IKEDA Diagram

19.17
11.89

@

473

Mg g
2848 3846

2121 3119
@0 Qoo
14.05 24.03
©© ©o©
1393 2391

®
¥

932 19.29
B

16.75

(mg) (mg)o
- L\wﬁ.}a

Clustering
appears close to
the cluster-decay
thresholds,
quoted here in
MeV. For heavy
nuclei, the
o-cluster

thresholds lie at

very high
energies.

Mnss

numhber




o — Clusterization iIn °Be

0 Py 0,

Prog. Theor. Phys. Supl.
No. 142, 2001
Y. Kanada-En'yo and H. Hq

Density distribution shows developed
cluster structure.

Spectrum of low lying states
corresponds to the a-a rotational
band.




a-cluster rotational bands in O
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Molecular structures in T=1 nuclel
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2 mev JE_7 ] 1UBe rotational bands
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*The ground-state (g.s.) band of '?Be is
2+ 754 significantly less deformed.
o 618 *Gradient of 0.56 MeV.

'Be  *The 0" and 2" members are known,
but no 4". Extrapolated ~11.2 MeV.

Excitation Energy (MeV)

Now that the 10.15 MeV state is firmly
‘ assigned to the molecular band, where
is the corresponding g.s.-band level?

H a2 round-state band




o — cluster bands in 180




J. Phys. G: Nucl. Part. Phys. 23 (1997) 261-323. Printed in the UK PII: S0954-3899(97)64048-7

TOPICAL REVIEW

Developments in the study of nuclear clustering in light
even—even nuclei

M Freeri and A C Merchanti§
i School of Physics and Space Research, University of Birmingham, Birmingham B15 2TT, UK
t Nuclear Physics Department, University of Oxford, Keble Road, Oxford OX1 3RH, UK
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Fig. 6. Nilsson—Strutinsky and a-cluster model calculations for **Mg [191.113]. The potential energy is shown as a contour plot for the deformation
parameters & and y. Minima are found at particular deformations. For some of the potential minima the shapes obtained with the x-cluster model
are indicated. The lower part shows the potential energy for the extension to octupole shapes with the parameter &4.



“Til;lr]n

10.0 tm



z [fm]

-

PHYSICAL REVIEW C 83. 034312 (2011)
Localization in light nuclei
P.-G. Reinhard.' J. A. Maruhn,” A. S. Umar,”" and V. E. Oberacker’

proton localization total density p

0 02040608 1 0 005 01 0.5

10 .

5 -

0 :

-5 o

-10 T T T T T L
10 .
5 ‘ o
0 R
-5 | 4
-10 o

-10 -5 0 5 10 5 0 5 10

X [fm] X [fm]

e
o

12
Cc

160

hain

chain



PHYSICAL REVIEW C 83. 034312 (2011)

Localization in light nuclei
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PRL 115, 022501 (2015) PHYSICAL REVIEW LETTERS 10 TOLY 2005

Rod-shaped Nuclei at Extreme Spin and Isospin

P.W. Zhao (BB %), N. Itagaki (#hedifii, ), and J. Meng (F )

Far lioht nuieclei there we heen indicatinng that sven mare
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exotic states above 1:3 might exist in light N = Z nuclei

due to the a cluster structure. However, there is still no firm
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FIG. 1 (color online). Angular momenta as functions of the
tosional Eesqusncy She Cinetopes fusm A= 2 f &= 20 FIG. 2 (color online). Proton density distributions in the y-z
12~14: Rigid rotor: plane (x direction is integrated) calculategl by using the7 cranking
15~18: Back-bending: cova'riant density fupctional theory for '*C, °C, and °C at the
19~20: Rigid rotor again. rotational frequencies hw = 0.0 MeV (a),(c),(e) and hAw =

3.0 MeV (b),(d),(f).



The valence neutron densities outside the core 12C
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FIG. 4 (color online). Valence neutron distributions in the y-z
plane (x direction 1s integrated) defined as the difference between

the neutron and proton densities for '°C and ?’C at the rotational
frequencies aiw = 0.0 MeV (a),(c) and Aaw = 3.0 MeV (b),(d).
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How atomic nuclei cluster

J.-P. Ebran', E. Khan?, T. Niksi¢* & D. Vretenar®

Nucleonic matter displays a quantum-liquid structure, but in some
cases finite nuclei behave like molecules composed of clusters of
protons and neutrons. Clustering is a recurrent feature in light
nuclei, from beryllium to nickel'. Cluster structures are typically
observed as excited states close to the corresponding decay threshold;
the origin of this phenomenon lies in the effective nuclear interaction,
but the detailed mechanism of clustering in nuclei has not yet been
fully understood. Here we use the theoretical framework of energy-
density functionals*’, encompassing both cluster and quantum
liquid-drop aspects of nuclei, to show that conditions for cluster
formation can in part be traced back to the depth of the confining
nuclear potential. For the illustrative example of neon-20, we show
that the depth of the potential determines the energy spacings
between single-nucleon orbitals in deformed nuclei, the localization
of the corresponding wavefunctions and, therefore, the degree of
nucleonic density clustering. Relativistic functionals, in particular,
are characterized by deep single-nucleon potentials. When com-
pared to non-relativistic functionals that yield similar ground-state
properties (binding energy, deformation, radii), they predict the
occurrence of much more pronounced cluster structures. More
generally, clustering is considered as a transitional phenomenon
between crystalline and quantum-liquid phases of fermionic
systems.
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Figure 3 | Harmonic oscillators of different depths. a, Potentials plotted
against the radial coordinate r for harmonic oscillators with the same radius,
R =3 fm, and depths (V) of 30, 45 and 60 MeV. b, The radial wavefunctions
Uy, of the corresponding first p-state, where k is the radial quantum number
and [ the azimuthal one. The position of the maximum is determined by the
oscillator length b.
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Clustering becomes difficult in
heavy nuclei!

fo "

DD-ME2 o is smaller than 1
Crystal Cluster
a< 1 a~1

SLy4  greater than 1

Quantum liquid
a>1

Figure 4 | Schematic illustration of the transition from a crystalline to a
quantum liquid phase, including the cluster phase. The dimensionless
parameter o = b/ry, where b is the dispersion of the fermion wavefunction and r,
the typical inter-fermion distance, quantifies nuclear clustering. For a harmonic
oscillator = (AR)""? 2mVy) ™ "* r, ', where V is the depth of the potential, R
the radius of the system, m the mass of the nucleon and /1 Planck’s constant/27.
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a-Particle Clustering from Expanding Self-Conjugate Nuclei within
the Hartree-Fock-Bogoliubov Approach

M. Girod' and P. Schuck’>”
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FIG. 1 (color online). Total energy of '°O as a function of the
radius scaled with respect to the one of the ground state r, , . At
r/r}._\_ = ~1.8, we see that a tetrahedron of four « particles is
formed. No c¢.m. correction for individual «’s is applied here.
The arrow indicates to which r/r:_,_i value the e configuration
corresponds.
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FIG. 4 (color online).
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Same as Fig. 1 but for °Ca with ten a'’s.
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Also, configurations with a '®O surrounded by six a’s are shown.
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FIG. 1. Schematic spectrum of a spherical top with tetrahedral
symmetry and @, = @, = w3. The rotational bands are labeled
by (v, v,, v3) (bottom). All states are symmetric under ;.
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FIG. 2. The observed spectrum of '°0 [17]. The levels are
organized in columns corresponding to the ground-state band and
the three vibrational bands with A, E, and F symmetry of a
spherical top with tetrahedral symmetry. The last column shows
the lowest noncluster levels.
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Evidence for Tetrahedral Symmetry in

R. Bijker' and F. lachello’

160
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(000)A

20
L(L+1)
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TABLE I.  Comparison of theoretical and experimental B(EL) values in ¢* fm** and E, values in keV, along the
ground-state band. The theoretical B(EL) values are obtained from Eq. (6), and the E, values are obtained from
E=0511L(L + 1) MeV. The experimental values are taken from Ref. [17].

B(EL;L? - 0%) Theoretical Experimental E,(LP ) Theoretical Experimental
B(E3;3; = 0) 181 205+ 10 E.37) 6132 6130
B(E4:4; = 0)) 338 378 +£133 E (47) 10220 10356
B(E6:6] — 0)) 8245 E,(6)) 21462 21052

The excitation energies of cluster states in '°O plotted as
a function of L(L + 1): closed circles for the ground-state band,
closed squares for the A vibration, open circles for the E
vibration, and open triangles for the F vibration.
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Evidence for the Tetrahedral Nature of '°0O

D. Robson
Department of Physics, The Flovida State University, Tallahassee, Florida 32306
(Received 9 January 1979)

Evidence is given to show that %0 behaves like a tetrahedral rotor with a level sequence
0% 8 ; 4%:8%. 7T ; 8% i . The charge form factors for excited states can be predicted
from the ground-state form factor and excellent agreement with experiment is obtained
for the 3~ and 4* states at 6.13 and 10.35 MeV, respectively. The elastic-scattering data
are fitted using deformed rather than spherical o clusters,

10!
1072
The form factor for the 3" state (also complete- o2l ]
ly predicted by the model from the 0" form factor)
is a remarkably good fit to the data. Although
10731 =
. | o -
0 BE (3) value is easily calculated from the |F 4|2 Fool?
I [P curve and is found to be 1200 ¢? +fm® which is in 1074}
oJ L

close agreement with experimental values®® (1150-
1500 ¢?+fm®). The result for |F|? in Fig. 1 is )
the major result of this work and represents 107

0* 1 strong evidence for the rotational character of the
3" (6.13) level in *°0. e
thips proposed here between the 37,4 form fac- 107
107 ors and the elastic form factor for 'O depend
i mly upon the assumption of a tetrahedral rotor 0 |
ind not on the details of the clusters themselves. i P
FIG, 1, Theoretical predictions for the inelastic q (fm’)
charge form factors for the 0*— 3~ transition (solid . ’
line) and the 0*—4* transition (broken line). Experi- FIG. 2. Theoretical calculations for the elastic
mental points for the 3™ state are from Ref, 7 and for charge.form factor sx}uared for Eieformed clusters (full
the 4* state from Ref. 8. Note that the high-q data and 1§ne) with a =0.23 fmz and spherical clusters (brf_)ken
some of the points around the maximum of the 3~ data line) with o =0.06 fn} . The value of R=1.96 fm is taken
involve a weak contribution from the unresolved 0* from the close-packing arguments of Ref. 12. The ex-

state at 6.05 MeV. perimental points are from Ref. 13,
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Giant Dipole Resonance as a Fingerprint of a Clustering Configurations in '>C and 'O

W.B. He (fﬂﬁ )12 Y.G.

Ma (5 &[NH,>" X.G.

Cao (W#%),M X. Z. Cai (B

¥, and G. Q. Zhang (5K ¥ )"

Slumqhm [m.'ztun of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Umuu\m of the Chinese Academy of Sciences, Beijing 100080, China

Shum:lml Tech University, Shanghai 200031, China

(Received 6 May 2014; published 17 July 2014)

It is studied how the « cluster degrees of freedom, such as a clustering configurations close to the «
decay threshold in '>C and '%0, including the linear chain, triangle, square, kite, and tetrahedron, affect
nuclear collective vibrations with a microscopic dynamical approach, which can describe properties of
nuclear ground states well across the nuclide chart and reproduce the standard giant dipole resonance
(GDR) of '®0 quite nicely. It is found that the GDR spectrum is highly fragmented into several apparent
peaks due to the a structure. The different a cluster configurations in '>C and 'O have corresponding
characteristic spectra of GDR. The number and centroid energies of peaks in the GDR spectra can be
reasonably explained by the geometrical and dynamical symmetries of a clustering configurations.
Therefore, the GDR can be regarded as a very effective probe to diagnose the different a cluster
configurations in light nuclei.
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Take-away message

The DFT is a microscopic frame, which can be
used to investigate the clustering phenomena
without the assumption of cluster structure.



Before | came here | was confused

about this subject. Having listened

to your lecture | am still confused.
But on a higher level.

— Enruce Fermi —




single particle energy (MeV)

(a) "°O neutron: spherical
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single particle energy (MeV)

(b) °O neutron: tetrahedral
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Energy Density Functional in Hartree-Fock
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Densities

* Normal density, or density
matrix

p,=(®]aa|o)

* Abnormal density, or pairing
tensor

Kz‘]':<q)‘afai‘q)>
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One-body densities In Hartree-Fock

pg(r) = D _lwf(r,s)|*n? pP=pn+pp,
.5
(@) =3 |Vel(r, s)Pnf | r=Tn+Tp,
1.5
Jg(r) = E e (r, 8 YVl (r, 8) x (&|o|s)nd
i.5.8

T = e,



The Energy Density Functional

2
£ = ﬁT+EQ+Eg+EEf_f+£_fe‘n+€so+gsg+gﬂoui~ '[43
where
L T 2_ 0 2, 2
&y = Ztﬂ[[--FSECIJP —[-:r:u+1](;3n+.r?p]'].-
1
€ = Srtap®[(2+a3)p® - (2ra+ 1)(p2+pp)] .
: Lpe 5 ) 15 :
Ecff = g[tl[z—l—rlj—I—tg(z—l—rg)]'rp-i—g[tthﬂ-l‘lll—?‘-Lill’l-l-l)]
(Tnfin + TpPp)
. i - . T ;
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The Skyrme-HF central potentials

Uq(r) = %to[(Z +axg)p—(1+ 21'0)Pq]
+ %ts{(ll + 23)p7 L = (1+ 22)[2pg + 0(o2 + p2))" 1)
+ %[t1(2 + 1) +t2(2 + 20)]T — %[tl(l +221) — ta(1 + 229)]r,
_ %[31*4(2 + 1) —ta(2+ 22)]Vip+ %[3“(1 +2q) + (14 21‘2)]V2pq

— IW(V-I+V.dg).



The spin-orbit and Coulomb potentials

1 1
—(tl — 't‘.g).]q — g(ﬁli‘l + ﬁgIg}J :

1.,
Wor) = sWoV(p+p)+ 3

The Coulomb potential requires and additional approximation for the
exchange contribution in order to keep it local (the Coulomb interaction,
unlike the Skyrme force, has a non-zero range). A local density approxi-
mation called the Slater approximation is used for expressing the Coulomb
exchange contribution to the total energy:

1 4
g = 23 [odar

This expression gives the exact result in infinite matter. With this approxi-
mation the one-body Coulomb potential becomes:

e? T') 3
Vo) = [ [ B - Gel]

v —r’|



The center-of-mass correction

—_— f: p; (Xipi)’
2m 2mA

- 2m 1__ zp' 2mAzp Pj -

The first term on the second line is again a one-body kinetic term with a cor-
rected mass m’ = m%. This takes care of a large part of the center-of-mass
correction on the total energy, and this is included in practically all Skyrme-
HF calculations. The second term is a two-body correction much more diffi-
cult to incorporate and it is usually dropped in constructing Skyrme forces



Spherical case: radial equations In r-space

e, 0) = ") (@ ima(r)

h? , L+ 1) h?
. ug] + Vo (1) g —
2mi(r) [—ua + rz I+ V(ru (2m*

) 'ul, = €quq

Va(r) = Vi (r) + 0g Vo (r) + V5o (r) <1-0 > .



