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✓QCD, quark-gluon plasma (QGP)

✓Early stage of universe, relativistic heavy-ion collisions at 
laboratory

The QCD Phase Diagram: Expectations and Challenges Reinhard Stock

1. Introduction: Motivation

The phase diagram of strongly interacting matter represents the, perhaps, most challenging
open problem within the Standard Model of elementary interaction. Its most prominent feature, the
deconfinement transition line between hadrons and partons, has been first addressed by R. Hage-
dorn [1], well before the advent of QCD, in his studies of the limiting temperature occuring in
hadron-resonance matter. The resulting phase boundary, at about T = 160−170MeV (that concurs
with an energy density of about 1GeV/ fm3), was subsequently understood [2, 3] as the location of
the QCD hadron to parton deconfinement transition. At such low temperature, and corresponding
meanQ2, deconfinement can not be the consequence of QCD asymptotic freedom - the perturbative
QCD mechanism that was first envisaged [4, 5] - but falls deeply into the non-perturbative QCD
sector, as does the resulting confined hadron structure. In fact, non-perturbative QCD theory on the
lattice has, for two decades, postulated that the hadron-parton phase transformation occurs in the
vicinity of Hagedorn’s limiting temperature [6, 7], at zero baryochemical potential.
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Figure 1: Sketch of the QCD phase diagram in grand canonical variables T, µB. A critical point E is
indicated which ends the crossover transition domain at µB below E . Also shown are the hadronic chemical
freeze-out points resulting from statistical model analysis, from RHIC down to SIS energies.

Conditions reached in the cosmological expansion evolution, and closely approached at RHIC and
LHC energies, in collisions of heavy nuclei. Subsequent, recent developments in QCD Lattice the-
ory have overcome the technical limitation to the case of zero baryochemical potential [8, 9, 10],
with extrapolations of the deconfinement phase boundary, upward to about µB = 500MeV in the
(T,µB) plane, including hints of a critical point of QCD. This domain coincides with the energy
region of A+A collision study at CERN SPS energies, 5 <

√
s< 17GeV , which has created several

2

nuclear matter history of universe

Ultra-hot-dense

横四维⽽含阴阳，纮宇宙⽽章三光——《淮南⼦》 
汉．⾼诱．注：四⽅上下⽈宇，古往今来⽈宙
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Micro-bangs in A+A collisions at laboratory

initial state 

pre-equilibrium 

QGP and 
hydrodynamic expansion 

hadronization 

hadronic phase 
and freeze-out 

chemical freeze-out kinetic freeze-out
Physics:

  1) Parton distributions in nuclei

  2) Initial conditions of the collision

  3) a new state of matter – Quark-Gluon Plasma and its properties

  4) hadronization

  ？
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STAR 

Au+Au 7.7--200 GeV

13

In addition to accelerating protons, the accelerator complex also 
accelerates lead ions.

Lead ions are produced from a highly purified lead sample heated 
to a temperature of about 500°C. The lead vapour is ionized 
by an electron current. Many different charge states are pro-
duced with a maximum around Pb29+. These ions are selected 
and accelerated to 4.2 MeV/u (energy per nucleon) before pass-
ing through a carbon foil, which strips most of them to Pb54+. 
The Pb54+ beam is accumulated, then accelerated to 72 MeV/u 
in the Low Energy Ion Ring (LEIR), which transfers them to the 
PS. The PS accelerates the beam to 5.9 GeV/u and sends it to the 
SPS after first passing it through a second foil where it is fully 
stripped to Pb82+. The SPS accelerates it to 177 GeV/u then sends 
it to the LHC, which accelerates it to 2.76 TeV/u.
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✓ ALICE：欧洲核⼦中⼼(CERN)⼤强⼦对撞机(LHC)上针对重离⼦对撞的探测装置
✓ 每核⼦对质⼼能量达TeV的重离⼦对撞物理
✓ 量⼦⾊动⼒学(QCD)特性研究
✓ 夸克-胶⼦等离⼦体(QGP)性质研究
✓ 宇宙早期演化规律，核天体物理微观性质
✓ 双重⼦态、重超核、⼿征反常效应
✓ ……

http://arxiv.org/abs/1008.0413
http://arxiv.org/abs/1008.0413
http://arxiv.org/abs/1008.0413
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EEMC Magnet MTD BEMC TPC TOF EPD

✓ QGP相变，⼆期能量扫描

✓ ⼿征效应，isobar实验计划
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10

basic facility

BM@N 

applied research area

SPD 

MPD 
Center NICA

Nuclotron ring (c=251,5 m)

Collider ring (c=503 m)
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ECal

⾼重⼦数密度，核物质状态⽅程
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CSRm
1000 AMeV (H.I.), £ 2.8 GeV (p)

CEE
⾼重⼦数密度（HIAF），核物质状态⽅程，超核
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集体流研究中的⼏个标志性问题

• 在平⾯椭圆流的出现（in-plane elliptic flow）


• 部分⼦标度（NCQ-scaling）


• 初始状态涨落，三⻆流的测量

12



F

S. Zhang (张松), IMP, Fudan, 

集体流的⼀般定义

13

538 S.A. Voloshin et al. / Physics Letters B 659 (2008) 537–541

Fig. 1. The definitions of the RP and PP coordinate systems.

Fig. 2. The definition of the EP coordinate system.

The orientation of the flow vector Q = {Qx,Qy} =
{∑i cos 2φi ,

∑
i sin 2φi}, where the sum runs over all parti-

cles in some momentum window, defines the second harmonic
event plane (see Fig. 2) with corresponding azimuth ΨEP,
Qx = Q cos 2ΨEP, Qy = Q sin 2ΨEP. Although we use Q in
this Letter, in practice one would use q = Q/

√
N in order to

minimize the effect of the multiplicity spread within a central-
ity bin [2]. For a given orientation of the participant plane, ΨPP,
anisotropic flow develops along this participant plane.

The orientation of the participant plane can be also charac-
terized by the eccentricity vector with coordinates

(1)ε = {εx, εy} =
{〈

σ 2
y − σ 2

x

σ 2
x + σ 2

y

〉

part
,

〈
2σxy

σ 2
x + σ 2

y

〉

part

}
,

where σ 2
x = 〈x2〉 − 〈x〉2, σ 2

y = 〈y2〉 − 〈y〉2, and σ 2
xy = 〈xy〉 −

〈y〉〈x〉, and the average is taken over the coordinates of the
participants in a given event [3–5]. The eccentricity vector di-
rection is given by ΨPP = atan 2(εy, εx), and its magnitude,

εpart =
√

ε2
x + ε2

y ≡ εPP, is called the participant eccentricity
(see Figs. 3, 4) in contrast with the reaction plane (or standard)
eccentricity εx ≡ εRP with its mean value defined to be

(2)〈εx〉 = 〈εRP〉 ≡ ε̄.

This mean value is approximately εopt, the optical eccentricity
determined by the optical Glauber model [6].

Fig. 3. Definition of εpart.

Fig. 4. Flow vector distribution in events with fixed ε.

3. Gaussian model for eccentricity fluctuations

In events with fixed ε, both in magnitude and orientation, the
flow vector on average points along ε, but with the magnitude
and orientation of the flow vector fluctuating due to finite mul-
tiplicity of particles used in its definition. As can be seen from
simulations using the MC Glauber model [3–5] in Fig. 5, the
distributions in εx and εy are well approximated by a Gaussian
form with widths approximately equal in the two directions.
There exists some deviation from a Gaussian form in periph-
eral collisions, but even there the deviations are small, so we
proceed with the Gaussian ansatz. We denote the equal widths
in εx and εy by σε . The distribution in the magnitude of the ec-
centricity, εpart, can be obtained by integration over angle of the
vector ε as a two-dimensional Gaussian (see, for example, the
derivation in [7]), and is given by

dn

dεpart
= εpart

σ 2
ε

I0

(
εpart〈εRP〉

σ 2
ε

)
exp

(
−

ε2
part + 〈εRP〉2

2σ 2
ε

)

(3)≡ BG
(
εpart; 〈εRP〉,σε

)
,

where we have introduced a short hand notation BG(x; x̄,σ )

for the “Bessel–Gaussian” distribution with one variable argu-
ment and two constant parameters (see Fig. 6). Note that in
BG(εpart; 〈εRP〉,σε), εpart is an eccentricity as given in PP but
〈εRP〉 and σε describe the 2D Gaussian distribution in the RP-
system. The distribution is normalized to unity. For later use we
provide a few moments of the distribution BG(x; x̄,σ ), where
x is a generic variable (not the x-axis):

〈x〉 = 1
2σ

exp
(

− x̄2

4σ 2

)√
π

2

[(
2σ 2 + x̄2)I0

(
x̄2

4σ 2

)

(4)+ x̄2I1

(
x̄2

4σ 2

)]
,

S.A. Voloshin et al. / Physics Letters B 659 (2008) 537–541 
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A. M. Poskanzer, S. A. Voloshin, Phys. Rev. C 58 (1998) 1671
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Directed flow

Elliptic flow

J-Y. Ollitrault, Nuclear Physics A638 (1998) 195c; Phys. Rev. D 46 (1992) 229
46 ANISOTROPY AS A SIGNATURE OF TRANSVERSE. . . 231

FIG. 1. Peripheral collision viewed in the transverse plane. b
is the impact parameter. The shaded area corresponds to the
region where particles are created in the central rapidity region.
Outside this region is the vacuum.

S
f, +f,BzF 0

0 2. (2.4)

The term f38F, which may be important, is the remnant
of the bounce off. From Eq. (2.3), one getsf3 —-S33=+M &to(v)p, (v). Thus, the main contribution
to fz comes from the fragmentation regions which corre-
spond to the highest values of ~p, ~

in the center-of-mass
frame. We shall hereafter restrict our study to the cen-
tral rapidity region where ~p, ~

is much smaller, and we
assume that fzBF is negligible in this case. Thenf( —-S(t =g„tw(v)p„(v), fz =Szz =g„tw(v)py~(v},
and the sidesplash of the reaction products along the
direction of impact parameter x results in f, &fz. The
whole rapidity range may contribute to this effect. A nat-
ural measure of this anisotropy in transverse momenta is
the dimensionless observable a defined as

g w ( v) [p„(v)—p„(v) ]fi fz-
f +f M

g w(v)[p„(v) +py(v) ]
(2.5)

a=O for an isotropic distribution (f, =fz), whereasa=1 if all momenta are directed along the impact line
(fz=0). The last equality in Eq. (2.5) holds only if x is
the direction of impact parameter. Alternatively, we can
use the following expression which is valid in any coordi-
nate system for the transverse plane:

1/2
4detSa= 1—
(trS )' (2.6)

This allows one to calculate a directly as a function of
the measured transverse sphericity tensor S;.. It appears
clearly in this form that a is the only observable we can
construct from S;. if we require it to be dimensionless and
invariant through rotations about the collision axis. The
ultrarelativistic case is thus simpler than the low-energy
case where three rotationally invariant and dimensionless
parameters must be considered. A collective How would
reveal itself through a nonzero value of a for peripheral

III. FINITE MULTIPLICITY FLUCTUATIONS

A. Jacobian-free analysis

With a finite number of particles M, one never obtains
an isotropic distribution, even if the particles are emitted
according to an isotropic emission probability. Even
worse, as we shall see, an isotropic emission probability
gives rise to a probability law for a which is not centered
at a=O as we would expect, but rather at a value
a-1/~M. Here we show how to get rid of this shift by
defining a corrected distribution for a, following the
analysis of Danielewicz and Gyulassy [7].
If correlations between particles are neglected, the cen-

tral limit theorem states that in the limit of large multi-
plicity M the probability law for S; is of Gaussian form
and strongly peaked around its mean value (S~ },with a
width varying like 1/v M. However, we are not interest-
ed in the distribution of S; but rather in the distribution
of a. In order to change variables, we need two other
quantities since S;- has three independent components.
We take, for instance, v = trS =+M Ipz. (v) and the an-
gle 0 between the I axis and the largest principal axis of
S~. Then, in terms of the variables (a, @,8), the expres-
sionofS is

1+a cos28
a sin28

a sin20
1—a cos20 (3 1)

Transforming variables from S;. to a, 6, and 8 brings in a
Jacobian factor

collisions, while a=0 for central collisions, which are iso-
tropic in the transverse plane. So we must study the
correlation of a with the multiplicity (we recall that the
multiplicity is a fair measure of the impact parameter
[4]). We expect that a will be a decreasing function of
the multiplicity if collective transverse Bow occurs.
Finally, note that the weight w(v) = 1/2m

„

in Eq. (2.1)
is quite inappropriate at ultrarelativistic energies. First,
S,,- does not represent the kinetic energy any more.
Second, composite fragments for which this weight was
introduced represent a negligible fraction of the emitted
particles, especially in the central rapidity region. Third,
the transverse momenta of different types of particles
have comparable distributions (this is the observed mz.
scaling [5]}. Thus, we shall take w(v)=1, and the trans-
verse sphericity tensor is then simply defined as

M
S~J = g p, (v)p, (v) (2.7)

v= 1

with i,j=1,2. Since S; only involves the transverse mo-
menta, it is invariant under Lorentz boosts along the col-
lision axis. This is a nice property from a theoretical
point of view since the central rapidity region is expected
to enjoy the same property at high energies [6]. From the
experimental point of view, restricting ourselves to trans-
verse coordinates allows us to measure S; directly in the
laboratory frame for fixed-target experiments.

J- Y. Ollitrault /Nuclear Physics A638 (1998) 195c-206c 197c 
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Figure 2. Schematic behaviour of the magni- 
tudes of directed flow (top) and elliptic flow 
(bot tom) as a function of the bombarding ki- 
netic energy per nucleon in the laboratory 
frame. Full lines: proton flow; dashed lines: 
pion flow. 

Figure 3. Energies of vanishing directed 
flow (EBAL) and elliptic flow (ETRA), as a 
function of impact  parameter  (from [15]), 
in the centre of mass system. The corre- 
sponding laboratory energies are larger 
by a factor of 4. 

centrifugal force emits particles in the rotation plane ("rotation-like effect" [l 1]), produc- 
ing in-plane elliptic flow [12]. At higher energies, individual nucleon-nucleon collisions 
dominate over mean field effects. They produce a positive pressure, which deflects the 
projectile and intermediate rapidity fragments away from the target ("bounce-off" and 
"sidesplash" effects [1]), resulting in positive directed flow. Furthermore, the participant 
nucleons, which are compressed in the region where the target and the projectile over- 
lap (see Fig.l) ,  cannot escape in the reaction plane due to the presence of the spectator 
nucleons ("squeeze-out effect" [4]), producing out-of-plane elliptic flow. 

The crossing energies at which directed [13] and elliptic [14] flow cancel are displayed in 
Fig.3 for Au-Au collisions, as a function of impact  parameter .  An extrapolation to zero 
impact  parameter  gives values which are consistent, within error bars, with the threshold 
energy for radial flow, est imated as ERAD = 8.7 -F 2.5 AMeV. As Crochet et al. point out 
[15], this suggests that  a common mechanism is at the origin of positive directed flow, 
out-of-plane elliptic flow and radial flow: the three phenomena appear when the attractiw, 
forces are counterbalanced by the thermal pressure. A possible relation of this crossing 
phenomenon with the nuclear liquid gas phase transition is discussed in [16]. 

I now turn to a more detailed analysis of directed and elliptic flow at energies abow" 
100 MeV per nucleon. 
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the detector efficiency, extraction of the yields, and un-
certainty in the model calculation of Nbin [15].

Figure 1 shows minimum bias v2 for K0
S, !!!, and

charged hadrons (h"). The analysis method used to ob-
tain the charged hadron v2 is described in Ref. [7].
Figure 1 also shows hydrodynamic model calculations
of v2 for pions, kaons, protons, and lambdas [10]. At
low pT , v2 is consistent with hydrodynamical calcula-
tions, in agreement with the previous results at

!!!!!!!!

sNN
p #

130 GeV [9]. This Letter establishes the particle-type
dependence of the v2 saturation at intermediate pT . In
contrast to hydrodynamical calculations, where at a given
pT heavier particles have smaller v2 values, at intermedi-
ate pT , v!

2 > vK
2 . The pT scale where v2 deviates from the

hydrodynamical prediction is $2:5 GeV=c for !!!
and $1 GeV=c for K0

S.
Figure 2 shows v2 of K0

S and !!! for three central-
ity intervals: 30%–70%, 5%–30%, and 0%–5% of the
geometrical cross section. In each centrality bin, v2%pT&
rises at low pT and saturates at intermediate pT . The
values of v2 at saturation are particle type and central-
ity dependent.

If partons that fragment into (anti-)lambdas lose more
energy than those that fragment into kaons, a particle-
type dependence for v2 may develop at high pT with
v!
2 > vK

2 . In this case, !!! yields should be more
suppressed than kaon yields. Figure 3 shows RCP for K0

S,
K", and !!! using the 5% most central collisions,
normalized by peripheral collisions (40%–60% and
60%–80%). For charged hadrons, these peripheral bins
approximately follow Nbin scaling without medium
modification [15]. The bands in Fig. 3 show the expected
values of RCP for binary and participant (Npart) scaling
including systematic variations from the calculation [15].
For most of the intermediate pT region, RCP for !!! is
similar to expectations of Nbin scaling and RK

CP <R!
CP.

The pT scales associated with the saturation and reduc-
tion of RCP also depend on the particle type. For both
species, the pT where RCP begins to decrease approxi-
mately coincides to the pT where v2 in Fig. 1 saturates. At
high pT (pT > 5:0 GeV=c), RCP values for K0

S and !!!
are consistent with the value for charged hadron RCP,
indicating that the baryon enhancement observed at in-
termediate pT in central Au! Au collisions ends at pT '
5 GeV=c. The particle-type dependence of v2 and RCP at
intermediate pT are in contradiction to expectations from
energy loss followed by fragmentation in vacuum.

Nuclear modifications such as shadowing and initial-
state rescattering [22,23] may affect RCP but they are not
expected to give rise to such a large variation with par-
ticle type (e.g., [24]). At lower beam energy, the enhance-
ment of yields in p! A collisions at intermediate pT (i.e.,

2v
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FIG. 2 (color online). The v2 of K0
S and !!! as a func-

tion of pT for 30%–70%, 5%–30%, and 0%–5% of the
collision cross section. The error bars represent statistical errors
only. The nonflow systematic errors for the 30%–70%, 5%–
30%, and 0%–5% centralities are (25%, (20%, and (80%,
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FIG. 3 (color online). The ratio RCP for K0
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sion cross section (bottom panel). The error bars shown on the
points include both statistical and systematic errors. The widths
of the gray bands represent the uncertainties in the model
calculations of Nbin and Npart. We also show the charged hadron
RCP measured by STAR for
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sNN
p # 200 GeV=c [15].
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the Cronin effect [25]) is larger for baryons than mesons
[22]. The Cronin effect has been attributed to initial-state
rescattering and is expected to decrease with increasing
beam energy [23]. Alternatively, a strong particle-type
dependence of the Cronin effect may indicate a nuclear
modification to the parton fragmentation. Although the
effects of shadowing, initial-state rescattering, and non-
flow deserve further investigation, the particle type and
pT dependence of v2 and RCP may reveal a crossover from
a pT region dominated by bulk partonic matter hadron-
ization to one dominated by single parton fragmentation.
Our measurements indicate that the crossover would oc-
cur at pT ! 4–5 GeV=c.

The larger !"! RCP at intermediate pT shows that
the !"! yield increases with parton density faster than
the kaon yield. Multiparton mechanisms such as gluon
junctions [26], quark coalescence [2], or recombination
[3] can naturally lead to a stronger dependence on parton
density for baryon production than meson production.
Models using coalescence or recombination mechanisms
in particle production predict that at intermediate pT v2
will follow a number-of-constituent-quark scaling [2].
Figure 4 shows v2 of K0

S and !"! as a function of
pT , where the v2 and pT values have been scaled by the
number of constituent quarks (n). While v2 is signifi-
cantly different for K0

S and !"!, within errors, v2=n
vs pT=n is the same for both species above pT=n!
0:7 GeV=c. In a scenario where hadrons at intermediate
pT coalesce from comoving quarks, v2=n#pT=n$ reveals
the momentum-space azimuthal anisotropy of partons in
a bulk matter [2].

At higher pT where independent fragmentation is
likely to dominate over multiparton particle production
mechanisms, constituent-quark scaling is expected to
break down and the K0

S and !"! v2 may take on a
value closer to that of an underlying partonic v2 [2]. The
convergence of K0

S and !"! RCP at pT ! 5 GeV=c in
Fig. 3 supports this expectation. Higher statistics v2 mea-
surements in this region along with measurements of v2
for other identified particles will therefore provide an
opportunity to test the scaling demonstrated in Fig. 4.

In summary, we have reported the measurement of v2
and RCP up to pT ! 6:0 GeV=c for kaons and !"! from
Au" Au collisions at

!!!!!!!!

sNN
p % 200 GeV. At low pT , hy-

drodynamic model calculations agree well with v2 for K0
S

and !"!. At intermediate pT , however, hydrodynam-
ics no longer describes the particle production. For K0

S, v2
saturates earlier and at a lower value than for !"!.
The K0

S and !"! v2 are shown to follow a number-of-
constituent-quark scaling law. In addition, RCP shows that
the yield of !"! is increasing more rapidily with the
system size than kaons: At intermediate pT , the !"!
RCP is close to expectations from binary scaling while the
kaon RCP is lower. At high pT , the RCP of K0

S and !"!
are consistent with the value for charged hadrons, indi-
cating that the centrality dependent baryon enhancement
observed at intermediate pT ends near pT % 5 GeV=c.

The measured features at intermediate pT are consistent
with the presence of multiparton particle formation
mechanisms beyond the framework of parton energy
loss followed by standard fragmentation. The particle
dependence and pT dependence of v2 and RCP constitute
a unique means to investigate the anisotropy and hadron-
ization mechanism of the bulk dense matter formed in
nucleus-nucleus collisions at RHIC.
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FIG. 4 (color online). The v2 parameter for K0
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scaled by the number of constituent quarks (n) and plotted
versus pT=n. The error bars shown include statistical and
point-to-point systematic uncertainties from the background.
The additional nonflow systematic uncertainties are approxi-
mately &20%.
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FIG. 19. (Color online) The NCQ-scaled elliptic flow, v2/nq versus (mT − m0)/nq , for 0%–80% central Au + Au collisions for selected
particles (a) and corresponding antiparticles (b). Only statistical error bars are shown. The dashed lines show the results of simultaneous fits
with Eq. (17) to all particles except the pions.

the breakdown of NCQ scaling would be a necessary signature
for a QCD phase transition from partonic to hadronic matter.

Because particles and antiparticles have the same number of
quarks, the NCQ scaling transformation of v2 does not change
their relative separation. This means that the difference in
v2(pT ) for particles and corresponding antiparticles observed
in Sec. VI A constitutes a violation of this NCQ scaling.
Possible physics causes for this difference are discussed below.
In the following, NCQ scaling is shown separately for a selec-
tion of particles and antiparticles. Because a better agreement
between the different particles [even at low (mT − m0)/nq

values] is achieved with the (v2/nq)[(mT − m0)/nq] scaling
compared to the (v2/nq)(pT /nq) scaling, Fig. 19 presents the

scaled distributions versus (mT − m0)/nq . The corresponding
scaled plots for v2(pT ) are shown in Fig. 24 in the Appendix.

The NCQ scaling should only hold in the transverse
momentum range of 1.5 < pT < 5 GeV/c [44,48]. For the
corresponding scaled transverse mass and transverse momen-
tum range, a fair agreement for most of the particles and
energies is observed. Only the φ mesons deviate from the
trend at 7.7 and 11.5 GeV, with the maximum measured
(mT − m0)/nq value just reaching the lower edge of the
expected NCQ scaling range. The values deviate from those for
the other particles and antiparticles at the highest (mT − m0)
values at

√
sNN = 7.7 and 11.5 GeV by 1.8σ and 2.3σ ,

respectively. For the calculation statistical and systematic
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FIG. 1. (Color online) Snapshot of a typical gold-gold collision in the x-y plane, for b = 6 fm. Red and black circles indicate nucleons
from nuclei A and B, respectively, plotted with the size (3.2). The left picture shows all nucleons, the middle shows the wounded nucleons only,
and the right shows the centers of mass of pairs of nucleons undergoing binary collisions. The straight lines indicate the (twisted) principal axis
of the quadrupole moment, the blue dots show the center of mass of the system, and the outer circles denote the Woods-Saxon radius of gold,
R = 6.37 fm. The units on the x and y axes are femtometers.

The first part of the paper discusses the fixed-axes and
variable-axes harmonic moments and radial profiles obtained
numerically from the Glauber Monte Carlo studies in sev-
eral models: the conventional wounded-nucleon model [11],
a model admixing binary collisions to wounded nucleons
[12,13], a model with hot spots, and the hot-spot model
where the deposition of energy occurs with a given probability
distribution (Sec. III). The results are presented in Secs. IV
and V. The main result here is that the fixed-axes quadrupole
moments, ε, and their scaled standard deviation, "ε/ε, vary
significantly from model to model. The same holds to a
lesser extent for the variable-axes moments, ε∗. However,
the dependence of the scaled standard deviation "ε∗/ε∗

on the chosen Glauber-like model is weak, at most at the
level of 10%–15% for intermediate impact parameters. For
all considered models the values range from about 0.5 for
central collisions to about 0.3–0.4 for peripheral collisions. We
examine the dependence on the mass number, providing results
for gold-gold and copper-copper collisions. We also investigate
the effects of the assumed weighting power of the transverse
radius in the definition of the harmonic moments, finding that
the choice is not important for studies of fluctuations.

In Sec. VI we examine the role of the center-of-mass and
quadrupole-axes fluctuations on jet quenching. Except for very
central collisions, the effect of the increased eccentricity of
the opaque medium is canceled by the shift of its position and
axes rotation, leading to almost no change in the azimuthal
asymmetry of the jets leaving the interaction region.

In Sec. VII we argue that the variable-axes quantities are
dominated by sheer statistics and certain properties of variable-
axes distributions can be explained in an elementary way
through the use of the central limit theorem. In particular, in the
absence of correlations between the location of sources and for
central collisions we get the result of an appealing simplicity,
namely "ε∗/ε∗(b = 0) =

√
4/π − 1 $ 0.52, independent of

the number of sources in the assumed model, the mass number
of the colliding nuclei, or the collision energy. This result is
fulfilled to a very good accuracy in actual numerical studies,
where some correlations are present. For noncentral collisions

appropriate expansions are provided. We also analyze the
variable-axes profiles in this way. The effects of correlations
between the location of sources are discussed in Appendix D.

In Sec. VIII we propose another method of encoding
the information on the initial state, where each harmonic
(including the odd ones) is evaluated in its own eigenaxes.
The method can be used as a base for a smoothing procedure
in preparation of the initial conditions for event-by-event
hydrodynamic studies.

In Sec. IX we make several comments referring to the
collective flow. We note that the statistical analysis of the
variable-axes parameters ε∗ carries over to the analysis of
the variable-axes elliptic-flow coefficient, v∗

2 . For central
collisions (in the absence of correlations) we find "v∗

2/v
∗
2 (b =

0) =
√

4/π − 1 $ 0.52, independently of multiplicity, mass
number, or the collision energy. This value is in the ballpark
of the recent experimental data [9,10]. Moreover, under
the assumption of smoothness that most likely holds in
hydrodynamics, which allows for perturbation theory around
the azimuthally symmetric solution, one obtains the relation
v∗

4 ∼ v∗2
2 for the octupole flow coefficient. Consequently,

for the event-by-event fluctuations we find the prediction
"v∗

4/v
∗
4 = 2"v∗

2/v
∗
2 .

The appendices contain some more technical material,
including the derivations of the statistical formulas. A simple
one-dimensional toy model illustrating the essence of the
statistical intricacies is given in Appendix C.

II. NOTATION

In our study we use the standard Woods-Saxon nuclear
density profile for the nucleus of mass number A,

n(r) = c

1 + exp
(

r−R
a

) , (2.1)

where the constant c, given in Appendix B, is such that
the normalization

∫
4πr2dr n(r) = A is fulfilled. For the
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FIG. 2. Distribution of (a) eccentricity, ε2, and (b) triangularity, ε3, as a function of number of participating nucleons, Npart, in
√

sNN =
200 GeV Au + Au collisions.

consistent with the expected fluctuations in the initial state
geometry with the new definition of eccentricity [46]. In this
article, we use this method of quantifying the initial anisotropy
exclusively.

Mathematically, the participant eccentricity is given as

ε2 =

√(
σ 2

y − σ 2
x

)2 + 4(σxy)2

σ 2
y + σ 2

x

, (3)

where σ 2
x , σ 2

y , and σxy , are the event-by-event (co-)variances
of the participant nucleon distributions along the transverse
directions x and y [8]. If the coordinate system is shifted to the
center of mass of the participating nucleons such that 〈x〉 =
〈y〉 = 0, it can be shown that the definition of eccentricity is
equivalent to

ε2 =
√

〈r2 cos(2φpart)〉2 + 〈r2 sin(2φpart)〉2

〈r2〉
(4)

in this shifted frame, where r and φpart are the polar coordinate
positions of participating nucleons. The minor axis of the
ellipse defined by this region is given as

ψ2 =
atan2(〈r2 sin(2φpart)〉, 〈r2 cos(2φpart)〉) + π

2
. (5)

Since the pressure gradients are largest along ψ2, the collective
flow is expected to be the strongest in this direction. The
definition of v2 has conceptually changed to refer to the second
Fourier coefficient of particle distribution with respect to ψ2
rather than the reaction plane

v2 = 〈cos(2(φ − ψ2))〉. (6)

This change has not affected the experimental definition since
the directions of the reaction plane angle or ψ2 are not a priori
known.

Drawing an analogy to eccentricity and elliptic flow, the
initial and final triangular anisotropies can be quantified as par-
ticipant triangularity, ε3, and triangular flow, v3, respectively:

ε3 ≡
√

〈r2 cos(3φpart)〉2 + 〈r2 sin(3φpart)〉2

〈r2〉
(7)

v3 ≡ 〈cos(3(φ − ψ3))〉, (8)

where ψ3 is the minor axis of participant triangularity given by

ψ3 =
atan2(〈r2 sin(3φpart)〉, 〈r2 cos(3φpart)〉) + π

3
. (9)

It is important to note that the minor axis of triangularity
is found to be uncorrelated with the reaction plane angle
and the minor axis of eccentricity in Glauber Monte Carlo
calculations. This implies that the average triangularity
calculated with respect to the reaction plane angle or ψ2 is
zero. The participant triangularity defined in Eq. (7), however,
is calculated with respect to ψ3 and is always finite.

The distributions of eccentricity and triangularity calculated
with the PHOBOS Glauber Monte Carlo implementation [47]
for Au + Au events at √

sNN = 200 GeV are shown in Fig. 2.
The value of triangularity is observed to fluctuate event by
event and have an average magnitude of the same order as
eccentricity. Transverse distribution of nucleons for a sample
Monte Carlo event with a high value of triangularity is shown
in Fig. 3. A clear triangular anisotropy can be seen in the region
defined by the participating nucleons.

x(fm)
-10 0 10

y(
fm

)

-10

-5

0

5

10

 = 0.533ε = 91,PartN

PHOBOS Glauber MC

FIG. 3. Distribution of nucleons on the transverse plane for a√
sNN = 200 GeV Au + Au collision event with ε3 = 0.53 from

Glauber Monte Carlo. The nucleons in the two nuclei are shown in
gray and black. Wounded nucleons (participants) are indicated as
solid circles, while spectators are dotted circles.
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geometry with the new definition of eccentricity [46]. In this
article, we use this method of quantifying the initial anisotropy
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of the participant nucleon distributions along the transverse
directions x and y [8]. If the coordinate system is shifted to the
center of mass of the participating nucleons such that 〈x〉 =
〈y〉 = 0, it can be shown that the definition of eccentricity is
equivalent to
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in this shifted frame, where r and φpart are the polar coordinate
positions of participating nucleons. The minor axis of the
ellipse defined by this region is given as

ψ2 =
atan2(〈r2 sin(2φpart)〉, 〈r2 cos(2φpart)〉) + π
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. (5)

Since the pressure gradients are largest along ψ2, the collective
flow is expected to be the strongest in this direction. The
definition of v2 has conceptually changed to refer to the second
Fourier coefficient of particle distribution with respect to ψ2
rather than the reaction plane

v2 = 〈cos(2(φ − ψ2))〉. (6)

This change has not affected the experimental definition since
the directions of the reaction plane angle or ψ2 are not a priori
known.

Drawing an analogy to eccentricity and elliptic flow, the
initial and final triangular anisotropies can be quantified as par-
ticipant triangularity, ε3, and triangular flow, v3, respectively:
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where ψ3 is the minor axis of participant triangularity given by

ψ3 =
atan2(〈r2 sin(3φpart)〉, 〈r2 cos(3φpart)〉) + π

3
. (9)

It is important to note that the minor axis of triangularity
is found to be uncorrelated with the reaction plane angle
and the minor axis of eccentricity in Glauber Monte Carlo
calculations. This implies that the average triangularity
calculated with respect to the reaction plane angle or ψ2 is
zero. The participant triangularity defined in Eq. (7), however,
is calculated with respect to ψ3 and is always finite.

The distributions of eccentricity and triangularity calculated
with the PHOBOS Glauber Monte Carlo implementation [47]
for Au + Au events at √

sNN = 200 GeV are shown in Fig. 2.
The value of triangularity is observed to fluctuate event by
event and have an average magnitude of the same order as
eccentricity. Transverse distribution of nucleons for a sample
Monte Carlo event with a high value of triangularity is shown
in Fig. 3. A clear triangular anisotropy can be seen in the region
defined by the participating nucleons.
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FIG. 4. (Top) Average elliptic flow, 〈v2〉, as a function of eccentricity, ε2; (bottom) average triangular flow, 〈v3〉, as a function of triangularity,
ε3, in

√
sNN = 200 GeV Au + Au collisions from the AMPT model in bins of number of participating nucleons. Error bars indicate statistical

errors. A linear fit to the data is shown.

IV. TRIANGULAR FLOW IN THE AMPT MODEL

To assess the connection between triangularity and the ridge
and broad away-side features in two-particle correlations, we
study elliptic and triangular flow in the AMPT model. AMPT
is a hybrid model which consists of four main components:
initial conditions, parton cascade, string fragmentation, and a
relativistic transport model for hadrons. The model success-
fully describes main features of the dependence of elliptic
flow on centrality and transverse momentum [40]. Ridge
and broad away-side features in two-particle correlations
are also observed in the AMPT model [48,49]. Furthermore,
the dependence of quantitative observables such as away-side
rms width and away-side splitting parameter D on transverse
momentum and reaction plane in AMPT reproduces the experi-
mental results successfully, where a ZYAM-based elliptic flow
subtraction is applied to both the data and the model [50,51].

The initial conditions of AMPT are obtained from Heavy
Ion Jet Interaction Generator (HIJING) [52]. HIJING uses a
Glauber Model implementation that is similar to the PHOBOS
implementation to determine positions of participating nucle-
ons. It is possible to calculate the values of ε2, ψ2, ε3, and
ψ3 event by event from the positions of these nucleons [see
Eqs. (4), (5), (7), and (9)]. Next, we calculate the magnitudes
of elliptic and triangular flow with respect to ψ2 and ψ3
respectively as defined in Eqs. (6) and (8).

The average value of elliptic flow, v2, and triangular flow,
v3, for particles in the pseudorapidity range |η| < 3 in √

sNN =
200 GeV Au + Au collisions from AMPT are shown as a
function of ε2 and ε3 in Fig. 4 for different ranges of number of
participating nucleons. As previously expected, the magnitude
of v2 is found to be proportional to ε2. We observe that a
similar linear relation is also present between triangular flow
and triangularity.

After establishing that triangular anisotropy in initial
collision geometry leads to a triangular anisotropy in particle
production, we investigate the contribution of triangular flow to
the observed ridge and broad away-side features in two-particle
azimuthal correlations. For a given pseudorapidity window,
the Fourier coefficients of two-particle azimuthal correlations,
Vn$, can be calculated in AMPT by averaging cos(n$φ)
over all particle pairs. Contributions from elliptic (triangular)
flow is present in the second (third) Fourier coefficient of $φ
distribution since

∫
1

4π2
{1 + 2vn cos(nφ)}{1 + 2vn cos(n(φ + $φ))}dφ

= 1
2π

{
1 + 2v2

n cos(n$φ)
}
. (10)

For a given pseudorapidity window, this contribution can be
calculated from average elliptic (triangular) flow values as

Vflow
n$ =

〈
ε2
n

〉

〈εn〉2

∫
dN
dη

(η1) dN
dη

(η2)〈vn(η1)〉〈vn(η2)〉dη1dη2
∫

dN
dη

(η1) dN
dη

(η2)dη1dη2
,

(11)

where n=2 (n=3) and the integration is over the pseudo-
rapidity range of particle pairs. The average single-particle
distribution coefficients, 〈vn(η)〉, are used in this calculation
to avoid contributions from nonflow correlations which may
be present if the two-particle distributions, vn(η1) × vn(η2), are
calculated event by event. The ratio 〈ε2

n〉/〈εn〉2 accounts for the
difference between 〈vn(η1) × vn(η2)〉 and 〈vn(η1)〉 × 〈vn(η2)〉
expected from initial geometry fluctuations.

We have calculated the magnitude of the second and third
Fourier components of two-particle azimuthal correlations
and expected contributions to these components from elliptic
and triangular flow for particle pairs in √

sNN = 200 GeV
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FIG. 5. Dashed lines show (a) second Fourier coefficient, V2!, and (b) third Fourier coefficient, V3!, of azimuthal correlations as a function
of number of participating nucleons, Npart, in

√
sNN = 200 GeV Au + Au collisions from the AMPT model. Solid lines show the contribution

to these coefficients from flow calculated with respect to the minor axis of (a) eccentricity and (b) triangularity.

Au + Au collisions from AMPT within the pseudorapidity
range |η| < 3 and 2 < !η < 4. The results are presented in
Fig. 5 as a function of number of participating nucleons. More
than 80% of the third Fourier coefficient of azimuthal correla-
tions can be accounted for by triangular flow with respect
to the minor axis of triangularity. The difference between
V3! and Vflow

3! may be due to two different effects. There
might be contributions from correlations other than triangular
flow to V3! or the angle with respect to which the global
triangular anisotropy develops might not be given precisely
by the minor axis of triangularity calculated from positions
of participant nucleons, i.e., v3 = 〈(cos(3(φ − ψ3)〉 might be
an underestimate for the magnitude of triangular flow. More
detailed studies are needed to distinguish between these two
effects.

We have also studied the magnitudes of elliptic and
triangular flow more differentially as a function of transverse
momentum and number of participating nucleons in the AMPT
model. Figure 6 shows the results as a function of transverse
momentum for particles at mid-rapidity (|η| < 1) for different
ranges of number of participating nucleons. The dependence
of triangular flow on transverse momentum is observed to
show similar gross features as elliptic flow. A more detailed
comparison can be made by taking the ratio of triangular
to elliptic flow, shown in Fig. 7 as a function of number

of participating nucleons for different ranges of transverse
momentum. The relative strength of triangular flow is observed
to increase with centrality and transverse momentum. This
observation is qualitatively consistent with the trends in
experimentally measured ridge yield [25].

V. TRIANGULAR FLOW IN EXPERIMENTAL DATA

While AMPT reproduces the expected proportionality of
v2 and ε2, the absolute magnitude of v2 is underestimated
compared to data and hydrodynamic calculations. To allow a
comparison of the V3! calculations to data, we therefore use
the ratio of the third and second Fourier coefficients. For data,
this ratio is given by

V3!

V2!

=
∫

C(!φ) cos(3!φ)d!φ∫
C(!φ) cos(2!φ)d!φ

. (12)

The factors A and B in Eq. (2) cancel out in this ratio. Results
for PHOBOS [19,25] and STAR [41] measurements are plotted
as a function of number of participating nucleons in Figs. 8(a)
and 8(b), respectively. It is observed that V3!/V2! increases
with centrality and with the transverse momentum of the
trigger particle. Comparing inclusive correlations from STAR
and PHOBOS, it is also observed that the value of V3!/V2!
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"n ¼ " hr2 cosnð!"!nÞi
hr2i ; (2)

where the brackets denote an average which traditionally is
taken over the position of participating (wounded) nucle-
ons in a Glauber model [22].

Under the assumption that vn is proportional to "n, vnf2g
is proportional to "nf2g [27]. Figure 1(b) shows the ratios
vn="n for eccentricities calculated with a Glauber and a
MC-KLN CGC [28] model, denoted by "Wn f2g and
"CGCn f2g, respectively. We find that for a Glauber model
the magnitude of v3f2g="3f2g is smaller than v2f2g="2f2g,
which would indicate significant viscous corrections. For

MC-KLN CGC calculations the ratios v2f2g="2f2g and
v3f2g="3f2g are almost equal for the most central colli-
sions, as expected for an almost ideal fluid [11]. In
addition, we notice that the ratio v3f2g="3f2g decreases
faster than v2f2g="2f2g toward more peripheral collisions,
which is expected due to larger viscous corrections to v3.
The centrality dependence of the triangular flow differs

significantly from that of elliptic flow. This might be due to
two reasons: either the centrality dependence of the spatial
ellipticity and triangularity are different and/or the viscous
effects are different. However, in a small centrality range,
such as 0%–5%, viscous effects do not change much and
there one might be directly sensitive to the change in the
initial spatial geometry. Our calculations show that even in
this small centrality range, the ratio "2="3 changes signifi-
cantly, which allows us to investigate further the geomet-
rical origin of elliptical and triangular flow. In Fig. 2 v2f2g
and v3f2g are plotted in 1% centrality bins for the 5% most
central collisions. We observe that v3f2g does not change
much versus centrality (as would be expected if v3 is
dominated by event-by-event fluctuations of the initial
geometry) while v2f2g increases by about 60%. We com-
pare this dependence of vnf2g to the centrality dependence
of the eccentricities "nf2g for initial conditions from MC-
KLN CGC and Monte Carlo Glauber model. We observe
that the weak dependence of v3f2g is described by both
calculations while the relative strong dependence of v2f2g
on centrality is only described for the MC-KLN CGC
initial conditions.
The harmonics v2f2g, v3f2g, v4f2g, and v5f2g as a func-

tion of transverse momentum are shown for the 30%–40%,
0%–5%, and 0%–2% centrality classes in Fig. 3. For the
30%–40% centrality class the results are compared to
hydrodynamic predictions using Glauber initial conditions
for different values of "=s [31]. We observe that, at low pt,
the different pt dependence of v2 and v3 is described
well by these hydrodynamic predictions. However, the
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FIG. 2 (color online). v2 and v3 as a function of centrality for
the 5% most central collisions compared to calculations of the
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been scaled to match the 2%–3% data using k1 and k2.
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second order event plane and the reaction plane, respectively
(for the definitions, see text). (b) v2f2; j""j> 1g and
v3f2; j""j> 1g divided by the corresponding eccentricity versus
centrality percentile for Glauber [22] and MC-KLN CGC [28]
initial conditions.
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magnitude of v2ðptÞ is better described by !=s ¼ 0 while
for v3ðptÞ !=s ¼ 0:08 provides a better description. We
anticipate future comparisons utilizing MC-KLN initial
conditions.

For central collisions 0%–5% we observe that at pt $
2 GeV=c v3 becomes equal to v2 and at pt $ 3 GeV=c v4

also reaches the same magnitude as v2 and v3. For more
central collisions 0%–2%, we observe that v3 becomes
equal to v2 at lower pt and reaches significantly larger

values than v2 at higher pt. The same is true for v4

compared to v2.
We compare the structures found with azimuthal corre-

lations between triggered and associated particles to those
described by the measured vn components. The two-
particle azimuthal correlations are measured by calculating

Cð!"Þ % Nmixed

Nsame

dNsame=d!"

dNmixed=d!"
; (3)

where !" ¼ "trig &"assoc. dNsame=d!" (dNmixed=d!")
is the number of associated particles as function of !"
within the same (different) event, and Nsame (Nmixed) the
total number of associated particles in dNsame=d!"
(dNmixed=d!"). Figure 4 shows the azimuthal correlation
observed in very central collisions 0%–1%, for trigger
particles in the range 2<pt < 3 GeV=c with associated
particles in 1< pt < 2 GeV=c for pairs in j!!j> 1. We
observe a clear doubly peaked correlation structure cen-
tered opposite to the trigger particle. This feature has been
observed at lower energies in broader centrality bins
[32,33], but only after subtraction of the elliptic flow
component. This two-peak structure has been interpreted
as an indication for various jet-medium modifications
(i.e., Mach cones) [32,33] and more recently as a manifes-
tation of triangular flow [10–13]. We therefore compare the
azimuthal correlation shape expected from v2, v3, v4, and
v5 evaluated at corresponding transverse momenta with the
measured two-particle azimuthal triggered correlation and
find that the combination of these harmonics gives a natu-
ral description of the observed correlation structure on the
away side.
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class. The solid red line shows the sum of the measured aniso-
tropic flow Fourier coefficients v2, v3, v4, and v5 (dashed lines).
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Fig. 4. Ratio of different order collective flows to initial geometry eccentricities for different collision systems.

4. Summary

The collective flow harmonic coefficients are calculated and 
presented at √sN N = 6.73 TeV for the most central collision sys-
tems from small one to large one, namely 10B + 10B, 12C + 12C, 
16O + 16O, 20Ne + 20Ne, 40Ca + 40Ca, 96Zr + 96Zr and 208Pb + 208Pb 
collisions. From these results, it is found that collective flows show 
smooth changing trend with the increasing of the collision system 
size and is sensitive to initial geometry eccentricities. The response 
of collective flows to initial geometry asymmetries, namely v2/ε2, 
v3/ε3, v L

4/ε
L
4 , v4,22/ε4,22, are also calculated and seems sensi-

tive to system size (or multiplicities). With aid of hydrodynamics 
with viscous corrections, the acoustic scaling of anisotropic flow in 
shape-engineered events is performed to the system size depen-
dence of collective flow. The parameter β related to shear viscosity 
over entropy density ratio seems consistent with that from exper-
iments, but β from v4,22/ε4,22 is lower than those from v2/ε2, 
v3/ε3 and v L

4/ε
L
4 . The system scan experiment is therefore pro-

posed to systematically explore the effects from initial geometry 
fluctuations, and then the transformation efficiency from initial ge-
ometry to final momentum could be studied.
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Table 1
Collision system and number of event for each system.

system 10B+10B 12C+12C 16O+16O 20Ne+20Ne 40Ca+40Ca 96Zr+96Zr 208Pb + 208Pb
event number 2.3 × 105 4.2 × 105 2.4 × 105 1.9 × 105 4.9 × 104 1.4 × 104 3.5 × 103

2. A brief introduction to AMPT and algorithm

In this work, the relativistic heavy-ion collisions are simulated 
by a multi-phase transport model [50] with version 2.26t7b. The 
initial state of the collisions is described by the Heavy Ion Jet In-
teraction Generator (HIJING) model [51,52] and the melted partons 
from HIJING interact with each other in the Zhang’s Parton Cas-
cade (ZPC) model [53]. And then the interacting-ceased partons are 
converted to hadrons by a simple quark coalescence model or the 
Lund string fragmentation. The hadrons participate in rescattering 
process through a relativistic transport model [54]. AMPT was suc-
cessful to describe physics in relativistic heavy-ion collisions for 
RHIC [50] and LHC [55], including pion-HBT correlations [56], di-
hadron azimuthal correlations [57,58], collective flow [59,60] and 
strangeness production [61,62].

The hot-dense matter created in collisions expands in longi-
tudinal direction (i.e. always defined by beam direction) as well 
as transverse direction. In transverse direction, distribution of pro-
duced particles in momentum space can be expanded in azimuthal 
distribution as [63],

E
d3N
d3 p

= 1
2π

d2N
pT dpT dy

(

1 +
N∑

i=1

2vn cos[n(φ − #R P )]
)

, (1)

where E is the energy, pT is transverse momentum, y is rapidity, 
and φ is azimuthal angle of the particle. #R P is reaction plane 
angle. The Fourier coefficients, vn(n = 1, 2, 3, ...), characterize the 
collective flows of different orders in azimuthal anisotropies.

The collective flow is driven from the initial anisotropy in ge-
ometry space. To investigate transformation from geometry to final 
momentum space, the initial geometry eccentricity coefficients εn

can be calculated from the participants via [14–17,28,39],

En ≡ εnein%n ≡ −〈rneinφPart〉
〈rn〉 , (2)

where, r=
√

x2 + y2 and φPart are coordinate position and az-
imuthal angle of initial participants in the collision zone in the 
recentered coordinates system (〈x〉=〈y〉=0). %n is the initial par-
ticipant plane and εn=〈|En|2〉1/2. The bracket 〈〉 means the average 
over the transverse position of all participants event by event. Note 
that for the definition of eccentricity coefficients εn , r2 weight was 
alternative and it was discussed in Refs. [16,28].

Two particle correlation (2PC) method with &η gap is usually 
employed to calculate the collective flow coefficients in theoretical 
analysis and experimental measurements [64–68]. In this work we 
adopted the 2PC-method introduced in Ref. [64] to calculate trans-
verse momentum pT and centrality dependence of the collective 
flow.

The Q-cumulant method [17,18,28,39,69,70] is also popular in 
flow coefficients analysis. The complex flow vectors [39,71] is de-
fined by Vn ≡ vnein#n ≡ {einφ}, vn = 〈|Vn|2〉1/2, where φ is az-
imuthal angle of final particles, vn and #n is the nth order flow 
coefficients and azimuthal direction of the event, {...} denotes the 
average over all final particles in each event.

For the higher-order collective flow coefficients (n > 3), the 
nonlinear mode couplings derived from lower-order collective flow 
coefficients should be taken into account except the linear re-
sponse related to eccentricity, which was discussed in Refs. [39,
71,72]. Here we employ the formulas of the fourth order linear-
mode, nonlinear-mode flow and geometry coefficients suggested 

Fig. 1. Eccentricity coefficients for the most central collision events in 10B + 10B, 12C 
+ 12C, 16O + 16O, 20Ne + 20Ne, 40Ca + 40Ca, 96Zr + 96Zr and 208Pb + 208Pb at center 
of mass energy √sN N =6.73 TeV.

in Ref. [39], i.e. v4,22 ≈ 〈v4 cos(4#4 − 4#2)〉, v L
4=

√
v2

4 − v2
4,22, 

E L
4 =E4 + 3〈r2〉2

〈r4〉 E2
2 , and ε4,22 = 

√
〈ε4

2 〉.
From hydrodynamics viewpoint, the relationship between ini-

tial geometry eccentricity coefficients and flow coefficients can be 
described by vn ∝ εn , (n = 2, and 3) [20,28,29]. The response of 
vn to εn showed the efficiency of the transformation from initial 
geometry properties to final momentum space in heavy-ion col-
lisions. For higher-order initial geometry eccentricity coefficients 
and flow coefficients, the relationship can be described by linear 
and nonlinear-mode [39,71,72], v L

n ∝ εL
n and vn,i j ∝ εn,i j . Hydro-

dynamics with viscous corrections gives the acoustic scaling of 
anisotropic flow in shape-engineered events [38,39,73,74],

v L
n/εL

n ∝ exp
(
−n2β 〈Ntrack〉−1/3

)
, (3)

vn,i j/εn,i j ∝ exp
(
−(i2 + j2)β 〈Ntrack〉−1/3

)
, (4)

where L for n > 3, the parameter β is related to ratio of shear vis-
cosity (η) over entropy density (s), namely β ∝ η/s and 〈Ntrack〉
average number of particles created in the collisions with ki-
netic windows (always in mid-rapidity (|y| < 1) and 0.2 < pT < 4
GeV/c).

3. Results and discussion

By using AMPT model, a system scan simulation is performed 
in this work involving the most central collisions (i.e. impact pa-
rameter b is set to zero) of 10B + 10B, 12C + 12C, 16O + 16O, 20Ne + 
20Ne, 40Ca + 40Ca, 96Zr + 96Zr and 208Pb + 208Pb systems, at center 
of mass energy √sN N =6.73 TeV. The generated event numbers are 
presented in Table 1. Via the introduced flow analysis methods, the 
harmonic flow coefficients are calculated in these collision systems 
under the kinetic windows, transverse momentum 0.2 < pT < 3
GeV/c and rapidity |y| < 1.0.

The initial geometry eccentricity coefficients εn (n = 2, 3, 4) 
are calculated by using Eq. (2) and the nonlinear-mode eccentricity 
coefficients are also calculated, as shown in Fig. 1. The eccentric-
ity coefficients εn (n=2, 3, 4) are all smoothly decreasing with the 
increasing of size of collision systems (〈Ntrack〉) from 10B + 10B col-
lisions to 208Pb + 208Pb collisions. The fourth order linear-mode 
ε4,22 and nonlinear-mode coefficients εL

4 also presented the similar 
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initial state of the collisions is described by the Heavy Ion Jet In-
teraction Generator (HIJING) model [51,52] and the melted partons 
from HIJING interact with each other in the Zhang’s Parton Cas-
cade (ZPC) model [53]. And then the interacting-ceased partons are 
converted to hadrons by a simple quark coalescence model or the 
Lund string fragmentation. The hadrons participate in rescattering 
process through a relativistic transport model [54]. AMPT was suc-
cessful to describe physics in relativistic heavy-ion collisions for 
RHIC [50] and LHC [55], including pion-HBT correlations [56], di-
hadron azimuthal correlations [57,58], collective flow [59,60] and 
strangeness production [61,62].

The hot-dense matter created in collisions expands in longi-
tudinal direction (i.e. always defined by beam direction) as well 
as transverse direction. In transverse direction, distribution of pro-
duced particles in momentum space can be expanded in azimuthal 
distribution as [63],

E
d3N
d3 p

= 1
2π

d2N
pT dpT dy

(

1 +
N∑

i=1

2vn cos[n(φ − #R P )]
)

, (1)

where E is the energy, pT is transverse momentum, y is rapidity, 
and φ is azimuthal angle of the particle. #R P is reaction plane 
angle. The Fourier coefficients, vn(n = 1, 2, 3, ...), characterize the 
collective flows of different orders in azimuthal anisotropies.

The collective flow is driven from the initial anisotropy in ge-
ometry space. To investigate transformation from geometry to final 
momentum space, the initial geometry eccentricity coefficients εn

can be calculated from the participants via [14–17,28,39],

En ≡ εnein%n ≡ −〈rneinφPart〉
〈rn〉 , (2)

where, r=
√

x2 + y2 and φPart are coordinate position and az-
imuthal angle of initial participants in the collision zone in the 
recentered coordinates system (〈x〉=〈y〉=0). %n is the initial par-
ticipant plane and εn=〈|En|2〉1/2. The bracket 〈〉 means the average 
over the transverse position of all participants event by event. Note 
that for the definition of eccentricity coefficients εn , r2 weight was 
alternative and it was discussed in Refs. [16,28].

Two particle correlation (2PC) method with &η gap is usually 
employed to calculate the collective flow coefficients in theoretical 
analysis and experimental measurements [64–68]. In this work we 
adopted the 2PC-method introduced in Ref. [64] to calculate trans-
verse momentum pT and centrality dependence of the collective 
flow.

The Q-cumulant method [17,18,28,39,69,70] is also popular in 
flow coefficients analysis. The complex flow vectors [39,71] is de-
fined by Vn ≡ vnein#n ≡ {einφ}, vn = 〈|Vn|2〉1/2, where φ is az-
imuthal angle of final particles, vn and #n is the nth order flow 
coefficients and azimuthal direction of the event, {...} denotes the 
average over all final particles in each event.

For the higher-order collective flow coefficients (n > 3), the 
nonlinear mode couplings derived from lower-order collective flow 
coefficients should be taken into account except the linear re-
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Table 1
Collision system and number of event for each system.

system 10B+10B 12C+12C 16O+16O 20Ne+20Ne 40Ca+40Ca 96Zr+96Zr 208Pb + 208Pb
event number 2.3 × 105 4.2 × 105 2.4 × 105 1.9 × 105 4.9 × 104 1.4 × 104 3.5 × 103
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by a multi-phase transport model [50] with version 2.26t7b. The 
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clear prediction for the ordering of the experimentally accessible v2 
and v3 signals, following that of the εn, namely

< ≈
≈ <

+ + +

+ + +
v v v

v v v
(3)2

p Au
2
d Au

2
He Au

3
p Au

3
d Au

3
He Au

3

3

This ordering assumes that hydrodynamics can efficiently translate 
the initial geometric εn into dynamical vn, which in turn requires a 
small value for the specific shear viscosity.

There exist a class of alternative explanations where vn is not 
generated via flow, but rather is created at the earliest time in the 
collision process as described by so-called initial-state momentum 
correlation models. They produce a mimic flow signal where the 
initial collision generates colour flux tubes that have a preference 
to emit particles back-to-back in azimuth19,20. These colour flux 
tubes, also referred to as domains, have a transverse size relative to  
the collision axis less than the colour-correlation length of order 
0.1–0.2 fm. In the case where individual domains are resolved, a col-
lision system with a larger overall area but the same characteristic 
domain size (for example d+ Au and 3He+ Au compared with p+ Au 
and p+ p) should have a weaker correlation because the different 
domains are separated and do not communicate21,22. An instructive 
analogy is a ferromagnet with many domains: if the domains are 
separated and disconnected, the overall magnetic field is weakened 
by the cancellation of effects from the random orientation in the 
different domains. The root-mean-square diameter of the deuteron 
is 4.2 fm, and so in d+ Au collisions the two hot spots are typically 
much farther apart than the characteristic domain size. A straight-
forward prediction is then that the v2 and v3 coefficients should  
be ordered

> >+ + +v v v (4)n n n
p Au d Au He Au3

in contradistinction to the hydrodynamic flow prediction.

An experimental realization of the proposed geometry scan has 
been under way at the RHIC. Collisions of 3He+ Au, p+ Au and 
d+ Au at s

NN
 =  200 GeV were recorded in 2014, 2015 and 2016, 

respectively. The PHENIX experiment observed elliptic anisot-
ropies in the azimuthal distributions of the charged particles pro-
duced in all three systems23–25, as well as triangular anisotropies in 
3He+ Au collisions25. This Letter completes this set of elliptic and 
triangular flow measurements from PHENIX in all three systems 
and explores the relation between the strength of the measured vn 
and the initial-state geometry.

The vn measurements reported here are determined using the 
event plane method26 for charged hadrons in the midrapidity region 
covering |η| <  0.35, where η is the particle pseudorapidity







η θ≡ −ln tan

2
(5)

and θ is the polar angle of the particle. The second-order event 
plane is determined using detectors in the Au-going direction 
covering − 3.0 <  η <  − 1.0 in p/d+ Au and − 3.9 <  η <  − 3.1 in 3He+ 
Au. The third-order event plane is determined using detectors in 
the Au-going direction covering − 3.9 <  η <  − 3.1 in all cases. The 
pseudorapidity gap between the particle measurements and the 
event plane determination excludes autocorrelations and reduces 
short-range correlations arising from, for example, jets and particle 
decays—typically referred to as non-flow correlations. Estimates of 
possible remaining non-flow contributions are included in the sys-
tematic uncertainties. Additional uncertainties related to detector 
alignment, data selection and event plane determination are also 
included in the systematic uncertainty estimation (see Methods). 
In these small collision systems the event plane resolution is  
low, meaning that = ⟨ ⟩v v{EP}n n

2  (ref. 27) and the results are there-
fore equivalent to measurements using two-particle correlation 
methods.
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Fig. 1 | Average system eccentricities from a Monte Carlo (MC) Glauber model and hydrodynamic evolution of small systems. a, Average second (third) 
order spatial eccentricities, ε2 (ε3), shown as columns for small impact parameter p+ Au (red), d+ Au (blue) and 3He+ Au (black) collisions as calculated 
from a MC Glauber model. The second- and third-order spatial eccentricities correspond to ellipticity and triangularity, respectively, as depicted by the 
shapes inset in the bars. The vertical lines represent one standard deviation systematic uncertainties. b, Hydrodynamic evolution of a typical head-on p+ 
Au (top), d+ Au (middle) and 3He+ Au (bottom) collision at sNN != !200!GeV as calculated by SONIC, where the p/d/3He completely overlap with the Au 
nucleus. From left to right each row gives the temperature distribution of the nuclear matter at four time points following the initial collision at t!= !0. The 
arrows depict the velocity field, with the length of the longest arrow plotted corresponding to β!= !0.82.
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Measurements of vn as a function of pT are shown for all three 
systems in Fig. 2. The measurements are performed in the 0–5% 
most central events, an experimentally determined criterion that 
selects the 5% of events with the largest number of produced par-
ticles (hereafter referred to simply as ‘multiplicity’) in the region 
− 3.9 <  η <  − 3.1. A detailed description of the centrality determina-
tion in small systems is given in ref. 28. The vertical bars on each 
point represent the statistical uncertainties, while the shaded boxes 
represent the systematic uncertainties. The flow coefficients follow 
the prediction of hydrodynamical models shown in equation (3). 
These relationships suggest that the primary driver of azimuthal 
momentum anisotropies in particle emission is initial spatial 
anisotropy.

While Fig. 2 offers qualitative support for the hydrodynamic 
theory, Fig. 3 directly compares these data to predictions from 
two hydrodynamical models, SONIC18 (used in Fig. 1) and iEBE-
VISHNU29. The core structure of the two models is similar: the ini-
tial conditions are evolved using viscous hydrodynamics, the fluid 
hadronizes, hadronic scattering occurs, and the vn coefficients of the 
final-state hadron distributions are determined using two-particle 
correlation methods. However, the detailed implementations are 
different, including the use of different fluctuations in the initial 
energy deposited, as well as different hadronic rescattering pack-
ages. Both calculations in Fig. 3 use a ratio of the shear viscosity η to 

entropy density s of η ∕ = . ≈ πs 0 08 1
4

, the conjectured lower limit in 
strongly coupled field theories30.

Figure 3 shows that the hydrodynamical models are consistent 
with the vn data in all three systems. Both models capture the mag-
nitude difference of v3 compared to v2, the collision system depen-
dence, as well as the general pT dependence of v3. The models tend to 
diverge at higher pT in the case of v3, which may be more sensitive to 
the hadronic rescattering. To quantify the agreement, we calculate 
p values following the procedure of incorporating data systematic 
uncertainties and their correlations into a modified χ2 analysis laid 
out in ref. 31 (see Methods). We find that SONIC and iEBE-VISHNU 
yield combined p values across the six measurements of 0.90 and 
0.14, respectively. The large difference in p values is driven by the 
effect of the dominant non-flow uncertainty, which is asymmetric 
and anti-correlated between v2 and v3. SONIC tends to underesti-
mate the v2 and overestimate the v3, particularly in p+ Au and d+ Au, 
which is more in line with the uncertainty correlations than iEBE-
VISHNU, which tends to yield a poorer description of the pT slope. 
Overall, the simultaneous description of these two observables in 
three different systems using a common initial geometry model and 
the same specific η/s strongly supports the hydrodynamic picture.

The hydrodynamic calculations shown in Fig. 3 use initial con-
ditions generated from a nucleon Glauber model. However, initial 
geometries with quark substructure do not significantly change the 
ε2 and ε3 values for high multiplicity p/d/3He+ Au collisions32,33 and 
thus the hydrodynamic results should be relatively insensitive to 
these variations.

While we have focused on hydrodynamical models here, there 
is an alternative class of models that also translate initial spatial 
eccentricity to final-state particle azimuthal momentum anisot-
ropy. Instead of hydrodynamic evolution, the translation occurs 
via parton–parton scattering with a modest interaction cross-sec-
tion. These parton transport models, for example A Multi-Phase 
Transport (AMPT) Model34, are able to capture the system ordering 
of vn at low pT in small systems35, but fail to describe the pT depen-
dence and overall magnitude of the coefficients for all systems 
resulting in a p value consistent with zero when compared with the 
data shown here. We have additionally analysed AMPT following 
the identical PHENIX event plane method and find even worse 
agreement with the experimental data.

While the initial geometry models for the d+ Au and 3He+ Au are 
largely constrained by our detailed understanding of the two-body 
and three-body nucleon correlations in the deuteron and 3He nuclei, 
respectively, the distribution of deposited energy around each 
nucleon–nucleon collision site could result in an ambiguity between 
the allowed ranges of the η/s and the broadening of the initial dis-
tribution, as pointed out in ref. 13. However, a broader distribution 
of deposited energy results in a significant reduction of the ε2 values 
and an even greater reduction of ε3, with by far the largest reduction 
in the p+ Au system. Here again, the simultaneous constraints of the 
elliptic and triangular flow ordering eliminates this ambiguity.

Our experimental data also rule out the initial-state correla-
tions scenario where colour domains are individually resolved as 
the dominant mechanism for creating v2 and v3 in p/d/3He+ Au col-
lisions. After our results became publicly available, a new calcula-
tion was presented in ref. 36, hereafter referred to as MSTV, where 
the ordering of the measured vn values matches the experimental 
data. This calculation posits that gluons from the Au target do not 
resolve individual colour domains in the projectile p/d/3He and 
interact with them coherently, and thus the ordering does not fol-
low equation (4). The MSTV calculations are shown in Fig. 3 and 
yield a combined p value of effectively zero, in contradistinction to 
the robust values found for the hydrodynamic models. Another key 
statement made by MSTV—that in the dilute-dense limit the satu-
ration scale Qs

2 is proportional to the number of produced charged 
particles—is questionable37, but also leads the MSTV authors to 
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of v2(pT) in the 0–5% most central p+ Au, d+ Au and 3He+ Au collisions 
at sNN != !200!GeV. A d+ Au event from a MC Glauber model is inset 
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make a clear prediction that the v2 will be identical between sys-
tems when selecting on the same event multiplicity. Shown in Fig. 4  
are the previously published d+ Au (20–40%) and p+ Au (0–5%) 
v2 where the measured mean charged particle multiplicities  
(dNch/dη) match38. The results do not support the MSTV predic-
tion of an identical v2 for these two systems at the same multiplicity, 
while the differences in v2 between the systems follow the expecta-
tions from hydrodynamic calculations matched to the same dNch/dη.

The simultaneous constraints of v2 and v3 in p/d/3He+ Au colli-
sions definitively demonstrate that the vn coefficients are correlated 
with the initial geometry, removing ambiguities related to event 

multiplicity and initial event geometry. Further, hydrodynamical 
models that include QGP formation provide a simultaneous and 
quantitative description of the data in all three systems. Similar 
small-system geometry tests performed at the LHC, which pro-
vide an order of magnitude increase in collision energy, would be 
insightful particularly by enabling higher statistics, multi-particle 
correlation observables.
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are v3(pT). The vertical lines (boxes) represent one standard deviation statistical (systematic) uncertainties. The solid red (dashed blue) curves represent 
hydrodynamic predictions of vn(pT) from SONIC (iEBE-VISHNU). The dotted green curves represent initial-state momentum correlation postdictions of 
vn(pT) from MSTV.
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Fig. 4 | Measured v2(pT) in p+Au and d+Au collisions at the same event 
multiplicity. Measured v2(pT) in the 0–5% most central p+ Au collisions 
and 20–40% central d+ Au collisions compared with SONIC predictions 
and MSTV postdictions. Each point represents an average over pT bins of 
width 0.2!GeV!c–1 to 0.5!GeV!c–1. The vertical lines (boxes) represent one 
standard deviation statistical (systematic) uncertainties. The quoted  
dNch/dη values are taken from ref. 38. Blue and red curves correspond to 
SONIC predictions for d+ Au and p+ Au, respectively. The green curve 
corresponds to MSTV calculations for 0–5% central p+ Au collisions, which 
the authors state yield an identical v2(pT) for d+ Au collisions at the same 
multiplicity.
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FIG. 1. Peripheral collision viewed in the transverse plane. b
is the impact parameter. The shaded area corresponds to the
region where particles are created in the central rapidity region.
Outside this region is the vacuum.

S
f, +f,BzF 0

0 2. (2.4)

The term f38F, which may be important, is the remnant
of the bounce off. From Eq. (2.3), one getsf3 —-S33=+M &to(v)p, (v). Thus, the main contribution
to fz comes from the fragmentation regions which corre-
spond to the highest values of ~p, ~

in the center-of-mass
frame. We shall hereafter restrict our study to the cen-
tral rapidity region where ~p, ~

is much smaller, and we
assume that fzBF is negligible in this case. Thenf( —-S(t =g„tw(v)p„(v), fz =Szz =g„tw(v)py~(v},
and the sidesplash of the reaction products along the
direction of impact parameter x results in f, &fz. The
whole rapidity range may contribute to this effect. A nat-
ural measure of this anisotropy in transverse momenta is
the dimensionless observable a defined as

g w ( v) [p„(v)—p„(v) ]fi fz-
f +f M

g w(v)[p„(v) +py(v) ]
(2.5)

a=O for an isotropic distribution (f, =fz), whereasa=1 if all momenta are directed along the impact line
(fz=0). The last equality in Eq. (2.5) holds only if x is
the direction of impact parameter. Alternatively, we can
use the following expression which is valid in any coordi-
nate system for the transverse plane:

1/2
4detSa= 1—
(trS )' (2.6)

This allows one to calculate a directly as a function of
the measured transverse sphericity tensor S;.. It appears
clearly in this form that a is the only observable we can
construct from S;. if we require it to be dimensionless and
invariant through rotations about the collision axis. The
ultrarelativistic case is thus simpler than the low-energy
case where three rotationally invariant and dimensionless
parameters must be considered. A collective How would
reveal itself through a nonzero value of a for peripheral

III. FINITE MULTIPLICITY FLUCTUATIONS

A. Jacobian-free analysis

With a finite number of particles M, one never obtains
an isotropic distribution, even if the particles are emitted
according to an isotropic emission probability. Even
worse, as we shall see, an isotropic emission probability
gives rise to a probability law for a which is not centered
at a=O as we would expect, but rather at a value
a-1/~M. Here we show how to get rid of this shift by
defining a corrected distribution for a, following the
analysis of Danielewicz and Gyulassy [7].
If correlations between particles are neglected, the cen-

tral limit theorem states that in the limit of large multi-
plicity M the probability law for S; is of Gaussian form
and strongly peaked around its mean value (S~ },with a
width varying like 1/v M. However, we are not interest-
ed in the distribution of S; but rather in the distribution
of a. In order to change variables, we need two other
quantities since S;- has three independent components.
We take, for instance, v = trS =+M Ipz. (v) and the an-
gle 0 between the I axis and the largest principal axis of
S~. Then, in terms of the variables (a, @,8), the expres-
sionofS is

1+a cos28
a sin28

a sin20
1—a cos20 (3 1)

Transforming variables from S;. to a, 6, and 8 brings in a
Jacobian factor

collisions, while a=0 for central collisions, which are iso-
tropic in the transverse plane. So we must study the
correlation of a with the multiplicity (we recall that the
multiplicity is a fair measure of the impact parameter
[4]). We expect that a will be a decreasing function of
the multiplicity if collective transverse Bow occurs.
Finally, note that the weight w(v) = 1/2m

„

in Eq. (2.1)
is quite inappropriate at ultrarelativistic energies. First,
S,,- does not represent the kinetic energy any more.
Second, composite fragments for which this weight was
introduced represent a negligible fraction of the emitted
particles, especially in the central rapidity region. Third,
the transverse momenta of different types of particles
have comparable distributions (this is the observed mz.
scaling [5]}. Thus, we shall take w(v)=1, and the trans-
verse sphericity tensor is then simply defined as

M
S~J = g p, (v)p, (v) (2.7)

v= 1

with i,j=1,2. Since S; only involves the transverse mo-
menta, it is invariant under Lorentz boosts along the col-
lision axis. This is a nice property from a theoretical
point of view since the central rapidity region is expected
to enjoy the same property at high energies [6]. From the
experimental point of view, restricting ourselves to trans-
verse coordinates allows us to measure S; directly in the
laboratory frame for fixed-target experiments.
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FIG. 4. (Color online) Comparison of the fireball eccentricity
coefficients from the two-particle cumulants for the clustered dis-
tribution and for the uniform distribution. GLISSANDO simulations,
BEC case, RHIC. Vertical lines indicate the total number of wounded
nucleons corresponding to centralities 10%, 1%, and 0.1%. The
orientation-multiplicity correlation is clearly shown for the clustered
case.

geometric ellipticity in the case where the cluster plane is not
parallel to the transverse plane, which is the generic case due
to randomness of the orientation.

The second cause for eccentricity coefficients comes from
fluctuations due to the finite number of nucleons [7,47–50].
The effect of fluctuations washes away, to some extent, the
geometric component, hence a careful examination of the
results presented in Sec. IV B is necessary to discriminate
the two origins.

In collisions of asymmetric nuclei at a finite impact param-
eter b, small values of odd Fourier components can appear in
the azimuthal dependence of the fireball density with respect
to the reaction plane (such an effect is present, for instance,
in Cu-Au collisions). In Fig. 5 we show the triangularity of
the initial fireball for C-Au and Cu-Au collisions with respect
to the reaction plane calculated in the optical Glauber model,
an approximate scheme where one first averages the densities
and then computes the nuclear thickness function [51]. For
intermediate values of b the triangularity is nonzero, even
without any contribution from fluctuations or the α clustering.
However, the obtained value of ε3 is an order of magnitude
smaller than the one calculated event by event with respect to
the third-order event plane (Fig. 4). Moreover, the most central
collisions that we discuss in the following correspond to small
impact parameters (for centralities c = 10%, 1%, and 0.1%
the average values of b are 2.4, 1.5, and 1.2 fm, respectively).
Hence the average geometric ε3 in the reaction plane is even
smaller. While the above effect is automatically included in
our simulation, it does not play a role in the interpretation of
the results.

As explained in Ref. [1], there is a specific correlation
among centrality, triangularity, and ellipticity, induced by the
intrinsic orientation of 12C. When the transverse and the cluster
planes are aligned, the 12C nucleus hits the large nucleus
flat-on and thus creates the most damage, i.e., produces the
largest number of sources (cf. left side of Fig. 6). At the

Cu Au
C Au

optical Glauber model

0 2 4 6 8
0

0.01

0.02

b fm

Ε 3

FIG. 5. (Color online) Triangularity of the fireball formed in C-
Au and Cu-Au collisions. The density is calculated in the optical
Glauber model, and the the triangularity is defined with respect to the
reaction plane.

same time, in this flat-on orientation we have, on average,
the highest triangularity and the lowest ellipticity, which here
comes entirely from fluctuations.

In the other extreme case the cluster plane is perpendicular
to the transverse plane (side-wise configuration; cf. right side
of Fig. 6). Then we find the opposite behavior: low multiplicity,
as the cross section is smaller, small triangularity, and large
ellipticity, which now obtains a sizable contribution from the
elongated shape of the fireball.

Of course, in actual collisions the orientation is random
and we have a situation between the two limiting cases de-
scribed above, yet the phenomenon of the specific orientation-
multiplicity correlations is clearly seen (cf. Fig. 3, top right,
in Ref. [1] or Fig. 4 here). In particular, in Fig. 4 we show,
by comparing the simulations with clustered and uniform
12C, that the geometry increases the triangularity at high
values of the number of wounded nucleons, Nw (preferentially
flat-on collisions), and raises ellipticity at lower values of Nw

(sidewise collisions).
Event-by-event studies allow for obtaining event-by-event

distributions of the physical quantities. In the sections below
we need the so-called two-particle and four-particle cumulant
moments [52] of the eccentricities, defined as

εn{2} =
〈
ε2

2

〉1/2
,

(3)
εn{4} = 2

(〈
ε2
n

〉2 −
〈
ε4
n

〉)1/4
.

For a finite number of sources (wounded nucleons), even
without geometric deformation, one has just from fluc-
tuations εn{m} "= 0 for m ! 4, with εn{m} decreasing as
1/N

1−1/m
w [50,53].

(a) (b)

FIG. 6. Flat-on (left) and sidewise (right) orientations of 12C with
respect to the reaction plane.
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FIG. 1. (Color online) Snapshot of a typical gold-gold collision in the x-y plane, for b = 6 fm. Red and black circles indicate nucleons
from nuclei A and B, respectively, plotted with the size (3.2). The left picture shows all nucleons, the middle shows the wounded nucleons only,
and the right shows the centers of mass of pairs of nucleons undergoing binary collisions. The straight lines indicate the (twisted) principal axis
of the quadrupole moment, the blue dots show the center of mass of the system, and the outer circles denote the Woods-Saxon radius of gold,
R = 6.37 fm. The units on the x and y axes are femtometers.

The first part of the paper discusses the fixed-axes and
variable-axes harmonic moments and radial profiles obtained
numerically from the Glauber Monte Carlo studies in sev-
eral models: the conventional wounded-nucleon model [11],
a model admixing binary collisions to wounded nucleons
[12,13], a model with hot spots, and the hot-spot model
where the deposition of energy occurs with a given probability
distribution (Sec. III). The results are presented in Secs. IV
and V. The main result here is that the fixed-axes quadrupole
moments, ε, and their scaled standard deviation, "ε/ε, vary
significantly from model to model. The same holds to a
lesser extent for the variable-axes moments, ε∗. However,
the dependence of the scaled standard deviation "ε∗/ε∗

on the chosen Glauber-like model is weak, at most at the
level of 10%–15% for intermediate impact parameters. For
all considered models the values range from about 0.5 for
central collisions to about 0.3–0.4 for peripheral collisions. We
examine the dependence on the mass number, providing results
for gold-gold and copper-copper collisions. We also investigate
the effects of the assumed weighting power of the transverse
radius in the definition of the harmonic moments, finding that
the choice is not important for studies of fluctuations.

In Sec. VI we examine the role of the center-of-mass and
quadrupole-axes fluctuations on jet quenching. Except for very
central collisions, the effect of the increased eccentricity of
the opaque medium is canceled by the shift of its position and
axes rotation, leading to almost no change in the azimuthal
asymmetry of the jets leaving the interaction region.

In Sec. VII we argue that the variable-axes quantities are
dominated by sheer statistics and certain properties of variable-
axes distributions can be explained in an elementary way
through the use of the central limit theorem. In particular, in the
absence of correlations between the location of sources and for
central collisions we get the result of an appealing simplicity,
namely "ε∗/ε∗(b = 0) =

√
4/π − 1 $ 0.52, independent of

the number of sources in the assumed model, the mass number
of the colliding nuclei, or the collision energy. This result is
fulfilled to a very good accuracy in actual numerical studies,
where some correlations are present. For noncentral collisions

appropriate expansions are provided. We also analyze the
variable-axes profiles in this way. The effects of correlations
between the location of sources are discussed in Appendix D.

In Sec. VIII we propose another method of encoding
the information on the initial state, where each harmonic
(including the odd ones) is evaluated in its own eigenaxes.
The method can be used as a base for a smoothing procedure
in preparation of the initial conditions for event-by-event
hydrodynamic studies.

In Sec. IX we make several comments referring to the
collective flow. We note that the statistical analysis of the
variable-axes parameters ε∗ carries over to the analysis of
the variable-axes elliptic-flow coefficient, v∗

2 . For central
collisions (in the absence of correlations) we find "v∗

2/v
∗
2 (b =

0) =
√

4/π − 1 $ 0.52, independently of multiplicity, mass
number, or the collision energy. This value is in the ballpark
of the recent experimental data [9,10]. Moreover, under
the assumption of smoothness that most likely holds in
hydrodynamics, which allows for perturbation theory around
the azimuthally symmetric solution, one obtains the relation
v∗

4 ∼ v∗2
2 for the octupole flow coefficient. Consequently,

for the event-by-event fluctuations we find the prediction
"v∗

4/v
∗
4 = 2"v∗

2/v
∗
2 .

The appendices contain some more technical material,
including the derivations of the statistical formulas. A simple
one-dimensional toy model illustrating the essence of the
statistical intricacies is given in Appendix C.

II. NOTATION

In our study we use the standard Woods-Saxon nuclear
density profile for the nucleus of mass number A,

n(r) = c

1 + exp
(

r−R
a

) , (2.1)

where the constant c, given in Appendix B, is such that
the normalization

∫
4πr2dr n(r) = A is fulfilled. For the
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D″ðωÞ ¼
Z

tmax

t0
D″

GðtÞeiωtdt; ð7Þ

the strength of the dipole resonance of the system at excited
energy E ¼ ℏω can be obtained, i.e.,

dP
dE

¼ 2e2

3πℏc3E
jD″ðωÞj2; ð8Þ

where dP=dE can be interpreted as the nuclear photo-
absorption cross section. It can be normalized as
ðdP=dEÞnorm ¼ ðdP=dEÞΔE=

R∞
0 ðdP=dEÞdE, where ΔE

is the energy range of the GDR concerned. In realistic
calculations, we take the integral interval from 8 to 40MeV,
which is consistent with the energy region of the GDR.
The normalized dP=dE is calculated in the excitation-
energy region from 8 to 35 MeV, which includes almost all
the physically relevant GDR peaks. When displaying the
dP=dE spectrum, a smoothing parameter Γ ¼ 2 MeV was
used (our calculation shows that the GDR width almost
does not depend on Γ).
Results and discussion.—The GDR spectrum of 16O

obtained in the way described above is compared against
the experimental data [48] and first principles calculations
[49] shown in Fig. 1(a). Figure 1(b) shows the 16O dipole
oscillation in two decomposed directions versus time for one
event. The wave function of the 16O system at the ground
state is obtained at a binding energy of 7.82AMeV, which is
very close to the experimental binding energy: 7.98A MeV.
The resulting ground state consists of four α particles with a
tetrahedral configuration. The tetrahedral four-α configura-
tion in the 16O ground state is also supported by a new
ab initio calculation of by Epelbaum et al. [34] using chiral
nuclear effective field theory. In addition, a recent covariant
density functional theory calculation also shows regular
tetrahedral four-α configuration in the ground state of 16O
[28]. The long dashed red line represents the calculated GDR
of 16O by a merged Lorentz integral transform of a dipole
response function obtained with the coupled-cluster method

from first principles. The comparison with data confirms that
the tetrahedral four-α configuration in initialization is
reasonable and the procedure used to calculate GDRs is
reliable. Then, we apply the method to explore GDRs for
excited α cluster states.
For light stable nuclei, the α cluster structure is expected

around the threshold energy Ethr
nα ¼ nEα of the nα emission.

The Pauli principle plays a more and more important role
when the α cluster degrees of freedom become more
pronounced. Therefore, to quantitatively depict the energy
of α cluster states, the running parameter of cP, which
depends on the density, excitation energy, or temperature
of the system, is needed. Thus, the α clustering states with
different configurations around the threshold Ethr

nα are
obtained with 20 MeV Pauli potential strength, where α
clusters are weakly bound, less than 1 MeV per cluster, in
all systems considered.
For 12C, there are linear-chain and regular triangle

configurations. For 16O, we consider linear-chain, kitelike
[33], and square configurations. Different configurations of
α clustering give different mean-field characteristics, which
will essentially affect the collective motion of nucleons,
e.g., in GDRs. This speculation is verified by Fig. 2.
The GDR is anisotropic for α configurations shown in

Fig. 2, which originates from the fact that α clusters are
in a plane or in a linear chain in 8Be, 12C, and 16O. We
decompose the collective motion into two directions. One
direction is perpendicular to the plane or the line of the α
configurations, called the short axis, indicated by long
dashed red lines. The other direction is in the plane or
chain, and we take the longest axis of configuration as this
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that the two nucleons interact is a Gaussian in their relative
impact parameter, of the width controlled by σinelNN.
The wounded nucleons and binary collisions are jointly
referred to as sources. The outcome of the Monte Carlo
simulation is a distribution of locations of sources in the
transverse plane in each event, fð~xÞ ¼

P
jδð~x − ~xjÞ. In

actual applications the sources are smeared. This physical
effect is necessary in preparing the initial condition for
hydrodynamics.

A single event of a central (for vanishing impact
parameter) 12C-208Pb collision is shown in Fig. 2. Here
we have used the clustered 12C BEC distribution and aligned
the transverse and the cluster planes (the carbon hits the lead
“flat”). The shown collision led to 66 wounded nucleons and
93 binary collisions. Note the typical “warped” structure
following from the stochastic nature of the process, with the
underlying three clusters structure visible.
The eccentricity coefficients of the fireball have two

sources. One comes from the average shape (for instance, in
noncentral A-A collisions the overlapped almond-shaped
region produces ϵ2, or in the present case the triangular
cluster shape of 12C generates triangularity), but, in
addition, there is a component from fluctuating positions
of the finite number of N sources. This fluctuating
component [39–43] is suppressed with N. The intrinsic
density of sources of rank n is defined as the average over
events, where the distributions in each event have aligned
principal axes: fintrn ð~xÞ ¼ hfðRð−ΦnÞ~xÞi. Here the brackets
indicate averaging over events and Rð−ΦnÞ denotes an
inverse rotation by the principal-axis angle in each event.
The result of this procedure for generating the intrinsic
fireball densities of rank n ¼ 3 is shown in the middle
panels of Fig. 3 for high-multiplicity collisions (with more
than 70 wounded nucleons). In these simulations the
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FIG. 2. (Color online) (color online). Snapshot of a single
central 12C-208Pb collision, displaying the distribution of sources
in the transverse plane, BEC case, Nw ¼ 66, Nbin ¼ 93. In this
simulation the transverse and cluster planes were aligned.
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FIG. 3. (Color online) (color online). Glauber Monte Carlo simulations with GLISSANDO for the 12C-208Pb collisions at the SPS
energy
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sNN

p ¼ 17 GeV. The top panels correspond to the clustered BEC case, while the bottom panels display the unclustered case.
The left panels show the intrinsic densities in the 12C nucleus, the middle panels give the corresponding rank n ¼ 3 intrinsic densities
of sources in the fireball in the transverse plane for collisions with a high number of wounded nucleons, Nw ≥ 70, and the right panels
show the event-by-event statistical properties of the fireball (average ellipticity, triangularity, and their scaled standard deviations) as
functions of the number of wounded nucleons. See the text for details.
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that the two nucleons interact is a Gaussian in their relative
impact parameter, of the width controlled by σinelNN.
The wounded nucleons and binary collisions are jointly
referred to as sources. The outcome of the Monte Carlo
simulation is a distribution of locations of sources in the
transverse plane in each event, fð~xÞ ¼

P
jδð~x − ~xjÞ. In

actual applications the sources are smeared. This physical
effect is necessary in preparing the initial condition for
hydrodynamics.

A single event of a central (for vanishing impact
parameter) 12C-208Pb collision is shown in Fig. 2. Here
we have used the clustered 12C BEC distribution and aligned
the transverse and the cluster planes (the carbon hits the lead
“flat”). The shown collision led to 66 wounded nucleons and
93 binary collisions. Note the typical “warped” structure
following from the stochastic nature of the process, with the
underlying three clusters structure visible.
The eccentricity coefficients of the fireball have two

sources. One comes from the average shape (for instance, in
noncentral A-A collisions the overlapped almond-shaped
region produces ϵ2, or in the present case the triangular
cluster shape of 12C generates triangularity), but, in
addition, there is a component from fluctuating positions
of the finite number of N sources. This fluctuating
component [39–43] is suppressed with N. The intrinsic
density of sources of rank n is defined as the average over
events, where the distributions in each event have aligned
principal axes: fintrn ð~xÞ ¼ hfðRð−ΦnÞ~xÞi. Here the brackets
indicate averaging over events and Rð−ΦnÞ denotes an
inverse rotation by the principal-axis angle in each event.
The result of this procedure for generating the intrinsic
fireball densities of rank n ¼ 3 is shown in the middle
panels of Fig. 3 for high-multiplicity collisions (with more
than 70 wounded nucleons). In these simulations the
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FIG. 2. (Color online) (color online). Snapshot of a single
central 12C-208Pb collision, displaying the distribution of sources
in the transverse plane, BEC case, Nw ¼ 66, Nbin ¼ 93. In this
simulation the transverse and cluster planes were aligned.
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FIG. 3. (Color online) (color online). Glauber Monte Carlo simulations with GLISSANDO for the 12C-208Pb collisions at the SPS
energy
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sNN

p ¼ 17 GeV. The top panels correspond to the clustered BEC case, while the bottom panels display the unclustered case.
The left panels show the intrinsic densities in the 12C nucleus, the middle panels give the corresponding rank n ¼ 3 intrinsic densities
of sources in the fireball in the transverse plane for collisions with a high number of wounded nucleons, Nw ≥ 70, and the right panels
show the event-by-event statistical properties of the fireball (average ellipticity, triangularity, and their scaled standard deviations) as
functions of the number of wounded nucleons. See the text for details.
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FIG. 9. (Color online) Ratios of four-particle to two-particle cu-
mulants plotted as functions of the total number of wounded nucleons.
BEC case, RHIC.

moments are the scaled standard deviation,

σ (εn)
〈εn〉

# σ (vn)
〈vn〉

, (6)

and the ratio of the four-particle and two-particle cumulant
moments,

εn{4}
εn{2}

# vn{4}
vn{2}

. (7)

Thus measurements of the above combinations of moments
of vn provide information on analogous quantities for the
eccentricities. Experimentally, one can access even moments
of vn, and the ratio in Eq. (6) must be estimated from vn{2}
and vn{4} or from the reconstructed vn distribution.

Predictions based on Eq. (6) have been reported in Ref. [1]
(Fig. 3, top right, in that work), where σ (εn)/〈εn〉 increases
for ellipticity and decreases for triangularity with Nw. This
behavior reflects the interplay of the intrinsic geometry and
statistical fluctuations. In this paper, following closely the
analysis in Ref. [2], we apply relation (7). The results of
GLISSANDO simulations are shown in Fig. 9. We note that for
high-multiplicity collisions the ratio εn{4}/εn{2} significantly
increases for triangularity and decreases for ellipticity. The
geometric triangularity increases for collisions with a larger
number of participants, corresponding to high-multiplicity
events. On the other hand, the eccentricity due to fluctuations
of independent sources decreases with Nw, hence the opposite
behavior.

We note that the change of behavior (stronger monotonicity)
starts at Nw, corresponding to a centrality of 10%; thus it occurs
in the region easily accessible to experimental analyses. We
also see that the behavior for clustered 12C (thick lines in
Fig. 9) is completely different from the case of the uniform
structure (thin lines).

The behavior shown in Fig. 9 is the key result of this work.
It offers a signature sensitive to the intrinsic deformation that
is straightforward to measure in ultrarelativistic heavy-ion
collisions with standard techniques devoted to analysis of
harmonic flow.
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FIG. 10. (Color online) Comparison of vn{4}/vn{2} for the SPS,
RHIC, and LHC cases. BEC case. Vertical lines indicate the values
of Nw corresponding to centralities of 10% for the three collision
energies. Parameters are listed in Table II.

One could ask at this point why we need to resort to Eq. (7),
rather than evaluating vn{4} directly from the event-by-event
hydrodynamic calculations. The reason is twofold. First, the
statistics possible to achieve in such studies is sufficient for
the analysis of two-particle cumulants but not four-particle
cumulants. Second, and more importantly, the application of
Eq. (7) frees us from sensitivity to details of the dynamical
theory, which we do not know exactly. This way the predictions
for the ratios of the cumulant moments are more general and
model independent.

V. FURTHER RESULTS

A. Dependence on the collision energy

In Fig. 10 we show the dependence of our predictions on
the collision energy, according to the values in Table II. We
note that the qualitative predictions do not change with the
collision energy, as the three sets of curves are similar, in
particular, when we take into account the fact that the values
of centrality corresponding to a given Nw depend on the energy
via the value of σ inel

NN .

B. Forward and backward rapidity

We may also ask the question how much the predictions
depend on the rapidity window used in the experiment. This
is of practical significance, as in fixed-target experiments the
detectors cover rapidity away from the center. For the purpose
of a simple estimate, we use the model in Refs. [69,70], where
the initial density of the fireball in the space-time rapidity η‖
and the transverse plane coordinates (x,y) is given by the form

F (η‖,x,y) = (1 − a)[ρ+(x,y)f+(η‖) + ρ−(x,y)f−(η‖)]

+ aρbin(x,y)[f+(η‖) + f−(η‖)], (8)

where ρ±(x,y) is the density from the forward- and backward-
going wounded nucleons, and ρbin(x,y) is the binary collision
density. The rapidity profile functions f+(η‖) and f−(η‖) are
given explicitly in Ref. [70].
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FIG. 4. (Color online) Comparison of the fireball eccentricity
coefficients from the two-particle cumulants for the clustered dis-
tribution and for the uniform distribution. GLISSANDO simulations,
BEC case, RHIC. Vertical lines indicate the total number of wounded
nucleons corresponding to centralities 10%, 1%, and 0.1%. The
orientation-multiplicity correlation is clearly shown for the clustered
case.

geometric ellipticity in the case where the cluster plane is not
parallel to the transverse plane, which is the generic case due
to randomness of the orientation.

The second cause for eccentricity coefficients comes from
fluctuations due to the finite number of nucleons [7,47–50].
The effect of fluctuations washes away, to some extent, the
geometric component, hence a careful examination of the
results presented in Sec. IV B is necessary to discriminate
the two origins.

In collisions of asymmetric nuclei at a finite impact param-
eter b, small values of odd Fourier components can appear in
the azimuthal dependence of the fireball density with respect
to the reaction plane (such an effect is present, for instance,
in Cu-Au collisions). In Fig. 5 we show the triangularity of
the initial fireball for C-Au and Cu-Au collisions with respect
to the reaction plane calculated in the optical Glauber model,
an approximate scheme where one first averages the densities
and then computes the nuclear thickness function [51]. For
intermediate values of b the triangularity is nonzero, even
without any contribution from fluctuations or the α clustering.
However, the obtained value of ε3 is an order of magnitude
smaller than the one calculated event by event with respect to
the third-order event plane (Fig. 4). Moreover, the most central
collisions that we discuss in the following correspond to small
impact parameters (for centralities c = 10%, 1%, and 0.1%
the average values of b are 2.4, 1.5, and 1.2 fm, respectively).
Hence the average geometric ε3 in the reaction plane is even
smaller. While the above effect is automatically included in
our simulation, it does not play a role in the interpretation of
the results.

As explained in Ref. [1], there is a specific correlation
among centrality, triangularity, and ellipticity, induced by the
intrinsic orientation of 12C. When the transverse and the cluster
planes are aligned, the 12C nucleus hits the large nucleus
flat-on and thus creates the most damage, i.e., produces the
largest number of sources (cf. left side of Fig. 6). At the

Cu Au
C Au

optical Glauber model

0 2 4 6 8
0

0.01

0.02

b fm

Ε 3

FIG. 5. (Color online) Triangularity of the fireball formed in C-
Au and Cu-Au collisions. The density is calculated in the optical
Glauber model, and the the triangularity is defined with respect to the
reaction plane.

same time, in this flat-on orientation we have, on average,
the highest triangularity and the lowest ellipticity, which here
comes entirely from fluctuations.

In the other extreme case the cluster plane is perpendicular
to the transverse plane (side-wise configuration; cf. right side
of Fig. 6). Then we find the opposite behavior: low multiplicity,
as the cross section is smaller, small triangularity, and large
ellipticity, which now obtains a sizable contribution from the
elongated shape of the fireball.

Of course, in actual collisions the orientation is random
and we have a situation between the two limiting cases de-
scribed above, yet the phenomenon of the specific orientation-
multiplicity correlations is clearly seen (cf. Fig. 3, top right,
in Ref. [1] or Fig. 4 here). In particular, in Fig. 4 we show,
by comparing the simulations with clustered and uniform
12C, that the geometry increases the triangularity at high
values of the number of wounded nucleons, Nw (preferentially
flat-on collisions), and raises ellipticity at lower values of Nw

(sidewise collisions).
Event-by-event studies allow for obtaining event-by-event

distributions of the physical quantities. In the sections below
we need the so-called two-particle and four-particle cumulant
moments [52] of the eccentricities, defined as

εn{2} =
〈
ε2

2

〉1/2
,

(3)
εn{4} = 2

(〈
ε2
n

〉2 −
〈
ε4
n

〉)1/4
.

For a finite number of sources (wounded nucleons), even
without geometric deformation, one has just from fluc-
tuations εn{m} "= 0 for m ! 4, with εn{m} decreasing as
1/N

1−1/m
w [50,53].

(a) (b)

FIG. 6. Flat-on (left) and sidewise (right) orientations of 12C with
respect to the reaction plane.
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FIG. 1. Schematic view of the cluster structure of light nuclei.
The dark blobs indicate α clusters (in the case of 7Be, also the 3He
cluster). The additional open circle in 9Be indicates the extra neutron.

As the positions of the nucleons in the colliding nuclei
fluctuate, being distributed according to their wave functions,
the initial eccentricity, and in consequence the harmonic flow,
always receives an additional contribution from these random
fluctuations [39–45] (the shape fluctuations are indicated with
a warped surface of the fireball in Fig. 2). For that reason,
the applied measures of the harmonic flow should be able to
discriminate between these two components.

To a good approximation, the measured elliptic and trian-
gular flow coefficients vn (n = 2,3) of the spectra of produced
hadrons are linear in the corresponding initial eccentricities
εn (see, e.g., [46–48]). This allows for a construction of
cumulant-based flow measures given in Sec. III, which are
independent the of details of the dynamics of the later stages
of the collision, and thus carry information pertaining to the
initial eccentricities. We describe such measures in Sec. III. We
note that another measure, involving the ratio of the triangular
and elliptic flow coefficients, has been recently proposed in
Ref. [49] for the case of 12C, and tested within the AMPT [33]
transport model.

To have realistic nuclear distributions with clusters, yet
simple enough to be implemented in a Monte Carlo simulation,
we apply a procedure explained in Sec. II, where positions
of nucleons are determined within clusters of a given size,
whereas the clusters themselves are arranged in an appropri-
ate shape (for instance, triangular for 12C). The parameters,
determining the separation distance between the clusters and
their sizes, are fixed in such a way that the resulting one-body
nucleon densities compare well to state-of-the-art variational

FIG. 2. Diagram of ultrarelativistic 7,9Be + 208Pb collisions. The
clustered beryllium creates a fireball whose initial transverse shape
reflects the deformed intrinsic shape of the projectile (left panel).
Subsequent collective evolution leads to faster expansion along the
direction perpendicular to the symmetry axis of the beryllium, and
slower expansion along this axis, as indicated by the arrows (right
panel). The effect generates specific signatures in the harmonic flow
patterns in spectra of the produced hadrons in the final state.

Monte Carlo (VMC) [18,19] simulations. The simulations for
clustered nuclei are compared to the baseline case, where no
clustering is present.

Our basic findings, presented in Sec. III, are that clusteri-
zation in light nuclei leads to sizable effects in the harmonic
flow pattern in collisions with heavy nuclei. The effect is most
manifest for the highest-multiplicity collisions, where addi-
tional fluctuations from the random distribution of nucleons
are reduced. For the dumbbell shaped 7,9Be, the measures of
the elliptic flow are affected, whereas for the triangular 12C
and tetrahedral 16O there are significant imprints of cluster-
ization in the triangular flow. These effects, when observed
experimentally, could be promptly used to assess the degree of
clusterization in light nuclei.

In the second part of this paper we examine a novel
possibility of observing the intrinsic deformation resulting
from clusterization of light nuclei with spin, such as 7,9Be,
when these are collided with ultrarelativistic protons. This
interesting but exploratory proposal would require a magnet-
ically polarized 7,9Be nuclei, which in the ground state have
JP = 3/2− quantum numbers.

In this case the geometric mechanism is as follows: When
the dumbbell shaped nucleus in m = 1/2 ground state is
polarized along the proton beam direction, there is a much
higher chance for the proton to collide with more nucleons
(as it can pass through both clusters) than in the case where
it is polarized perpendicular to the beam axis (where it would
pass through a single cluster only). Thus more participants
are formed in the former case. The effect is opposite for the
m = 3/2 state, as explained in Sec. IV.

One could thus investigate the distribution of participant
nucleons, NW , for various magnetic numbers m and geometric
orientations. We find from our simulations factor-of-2 effects
for NW = 4 and an order of magnitude effect for NW ! 6,
when comparing the cases of m = 3/2 and m = 1/2 or chang-
ing of the direction of the beam relative to the polarization axis.
We discuss the mechanism and the relevant issues in Sec. IV.

II. NUCLEON DISTRIBUTIONS IN CLUSTERED
LIGHT NUCLEI

To model the collision process in the applied Glauber
framework [26–28], we first need the distributions of centers
of nucleons in the considered nuclei. We have adopted a simple
and practical procedure where these distributions are generated
randomly in clusters placed at preassigned positions in such
a way that the one-body density reproduces the distributions
obtained from state-of-the-art variational Monte Carlo (VMC)
[18,19,50] studies.

Explicitly, our steps are as follows: We set the positions of
clusters according to the geometry of Fig. 1, separating their
centers from each other with the distance l. The distribution of
the nucleons in each cluster is randomly generated according
to the Gaussian function

fi("r) = A exp
(

−3
2

("r − "ci)2

r2
c

)
, (1)

where "r is the three-dimensional coordinate of the nucleon, "ci

is the position of the center of the cluster i, and rc is the rms
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In our presentation of the results we use centrality classes
determined by NW , which a simple choice used in many other
studies. The initial entropy (or RDS) could also be used to
determine centrality classes of the collision, which would
correspond to experiments where centrality is determined by
the multiplicity of produced hadrons. On the other hand, for
fixed target experiments it is possible to fix centrality (or the
number of projectile participants) via a forward detector. We
note that, for the considered heavy-light systems, RDS is very
strongly correlated to NW in the whole centrality range. For that
reason, fixing RDS yields very similar results to having fixed
NW , which is what we do. Dedicated studies of the investigated
clusterization effects for given experimental setups can be
carried out when needed.

In the following we show the numerical results of our
GLISSANDO [55,56] simulations of collisions of the above-
described nuclei composed of α clusters with 208Pb nuclei at√

sNN = 17 GeV, where the corresponding inelastic nucleon-
nucleon cross section is σinel = 32 mb. Such collision energies
are available at SPS and the considered reactions are possible
to study in the on-going NA61/SHINE experiment with 208Pb
or proton beams, where a variety of targets and secondary
beams are available in this experiment [57]. Therefore the
present study may be thought of as a case study for possible
NA61/SHINE investigations.

To analyze the effects of clusterization in the considered
light nuclei on the harmonic flow coefficients in the reactions
with 208Pb nuclei, one needs to use appropriate flow measures.
The eccentricity coefficients, εn, are designed as measures of
the harmonic deformation in the initial state. They are defined
for each collision event as

εne
in$n = −

∫
ρ(x,y)einφ(x2 + y2)n/2dx dy∫

ρ(x,y)(x2 + y2)n/2dx dy
, (5)

for n = 2,3, . . . , with φ = arctan(y/x) and $n denoting the
angle of the principal axes in the transverse plane (x,y).

The harmonic flow coefficients, vn, and the event-plane
angles, 'n, are defined via the Fourier decomposition

dN

dφ
= N

2π

[

1 + 2
∑

n

vn cos [n(φ − 'n)]

]

(6)

of the underlying single-particle probability density dN/dφ.
In each event, this distribution is sampled with a finite number
of the produced hadrons.1

The subsequent collective evolution with hydrodynamics
[30–32] or transport [33] has a shape-flow transmutation
feature: The deformation of shape in the initial stage leads
to harmonic flow of the hadrons produced in the late stage.
The effect is manifest in an approximate proportionality of the
flow coefficients vn to the eccentricities εn, which holds for
n = 2 and 3:

vn = κnεn (7)

1Estimators for the corresponding cumulants of vn, mentioned in the
following, can be evaluated with the explicit formulas of Ref. [58],
which avoid autocorrelations.
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FIG. 4. Ratios of the four- to two-particle cumulants for 7Be +
208Pb collisions, plotted as functions of the total number of the
wounded nucleons. Clustered nuclei (thick lines) are compared with
the case where the nucleons are distributed uniformly with the
same one-body radial distributions (thin lines). The vertical lines
indicate the multiplicity percentiles (centralities) corresponding to
the indicated values of NW . The upper horizontal axis shows the
corresponding values of RDS of Eq. (4).

(for higher rank, nonlinear coupling effects are present and the
proportionality (7) does not hold [46]). The proportionality co-
efficients κn depend on various features of the colliding system
(centrality, collision energy), but are to a good approximation
independent of the eccentricity itself, hence the above relations
are linear.

In our analysis we use the two- and four-particle cumulants,
defined as

vn{2}2 =
〈
v2

n

〉
,

vn{4}4 = 2
〈
v2

n

〉2 −
〈
v4

n

〉
=

〈
v2

n

〉2 − σ
(
v2

n

)
.

(8)

The cumulant coefficients follow a proportionality relation
analogous to Eq. (7):

vn{m} = κnεn{m}. (9)

To get rid of the influence of the (generally) unknown κn coeffi-
cients on the results, one may consider the ratios of cumulants
of different order m for a given rank-n flow coefficient vn, e.g.,

vn{m}
vn{2}

= εn{m}
εn{2}

(10)

(we use m = 4). Therefore the ratios of the flow cumulants
can be directly compared to the corresponding ratios of the
eccentricity cumulants.

To assess the specific effects of clusterization, we compare
the obtained results to those corresponding to the “uniform”
case, where the nucleons are distributed without clusterization
(see Sec. II).

In Figs. 4 and 5 we show the ratios of the four-particle to
two-particle cumulants of the elliptic (n = 2) and triangular
(n = 3) flow coefficients, plotted as functions of the total
number of wounded nucleons, NW . Since clusters in 7,9Be
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FIG. 5. The same as in Fig. 4 but for 9Be + 208Pb collisions.

nuclei form a dumbbell shape, the influence of clusteriza-
tion is, as expected, clearly visible in the n = 2 (elliptic)
coefficients. We note that for high multiplicity collisions
the ratio v2{4}/v2{2} is significantly larger for the clustered
case compared to the uniform distributions. The experimental
signature of clusterization in beryllium is the value of the
double ratio

R = v2{4}/v2{2}/(v3{4}/v3{2}) (11)

for most central collisions. For the uniform case R ! 1,
whereas with clusters it reaches the value 1.2 for 7Be and 1.3
for 9Be.

For the case of 12C + 208Pb and 16O + 208Pb collisions, the
significant influence of clusters as compared to the “uniform”
case is visible for the rank-3 (triangular) coefficients; see
Figs. 6 and 7. This is mainly caused by the triangular and tetra-
hedral arrangements of clusters in 12C and 16O, respectively.
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FIG. 6. The same as in Fig. 4 but for 12C + 208Pb collisions.
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FIG. 7. The same as in Fig. 4 but for 16O + 208Pb collisions.

We note that the values of R become significantly lower than
1 for highest centralities.2

The above presented results were obtained in a Glauber
model where all the sources carried the same strength (de-
posited the same amount of entropy). This need not be the
case, as physical mechanisms may result in some randomness.
Moreover, such fluctuations are necessary to properly describe
the multiplicity distributions in p+A collisions [59].

We now check the influence of the additional, random,
fluctuations of the strength of sources on our results. To do
this, we generate the strength of the sources, u, according to
the " distribution

"(u,κ) = uκ−1κκ exp(−κu)
"(κ)

, (12)

which gives 〈u〉 = 1 and var(u) = 1/κ . In our simulations we
use κ = 0.9 [59]. We recall that the " distribution folded with
the Poisson distribution at hadronization yields the negative
binomial distribution, typically used to fit the multiplicity
distributions.

In the Fig. 8 we show the ratios of the four- to two-particle
cumulants for 7Be + 208Pb collisions, plotted as functions of
NW for the cases with and without the " distribution. We note
from the figure that fluctuating the strength of the sources
according to the " distribution has practically no effect on
the results. The same conclusions follow for the other studied
reactions.

All previously shown simulations were carried out at the
midrapidity, y ∼ 0, region. To study the dependence on rapid-
ity, we apply a model with rapidity-dependent emission func-
tions of the entropy sources. Such an approach is necessary,
since in most fixed-target experiments the detectors measure
particles produced in rapidity regions which are away from
the midrapidity domain. Taking this into account, we apply
the model described in Refs. [60,61]. There, the initial density
of the fireball in the space-time rapidity η‖ = 1

2 log(t + z)(t −

2The case of 12C has also been thoroughly discussed in Ref. [25].

034912-5
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AMPT (a multi-phase transport model), Z. W. Lin, C. M. Ko, B. A. Li, S. Pal, PRC-72-064901(2005)


(1) initial condition (HIJING); 


(2) parton cascade (ZPC);


(3) hadronizition;                   


(4) hadronic rescattering (ART)


For high energy heavy ion collisions

四⾯体结构16O
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FIG. 6. Ratio of the relative flow fluctuation Rv3/Rv2 as a func-
tion of Ntrack for 12C + 197Au collisions with α-clustered 12C in
different structures. Flow fluctuations are calculated based on the
event-plane method.

One can also characterize the different orders of azimuthal
anisotropies with the event plane (EP) method [2,69]. Unlike
the participant plane which is not accessible experimentally,
the event plane can be reconstructed using final-state charged
particles. Definition of the nth-order event plane angle is in
the form,

ψn{EP} = 1
n

arctan
〈ω sin(nφ)〉
〈ω cos(nφ)〉

, (7)

where φ and ω are the azimuthal angle and weight for the final
particle, respectively. Flow coefficients vn with respect to the
nth-order event plane ψn{EP} is defined as

vn{EP} = 〈cos(n[φ − ψn{EP}])〉
Res{ψn{EP}} , (8)

where Res{ψn{EP}} is the resolution of the event plane angle
and the brackets indicate the average over particles.

Ideal hydrodynamics predicts linear response to the initial
eccentricities of the final flow harmonics [66]. Approximate
proportionality of the flow coefficients vn to the eccentricities
εn is suggested to hold for n = 2 and 3, vn = κεn (n = 2,3),
where κ is the linear response coefficient. Assuming linear
flow response, flow fluctuation quantified with scaled standard
deviation should be approximately equal to the eccentricity
fluctuation quantified in the same way,

σvn

〈vn〉
≈ σεn

〈εn〉
. (9)

This relation can be applied only on the premise that
the initial-final correlation is dominated by linear response.
Though fluctuations of vn mainly stem from the fluctuations of
εn, during the source evolution, nonlinear responses may play
an important role in the development of final flow fluctuation
with the presence of nonzero higher order effects [70–74].
Nevertheless, we can still examine the flow fluctuation to see
how sensitive it is in distinguishing initial nuclear clustering
structure.

FIG. 7. Skewness and kurtosis of v2 and v3 fluctuations as a function of Ntrack for α-clustered 12C + 197Au collisions at 200 GeV.
Comparisons are made between results from the event plane method and the participant plane method. (Upper panels) Skewness of v2 and v3

fluctuations. (Lower panels) Kurtosis of v2 and v3 fluctuations.

014910-5
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Because v4 appears to be the most promising observable to
distinguish ↵-clustering from subnucleonic fluctuations, we
also study the quantity v4 {4}4, which is sensitive to the fluctu-
ations of v4 on an event-by-event basis. v4 {4}4 is a particularly
interesting observable because hydrodynamic models have so
far failed to capture its sign change at the LHC, even for well-
understood PbPb collisions [78, 79]. In Fig. 5 we find that
at the LHC, there is clear separation in v4 {4}4 for central col-
lision, which indicates a nice potential for distinguishing be-
tween ↵-clustering and subnucleonic fluctuations. Addition-
ally, these mechanisms produce e↵ects in opposite directions,
with ↵-clustering making v4 {4}4 significantly more negative
and subnucleonic fluctuations bringing the value of v4 {4}4
close to 0. In contrast, RHIC does not provide a clear sig-
nal and it is unlikely that v4 {4}4 could be used to distinguish
between our three scenarios. Finally, we have also checked
v2 {4} /v2 {2} but found that all three initial conditions pro-
duced relatively similar results.

FIG. 3. v3{2}/v2{2} vs centrality for both
p

sNN = 200 GeV (top)
and
p

sNN = 6.5 TeV (bottom) comparing the Woods-Saxon, Woods-
Saxon + Quarks, and ↵ clustering models.

Conclusions. In this work we use ab initio lattice e↵ective
field theory calculations of the nuclear structure of 16O cou-
pled to the state-of-the-art relativistic hydrodynamics descrip-
tion of the Quark Gluon Plasma to determine the possibil-
ity of measuring ↵-clustering in relativistic heavy-ion colli-
sions. We find that LHC energies are better suited to find-
ing ↵-clustering but one must consider ratios of harmonics
such as v3{2}/v2{2} and v4{2}/v2{2}. Interestingly enough,

FIG. 4. v4{2}/v2{2} vs centrality for both
p

sNN = 200 GeV (top)
and
p

sNN = 6.5 TeV (bottom) comparing the Woods-Saxon, Woods-
Saxon + Quarks, and ↵ clustering models.

↵-clustering suppresses v3{2}/v2{2} and enhances v4{2}/v2{2}
and in all our comparisons subnucleonic fluctuations always
has the opposite e↵ect compared to ↵-clustering at LHC en-
ergies. Another promising observable is v4{4}4 where very
significant di↵erences appear between ↵-clustering and sub-
nucleonic fluctuations between 0�30% centrality at the LHC.
In contrast, RHIC has more ambiguous results and appears
less likely to be sensitive to ↵-clustering but may be slightly
sensitive to substructure.

While our results for Kn and Re�1 may be somewhat con-
cerning, this does not immediately rule out the relativistic vis-
cous hydrodynamics picture in small and intermediate sys-
tems. One possible solution may be anisotropic hydrody-
namics [80–82], re-deriving the hydrodynamic equations of
motion in a far-from-equilibrium regime [83], e↵ective trans-
port coe�cients [84–88], an intermediate stage between initial
conditions and hydrodynamics [89, 90] or even considering
the Kn and Re�1 within the Bayesian analysis (and exclud-
ing parameter sets with unreasonable results). At the moment
we do not look for attractors (originally proposed in [91]) in
our simulations but leave that for a future work (complications
arise in more realistic scenarios with shear and bulk coupled
together and a realistic equation of state [92]).
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FIG. 3. Ratio v3/v2 as a function of 〈Npart〉: (a) case I, 16O + ordinary nuclei at b = 0 fm; (b) case II, 16O + Au at different centralities, and
(c) case III, symmetric collisions at b = 0 fm. The red or black lines (symbols) represent 16O with or without α-cluster structure, respectively.

point beyond the Woods-Saxon baseline. The source of initial
geometry for case II, namely, centrality dependence in O +
Au collisions, contains more complex components, such as
nuclear intrinsic geometry, initial fluctuation, and geometry
of the overlap region between target and projectile nuclei.
Cases I and III are chosen in the most central collisions, which
can also be achievable in experiment, to avoid the geometry
distribution from the overlap region as much as possible. And
from the above results and discussion, it is concluded that
v3/v2 can be taken as a probe to identify the α-clustered
structure of 16O, and cases I and III are proposed as a potential
scenario of a system scan experiment project at RHIC or LHC.

From the propositions of hydrodynamics [14,72,73,79–
81], the relationship between initial geometry and final
anisotropic flow can be described by vn ∝ εn for lower orders
n = 2, 3 and vL

n ∝ εL
n for higher orders n > 3. These relations

provide efficiency information of the transformation from
initial geometry properties to final momentum space in heavy-
ion collisions. Figure 4 shows the ratio vn/εn (n = 2, 3) as
well as vL

4 /εL
4 for case I [Figs. 4(a)–4(c)], case II [Figs. 4(d)–

4(f)], and case III [Figs. 4(g)–4(i)]. All ratios increase with
〈Npart〉 and show no significant difference between two config-
urations of 16O. This implies the transformation efficiency is
quite similar for these collision systems, and both ratios vn/εn
(n = 2, 3) and vL

4 /εL
4 seem to only depend on the system size,

such as 〈Npart〉 at a given center of mass energy. It is noted
that the values of vn/εn (n = 2, 3) and vL

4 /εL
4 are related to

the ratio of shear viscosity (η) over entropy density (s) of hot
dense matter as pointed out in some previous studies [73,74];
the fact that the insensitivity to geometrical configuration of
v2/ε2, v3/ε3, and vL

4 /εL
4 in the present calculation in turn

provides us the possibility to extract η/s if the suitable viscous
hydrodynamics model is used also indicates that η/s might be
insensitive to the initial geometric structure. However, due to
the canceling-out effect of η/s, the v3/v2 will be a good probe
to identify the geometric structure regardless of the η/s.

Finally, to give an illustrative interpretation for v3’s sen-
sitivity to the geometric structure, we consider to project the

16O nucleus into the transverse plane after a three-dimensional
rotation, where there will be a larger probability to see some
projected images due to its high structural symmetry. Take the
tetrahedral structure, for an example. If we draw the projection
of participant nucleons in the initial collision or the density
distribution of partons in the HIJING procedure, it is more
likely that one would observe triangular images rather than
that of the Woods-Saxon structure, which results in large trian-
gularity flow v3. Besides that, fluctuation in small systems also
plays an important role in the final state. With increasing of
the system size, fluctuation becomes weaker and the intrinsic
geometry will contribute more to the eccentricity coefficients
and then the final collective flow. Therefore, the collision
system dependence of final observables which are sensitive to
initial geometry properties can indicate the intrinsic geometry
distribution and then can be taken as a probe to distinguish the
α-clustering nuclear structure.

IV. SUMMARY

In summary, the present study shows the AMPT calcula-
tions of anisotropic flows in relativistic heavy ion collisions
including 16O which is assumed to have exotic tetrahedral
structure with four α-clusters. Three different sets of sys-
tem scans at center of mass energy

√
sNN = 6.37 TeV were

considered. Case I is the ordinary structured target size scan
by the different configured 16O projectile in the most central
collisions, case II presents the centrality scan for 16O + 197Au
collisions, and case III describes the symmetric collision sys-
tem scan (namely, B + B, C + C, O + O, Ne + Ne, and
Ca + Ca) in the most central collisions. From the systematic
calculation results of the above three cases, it demonstrates
that v3, v2, and the ratio v3/v2 can be taken as a powerful
probe to distinguish the tetrahedral configuration of 16O from
the Woods-Saxon configuration in the ground state. And the
collision systems for case I and case III are proposed to be the
system scan experiment projects at RHIC or LHC.

054907-5

✓⾮对称系统扫描， 两种构型具有明显的差别，WS构型⾮常平坦 
✓ 中⼼度依赖，⾼多重数下 的⽐，两种构型具有明显的差别 
✓对称系统扫描，明显看到四⾯体构型的 系统系的 偏离系统学

v3/v2
16O +197 Au v3/v2

16O +16 O v3/v2
Y.A. Li, S. Zhang, Y.G. Ma, Phys. Rev. C 102, 054907 (2020) 
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Li´enard-Wiechert potentials
Huang,(PRC) 85, 044907 (2012)
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✓ α-cluster effect at semi-central collisions for chain structure
Y. L. Cheng (程艺琳), S. Zhang, Y. G. Ma, et al., Phys. Rev. C 99, 054906 (2019) 
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Fig. 6 The time evolution of
the ratio of the third- to the
second-order HBT radii
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Table 3 The final eccentricity compared with the initial eccentricity
for different configurations of 12C

Woods–Saxon Triangle Chain

2R2
s,2/R

2
s,0 (low KT ) 0.0458 0.0467 0.0979

2R2
s,2/R

2
s,0 (high KT ) 0.147 0.138 0.297

εi2 0.263 0.227 0.499

εi3 0.219 0.296 0.179

The azimuthal dependences of the HBT radii relative to the
second- and third-order participant plane from π–π correla-
tion are presented with different hadronic rescattering time,
showing the possibility as a probe of different initial geome-
tries. For quantitative description of the oscillation of the
HBT radii and the system eccentricity, the final eccentricity
were estimated by the zeroth- and second-order HBT radii,
and compared with the initial eccentricity. According to our
calculations, the ratio of the third-order to the second-order
HBT radii is quite sensitive to different configurations of 12C.
And we suggest performing azimuthally differential fem-
toscopy with high pT identical particles. From the results,
the azimuthal angle dependence of the HBT radii relative to
the second- and third-order participant plane can be taken as
an effective probe to distinguish the exotic nuclear structure
besides collective flow.
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II. A BRIEF INTRODUCTION TO AMPT
MODEL

A multi-phase transport model is developed to address
the non-equilibrium many-body dynamics and aims at
describing physics in relativistic heavy-ion collisions at
RHIC [63]. It is also suitable to reproduce the results
at LHC [64] including the pion HBT correlations [65],
dihadron azimuthal correlations [66], collective flow [67–
69], and strangeness production [70, 71]. AMPT is a
hybrid dynamic transport model, which consists of four
main components: (a) the initial conditions including
the spatial and momentum distributions of mini-jet par-
tons and soft string excitation, which are obtained from
the HIJING model; (b) partonic cascade [72], whereby
interactions among partons are described by equations
of motion for their Wigner distribution functions; (c)
hadronization, which is conversion from the partonic to
the hadronic matter; and (d) hadronic interactions, based
on the ART (a relativistic transport) model [73], in-
cluding baryon-baryon, baryon-meson, and meson-meson
elastic and inelastic scatterings. Details of the AMPT
model can be found in a recent review [63].

The initial nucleon distribution in nuclei is configured
in the HIJING model [74, 75] with pattern of Woods-
Saxon distribution and the exotic nucleon distribution is
embedded to study the ↵-clustered structure of 16O. For
details, parameters of the tetrahedral structure of 16O
are inherited from an extended quantum molecular dy-
namics (EQMD) model [48], which is extended from the
quantum molecular dynamics (QMD) model. With the
e↵ective Pauli potential, EQMD model can give the rea-
sonable ↵-cluster configurations for 4N nuclei. For the
four ↵s in the tetrahedral structure, we put them at the
vertices with side length of 3.42 fm so that it gives a
similar rms-radius (2.699 fm) to the Woods-Saxon con-
figuration (2.726 fm) as well as the experimental data
(2.6991 fm) [76], while nucleons inside each ↵ are initial-
ized by using the Woods-Saxon distribution introduced
in the HIJING model.

III. CENTRALITY AND SYSTEM
DEPENDENCES OF FB MULTIPLICITY

CORRELATION

A. Definition and Notations

Forward-backward multiplicity correlation can be ex-
pressed as Pearson’s correlation coe�cient of forward

multiplicity Nf and backward multiplicity Nb,
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where Nf and Nb are the numbers of charged parti-
cles falling into the forward and backward pseudorapid-
ity interval �⌘, respectively, and Dbf , Dbb, and Dff are
the backward-forward, backward-backward, and forward-
forward dispersions, respectively. This definition has
been applied in some data analysis and model simula-
tions [25–27, 77, 78].
However, bcorr is not a dynamical variable because

the denominator contains a large contribution from self-
correlations, i.e. hN2i ' hN(N � 1)i + hNi, where
hN(N � 1)i is the number of unique pairs and hNi is
just the statistical fluctuations. In small multiplicity, the
denominator could be dominated by large statistical ef-
fects. One alternate method to characterize the forward-
backward multiplicity correlation can be described by the
following definition [40, 79]

C(Nf , Nb) =
hNfNbi � hNf i hNbi

hNf i hNbi
. (2)

The quantity C(Nf , Nb) vanishes if there is no correla-
tion between Nf and Nb, so that C(Nf , Nb) measures the
deviation from Poisson-statistical behavior. Of practical
importance, the ratio is robust since it is independent of
experimental e�ciency as well as what fraction of parti-
cles are used.
In this work, rapidity interval (�⌘ defined below) de-

pendence of bcorr is investigated in di↵erent collision sys-
tem and center of mass energies by using definition of
Eq.(1). And the system dependence of the correlation
is studied by the alternate way of Eq.(2), where the ↵-
clustered structure is considered in 16O + 16O.
Here two intervals separated symmetrically around

⌘ = 0 with variable width �⌘ ranging from 0.2 to 0.8 are
defined as “forward” (⌘ > 0) and “backward” (⌘ < 0).
Correlations between multiplicities of charged particles
are studied as a function of the gap between the windows
⌘gap, the distance between lower and upper boundary of
forward and backward ⌘ window.

Reference multiplicities are used here to reduce the in-
fluence of centrality selection on forward-backward mul-
tiplicity correlations. The parameters are set as (a)
�⌘ = 0.2, and ⌘gap = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4
and 1.6. For ⌘gap = 0, 0.2 and 0.4, reference multiplicity
is set in 0.5 < |⌘| < 1.0. For ⌘gap = 0.6 and 0.8, the refer-
ence multiplicity is the sum of multiplicities in |⌘| < 0.3
and 0.8 < |⌘| < 1.0. While for ⌘gap = 1.0, 1.2, 1.4
and 1.6, reference multiplicity is obtained from |⌘| < 0.5.
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For ⌘gap = 0, 0.2 and 0.4, reference multiplicity is set in
0.7 < |⌘| < 1.2. For ⌘gap = 0.6 and 0.8, the reference
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in the end.

II. A BRIEF INTRODUCTION TO AMPT
MODEL

A multi-phase transport model is developed to address
the non-equilibrium many-body dynamics and aims at
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69], and strangeness production [70, 71]. AMPT is a
hybrid dynamic transport model, which consists of four
main components: (a) the initial conditions including
the spatial and momentum distributions of mini-jet par-
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the HIJING model; (b) partonic cascade [72], whereby
interactions among partons are described by equations
of motion for their Wigner distribution functions; (c)
hadronization, which is conversion from the partonic to
the hadronic matter; and (d) hadronic interactions, based
on the ART (a relativistic transport) model [73], in-
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elastic and inelastic scatterings. Details of the AMPT
model can be found in a recent review [63].

The initial nucleon distribution in nuclei is configured
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Saxon distribution and the exotic nucleon distribution is
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details, parameters of the tetrahedral structure of 16O
are inherited from an extended quantum molecular dy-
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quantum molecular dynamics (QMD) model. With the
e↵ective Pauli potential, EQMD model can give the rea-
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vertices with side length of 3.42 fm so that it gives a
similar rms-radius (2.699 fm) to the Woods-Saxon con-
figuration (2.726 fm) as well as the experimental data
(2.6991 fm) [76], while nucleons inside each ↵ are initial-
ized by using the Woods-Saxon distribution introduced
in the HIJING model.
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forward dispersions, respectively. This definition has
been applied in some data analysis and model simula-
tions [25–27, 77, 78].
However, bcorr is not a dynamical variable because

the denominator contains a large contribution from self-
correlations, i.e. hN2i ' hN(N � 1)i + hNi, where
hN(N � 1)i is the number of unique pairs and hNi is
just the statistical fluctuations. In small multiplicity, the
denominator could be dominated by large statistical ef-
fects. One alternate method to characterize the forward-
backward multiplicity correlation can be described by the
following definition [40, 79]
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The quantity C(Nf , Nb) vanishes if there is no correla-
tion between Nf and Nb, so that C(Nf , Nb) measures the
deviation from Poisson-statistical behavior. Of practical
importance, the ratio is robust since it is independent of
experimental e�ciency as well as what fraction of parti-
cles are used.
In this work, rapidity interval (�⌘ defined below) de-

pendence of bcorr is investigated in di↵erent collision sys-
tem and center of mass energies by using definition of
Eq.(1). And the system dependence of the correlation
is studied by the alternate way of Eq.(2), where the ↵-
clustered structure is considered in 16O + 16O.
Here two intervals separated symmetrically around

⌘ = 0 with variable width �⌘ ranging from 0.2 to 0.8 are
defined as “forward” (⌘ > 0) and “backward” (⌘ < 0).
Correlations between multiplicities of charged particles
are studied as a function of the gap between the windows
⌘gap, the distance between lower and upper boundary of
forward and backward ⌘ window.

Reference multiplicities are used here to reduce the in-
fluence of centrality selection on forward-backward mul-
tiplicity correlations. The parameters are set as (a)
�⌘ = 0.2, and ⌘gap = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4
and 1.6. For ⌘gap = 0, 0.2 and 0.4, reference multiplicity
is set in 0.5 < |⌘| < 1.0. For ⌘gap = 0.6 and 0.8, the refer-
ence multiplicity is the sum of multiplicities in |⌘| < 0.3
and 0.8 < |⌘| < 1.0. While for ⌘gap = 1.0, 1.2, 1.4
and 1.6, reference multiplicity is obtained from |⌘| < 0.5.
The similar approach can be found in [26, 27, 77]; (b)
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FIG. 2. Subtracted di­hadron azimuthal correlation function in 12C + 12C (left panel) and 16O + 16O (right panel) collision systems at
√
sNN =

6.37 TeV with b = 0 fm. Black circles represent Wood­Saxon distribution for nucleus in both systems, red triangles for triangular 3α­clustered
12C, and red diamonds for the 16Owith tetrahedron 4α arrangement. Panel (a) and (b) use event plane method, (c) and (d) use participant plane
method.

is parallel to the transverse plane, the clusters hit with each
other directly. Hence the collision obtains the highest multi­
plicity. This situation, which can produce more hadrons due to
strong damage, should be regarded as the main source of jet­
like correlations and considered primarily. For clustered 12C
+ 12C collision systems, the 3α­particle condensates in nu­
cleus construct a triangular figure (Fig. 3(a)) in the transverse
plane in most cases. The density of dense medium created in
the collision on average is larger around the vertexes which

FIG. 3. Schematic illustration of different shapes of clustered nuclei
in the transverse plane.

represent α particles, leading to violent energy loss of jets in
these sections. Therefore, when a hard scattering process oc­
curs at a vertex, particles travelling outside straightly are more
likely to hold high­pt property. Nevertheless, the back jets
that are in the direction towards the other two vertexes on the
back side are quenched furiously by QGP. The coordinate po­
sitions of vertexes are consistent with the area where the asso­
ciated particles decrease compared to Woods­Saxon distribu­
tion nuclei on the away­side. For clustered 16O+ 16O collision
systems, the two­dimensional projection of 4α­particle con­
densates has a kitelike or quadrilateral shape in the transverse
plane, as shown in Fig. 3(b) and (c). In the kitelike structure,
consider the inner vertex which locates at the center of the nu­
cleus. If a trigger particle emerges inside the inner vertex, the
amount of identified associated particles are expected to de­
crease due to the surrounding dense medium. The diminish
results in the suppression of correlation function on the near­
side. Furthermore, for jet which moves outwards from outer
vertexes, the inner vertex stands in the way of the back jet. On
the other hand, when the projection has a quadrilateral shape,
the vertexes in a same diagonal are opposite to each other. The
reason of flatter correlation distribution around∆φ = π is the

Event Plane 
Participant Plane

不同⽅位的能量损失？系统扫描Y.Z. Wang, S. Zhang, Y.G. Ma
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•对所有5000个样本预测的均值作为⼀次“测量”
•1000次“测量”
•confidence threshold=0.999
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S. H. Lim, et al., Phys. Rev. C 99, 044904 (2019) 
S. H. LIM et al. PHYSICAL REVIEW C 99, 044904 (2019)

FIG. 3. An example of time evolution of a O+O event from SONIC; the color scale indicates the local temperature.

spread over a larger area. The p+O and p+Pb geometries are
more compact and thus have a steeper pressure gradient that
translates into a slightly larger momentum anisotropy.

For exploring the initial condition dependence, we have run
the identical SONIC hydrodynamic evolution code on IP-Jazma
generated initial conditions for O+O collisions. Figure 6
shows the initial geometry eccentricities comparing the Monte
Carlo Glauber and IP-Jazma results. In the small impact
parameter collisions, the IP-Jazma initial conditions result in
significantly larger eccentricities which is expected because
the “hot spots” will be smaller because the energy deposit
is a multiplicative result from the projectile and target color
charge distributions. An interesting feature is that at large
impact parameter, the IP-Jazma eccentricities all tend towards

zero. In the case of a single nucleon-nucleon collision, the
multiplication of two Gaussian color charge distributions,
i.e., one from each nucleon, yields exactly a Gaussian which
is circularly symmetric and has εn = 0. We note that these
eccentricities in IP-Jazma are sensitive to the IP-Sat Gaussian
width and a value larger than 0.32 fm as used here will reduce
the eccentricities. A value of 0.50 fm reduces the ε2 to the
same level as the Monte Carlo Glauber for b < 5 fm.

Figure 7 shows a comparison between the previously
discussed Monte Carlo Glauber initial conditions and the
new IP-Jazma initial conditions both run through the SONIC
evolution. The left panel compares the multiplicity distribu-
tions in both cases. Note that at the lowest multiplicity, the
Monte Carlo Glauber case cuts off because one requires at
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respectively. In this case, no strong enhancement is observed.
To glean if any effect of α clustering or nucleon correlations is
apparent, we generated so-called “reshuffled” configurations
such that the radial distribution of nucleons is identical to the
full configurations but with no nucleon-nucleon correlations
possible. These reshuffled results are shown as red curves.
One can see only a very small enhancement in the triangular-
ity in both the C+Au and O+Au cases in the full configuration
relative to the reshuffled one.

These results indicate that though there may be some α
clustering in full configurations for carbon and oxygen, it is
less than indicated in the simple toy geometry picture. This is
not surprising as the toy model result is also seen to be reduced
by additional spreading of the cluster geometry rc and it is
obvious that there would be event-by-event variations in the
triangle configuration parameter L.

Because the LHC is planning p+O and O+O runs [14], it is
insightful to compare just the distribution of Npart when using
the full 16-nucleon configuration for the oxygen as opposed
to the α-cluster tetrahedron model. The results for p+O (left)

and O+O (right) shown in Fig. 13 show a significant change
in the distributions, and much more so for p+O. In fact,
there is a pronounced enhancement in the tetrahedron model
in the probability for Npart = 5 which means the single pro-
jectile proton is striking all four target nucleons, from the
same α cluster. There is also a significantly larger tail of large
Npart values going up to Npart = 9 which correspond to cases
where the projectile proton is lined up with one edge of the
tetrahedron and thus has an increased probability to hit all
eight nucleons in two α clusters centered on the corners of that
edge. Even though detailed modeling of particle production
will be required, the experimental data should easily be able
to discriminate the full configuration case from the simple
tetrahedron case.

A potentially more interesting collision projectile, instead
of carbon or oxygen on a heavy nucleus, would involve
beryllium isotopes 7Be or 9Be, as discussed also in Ref. [9].
The α-cluster picture would predict 7Be as a moleculelike
state of 4He and 3He, while 9Be would have two 4He nu-
clei and an extra neutron. This would lead to a significant
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FIG. 12. Spatial triangularity 〈ε3〉 is shown as a function of number of nucleon participants for C+Au (left) and O+Au (right) collisions
at √

sNN = 200 GeV. Results are shown utilizing the full 12- and 16-nucleon configurations (black), the reshuffled nucleon configurations with
no correlations (red), and with the toy geometry model involving simple triangles and tetrahedra (blue).
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These results indicate that though there may be some α clustering in full 
configurations for carbon and oxygen, it is less than indicated in the simple 
toy geometry picture. This is not surprising as the toy model result is also 
seen to be reduced by additional spreading of the cluster geometry rc and it 
is obvious that there would be event-by-event variations in the triangle 
configuration parameter L. 
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总结—— -cluster结构效应α

• 初始⼏何构型对集体流具有明显的影响


• 对称碰撞系统扫描建议作为探测⼿段之⼀


• 涨落和本征构型的影响在⼩系统中同时存在，⾼多重数中
涨落影响变⼩


• 具有⼀定的模型依赖性，需要实验的检验，LHC或RHIC
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相对论重离⼦碰撞中重
⼦相互作⽤

张松

复旦⼤学现代物理研究所
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相互作⽤
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强相互作⽤，电磁和弱相互作⽤、引⼒相互作⽤
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强⼦及其相互作⽤

• 强⼦


✓介⼦：两个组分夸克， 介⼦、K介⼦


✓中⼦：三个组分夸克，质⼦p、中⼦n、 超⼦


• 强⼦相互作⽤


✓核物理研究中重点考虑：电弱相互作⽤、强相互作⽤


✓例如：p-n，n-n，p 


✓意义：系统演化（寿命、尺⼨），物质构成

π

Λ

−Λ

46



F

S. Zhang (张松), IMP, Fudan, 

经典散射
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中⼼势场散射，O代表原⼦核（⼒⼼）的
位置，质点轨道的对称轴是通过⼒⼼O及
其最近距离点C的直线OC

质点 的能量⽅程 α
1
2

m( ·r2 + r2 ·θ2) +
k′￼

r
= E

质点 的瞄准距离 和质点 ⻜过⼒⼼后所发⽣的偏转⻆ 之间的关系：α ρ α φ ρ =
k′￼

mv2
∞

ctg
φ
2

：单位时间内通过垂直于粒⼦束
的单位截⾯积的质点数 
：单位时间内在 和 ⻆

度内所散射的质点数 

显然 具有⾯积量纲，称

为散射截⾯ 
 

n

dN φ φ + dφ

dσ =
dN
n

dN = 2πρdρ ⋅ n

dσ = 2πρdρ

= − 2πρ(φ)
dρ(φ)

dφ
dφ

=
1
4 ( k′￼

mv2
∞ )

2 2π sin φ

sin4 ( φ
2 )

dφ
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量⼦散射
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⼊射粒⼦波束可近似⽤平⾯波描述：ψi = eikz

波函数在 时的渐近⾏为：  

⼊射粒⼦流密度：  

散射粒⼦流密度：  

在 ⽅向的⽴体⻆元 中单位时间的出射粒⼦数：  

按截⾯的定义有，散射截⾯（微分截⾯，或⻆分布）：  

理论上，散射波幅 可由Schr dinger⽅程求解 

z → ∞ ψ z→∞ exp(ikz) + f(θ)
exp(ikr)

r
ji = ℏk /μ

js =
ℏk
μ

| f(θ) |2 /r2

θ dΩ dn = jsr2dΩ =
ℏk
μ

| f(θ) |2 dΩ

σ(θ) =
1
js

dn
dΩ

= | f(θ) |2

f(θ) ··o

[−
ℏ2

2μ
∇2 + V(r)] ψ = Rψ
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动量关联函数

• 粒⼦ 动量 ，粒⼦ 动量 


• 单粒⼦动量谱： 


• 两粒⼦动量谱： 


• 两粒⼦动量关联函数定义：

a pa b pb

dNi/d3pi (i = a, b)

dNab/(d2pad3pb)

Cab( ⃗P , ⃗q ) =
dNab/(d3pad3pb)

(dNa/d3pb)(dNb/d3pb)

P ≡ pa + pb, qμ =
(pa − pb)μ

2
−

(pa − pb) ⋅ P
2P2

Pμ
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动量关联函数（续）

• 粒⼦在系统中的发射函数： 


• 两粒⼦相互作⽤波函数： 


• 则关联函数可表示为：



s(p, x)

ϕ( ⃗q , ⃗r )

Cab = ( ⃗P , ⃗q ) =
∫ d4xad4xbsa(pa, xa)sb(pb, xb) |ϕ( ⃗q , ⃗r ) |2

∫ d4xasa(pa, xa) ∫ d4xbsb(pb, xb)

Cab( ⃗P , ⃗q ) = ∫ d3r′￼𝒮p( ⃗r′￼)[ |ϕ( ⃗q , ⃗r′￼) | − 1]2

𝒮( ⃗r′￼) ≡
∫ d4xad4xbsa(pa, xa)sb(pb, xb)δ( ⃗r′￼− ⃗x ′￼a + ⃗x ′￼b)

∫ d4xad4xbsa(pa, xa)sb(pb, xb)
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METHODS
Event mixing for non-correlated pairs and the correction for purity. Non-
correlated pairs each consist of two daughter particles. These daughters belong 
to two events which are carefully chosen so that they have similar event multi-
plicity and topology. The ratio A(k*)/B(k*) (see above), after being normalized at 
a large k* (at least 0.25 GeV c−1), gives the measured CF, C(k*)meas. Because in 
practice one cannot select 100% pure (anti)protons, a correction to pairs is applied 
to obtain the PID-purity-corrected CF: ⁎ ⁎

⁎C k 1C k
kPurityCorrected

1
PairPurity

meas( ) = + .( )−
( )

  
For simplicity, in equation (1) the subscript “meas” is dropped, and elsewhere in 
this paper, the subscript “PurityCorrected” is dropped.
The transformation from ⁎kpΛ and ⁎kΛΛ to ⁎kpp. The residual CF ⁎( )!C kpΛ  in equa-
tion (1) is naturally expressed as an integral transformation of the parent  
CF ⁎( )C kpΛ pΛ . Here ⁎kpΛ (and ⁎ ⁎=k kpp) is the magnitude of the three-momentum 
of either particle in the pair rest frame, while in this case for ⁎kpp, one of  
the protons is the decay daughter of Λ. This transformation is done by 

⁎ ⁎ ⁎ ⁎ ⁎∫( ) = ( ) ( , )!C k C k T k k kdpΛ pp pΛ pΛ pΛ pp pΛ, where ⁎ ⁎( , )T k kpΛ pp  is a matrix that trans-
forms ⁎kpΛ to ⁎kpp (ref. 25). The transformation matrix is generated with the 
THERMINATOR2 model26 which is a Monte Carlo event generator dedicated 
to studies of the statistical production of particles in relativistic heavy-ion colli-
sions. The same procedure is also used in the transformation from ⁎kΛΛ to ⁎kpp.
The calculation of the FSI contribution to the correlation function. The fem-
toscopic correlations due to the Coulomb FSI between the emitted electron and 
the residual nucleus in beta decay have been well known for more than 80 years; 
they reveal themselves in a sensitivity of the Fermi function (an analogue of  
the CF31) to the nuclear radius. Compared with non-interacting particles, the  
FSI effect in a two-particle system with total spin S manifests itself in the substi-
tution of the product of plane waves, exp(−ip1Xa −  ip2Xb), by the non- 
symmetrized Bethe-Salpeter amplitudes ⁎( , ) = ( , )(−) (+)Ψ X X Ψ X Xp p

S
a b p p

S
a b1 2 1 2

(refs  
14, 19, 32, 33). For identical particles, the symmetrization requirement in the 
representation of total pair spin S takes on the same form for both bosons and 
fermions: the non-symmetrized amplitude should be substituted by 

( , ) + (− ) ( , ) /(−) (−)Ψ X X Ψ X X[ 1 ] 2p p
S

a b
S

p p
S

a b1 2 2 1
. In the pair rest frame, Xa −  Xb =  

{t*, r*} and ⁎ ⁎ ⁎− = − , kp p ω ω{ 2 }1 2 1 2    where ⁎ ⁎= ( + ) /ω m ki i
2 2 1 2 is the energy of 

a particle of mass mi, and t* and r* are the relative emission time and relative 
separation in the pair rest frame, respectively. In this frame, the non-symmetrized 
Bethe-Salpeter amplitude at equal emission times (t* = 0) reduces, up to an ines-
sential phase factor, to a stationary solution of the scattering problem, ⁎

⁎ ( )−
(+) rψ k
S . 

At small relative momenta, k*<~1/r*, this solution can be used in practical cal-
culations with the condition ⁎ ⁎| |"t mr 2(refs 19, 32). The equal-time approxi-
mation is almost exact in beta decay, and it is usually quite accurate for particles 
produced in high-energy collisions (to a few per cent in the FSI contribution to 
CFs of particles even as light as pions32). In collisions involving heavy nuclei, the 
characteristic separation of the emission points, r*, can be considered substantially 
larger than the range of the strong-interaction potential. The FSI contribution is 
then independent of the actual potential form and can be calculated analytically 
with the help of corresponding scattering amplitudes only34. At small k*, it is 
basically determined by the s-wave scattering amplitudes f  S(k*) scaled by the 
separation r* (ref. 19).
The analytical calculation of the (anti)proton–(anti)proton correlation  
function. The (anti)proton–(anti)proton correlation function, Cpp(k*; Rpp) in 
equation (1), can be described by the Lednický and Lyuboshitz analytical 
model19. In this model, the correlation function is calculated as the square of the 
properly symmetrized wavefunction averaged over the total pair spin S and  
the distribution of relative distances (r*) of particle emission points in the pair 
rest frame, assuming 1/4 of the singlet and 3/4 of triplet states and a simple 
Gaussian distribution ⁎ ⁎/ ≈ (− /( ))r rN Rd d exp 4 pp

3 2 2 . Starting with the FSI 
weight of nucleons emitted with the separation r* and detected with the relative 
momentum k*,

⁎ ⁎ ⁎ ⁎
⁎ ⁎( , ) = | ( ) + (− ) ( )| /−
(+) (+)k r r rw ψ ψ1 2k k
S S S 2

where ⁎
⁎ ( )−
(+) rψ k
S  is the equal-time (t* = 0) reduced Bethe–Salpeter amplitude which 

can be approximated by the outer solution of the scattering problem19,35. This is

where η = (k*ac)−1, ac = 57.5 fm is the Bohr radius for two protons, ρ = k*r*,  
ξ = k*r* + ρ , Ac(η) is the Coulomb penetration factor given by Ac(η ) = 2π η  
[exp(2πη)−1]−1,  F  is  the conf luent hypergeometric  funct ion, 
( , ) = ( ) ( , ) + ( , )!G ρ η A η G ρ η iF ρ η[ ]c 0 0  is a combination of the regular (F0) and 

singular (G0) s-wave Coulomb functions,

⁎ ⁎ ⁎( ) =







+ − ( )− ( )









−

f k
f

d k
a
h η ik A η1 1

2
2

c
0

0
2
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c

1

is the s-wave scattering amplitude renormalized by the Coulomb interaction,  
and ( ) = ∑ ( + ) − − | |=

∞ −
h η η n n η C η[ ] lnn

2
1

2 2 1 (here .#C 0 5772  is the Euler  
constant). The dependence of the scattering parameters on the total pair spin S is 
omitted since only the singlet (S = 0) s-wave FSI contributes in the case of iden-
tical nucleons. The theoretical CF at a given k* can be calculated as the average 
FSI weight 〈w(k*, r*)〉  obtained from the separation r*, simulated according to the 
Gaussian law, and the angle between the vectors k* and r*, simulated according 
to a uniform cosine distribution. This CF is subject to the integral correction19 

⁎− ( )| ( )| /( )A η f k d R8 π ppc c
2

0
3  due to the deviation of the outer solution from the 

true wavefunction in the inner potential region. In addition, in Au + Au collisions 
the emitting source has a net positive charge, and it influences the CF differently 
for proton and antiproton pairs. This effect is included in the consideration 
according to refs 32, 33.
Systematic uncertainties. The systematic uncertainties include variations due to 
track-wise and pair-wise cuts, the uncertainty in describing the CpΛ correlation 
function36, and the uncertainty from the CΛΛ measurement. The latter dominates 
the systematic error of d0 and f0, and it affects d0 more than it does f0 because the 
shape of the CF is sensitive to d0, in particular at low k*. As a consistency check, 
when fitting the proton–proton CF, both f0 and d0 are also allowed to vary freely, 
and the fitted f0 and d0 agree with the results from fitting the antiproton–antiproton 
CF. Assuming the measurements from different systematic checks follow a uniform 
distribution, the final systematic error is given by ( − )/maximum minimum 12. 
In our calculations, we consider the two-proton wavefunction, taking into account 
the Coulomb interaction between point-like protons in all orbital angular momen-
tum waves and the strong interaction in the s-wave only. We neglect the small 
non-Coulomb electromagnetic contributions due to magnetic interactions, vacuum 
polarization, and the finite proton size29,37,38. This approximation changes the  
scattering parameters at the level of a few per cent29,37,38. The decomposition of 
systematics from our analysis can be found in Extended Data Table 1.
Sample size. No statistical methods were used to predetermine sample size.
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correlated pairs each consist of two daughter particles. These daughters belong 
to two events which are carefully chosen so that they have similar event multi-
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practice one cannot select 100% pure (anti)protons, a correction to pairs is applied 
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Bethe-Salpeter amplitude at equal emission times (t* = 0) reduces, up to an ines-
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equation (1), can be described by the Lednický and Lyuboshitz analytical 
model19. In this model, the correlation function is calculated as the square of the 
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the distribution of relative distances (r*) of particle emission points in the pair 
rest frame, assuming 1/4 of the singlet and 3/4 of triplet states and a simple 
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the emitting source has a net positive charge, and it influences the CF differently 
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where η = (k*ac)−1, ac = 57.5 fm is the Bohr radius for two protons, ρ = k*r*,  
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constant). The dependence of the scattering parameters on the total pair spin S is 
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FSI weight 〈w(k*, r*)〉  obtained from the separation r*, simulated according to the 
Gaussian law, and the angle between the vectors k* and r*, simulated according 
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：两体中⼼势能，与两体距离有关的函数


通过⼀定的物理边界条件求解上述⽅程可以得到束缚态能

级等信息，波函数 具有概率意义， 表征了在
处发现粒⼦的概率密度


显然，物质的构成与其组分粒⼦的相互作⽤有关，⼀定的
相互作⽤决定了形成物质的质量、所处的状态。

Hϕ( ⃗r ) ≡ [−
ℏ2

2m
∇2 + V(r)] ϕ( ⃗r ) = Eϕ( ⃗r )

V(r)

ϕ( ⃗r ) |ϕ( ⃗r ) |2 ⃗r
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• RHIC-STAR对（反）超核的测量


• ALICE对轻核、超核的测量


• 双重⼦态、多奇异性超核的预⾔举例
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超核：含有超子的原子核，是研究超子-核子
相互作用的实验载体，其信息是研究致密中
子星等物质构成的重要内容。

首个反超核： 2010年，STAR,�Science 328, 58

在目前的实验精度：反超核和超核表现出一
样的物理性质 LETTERSNATURE PHYSICS

fitted with a Gaussian function plus a straight line, using the 
unbinned maximum likelihood method. Mass parameters are 
extracted from the peaks of the invariant mass distributions. The 
final results are the average of the masses from 2-body and 3-body 
decays weighted by the reciprocal of the squared statistical uncer-
tainties. The main systematic uncertainty arises from imperfections 
in the energy loss and field distortion corrections applied to the 
tracking of decay daughters, estimated to be 0.11 MeV c−2 (37 ppm). 
Other sources of systematic uncertainty, including those from event 
selection, track quality cuts, decay topology cuts and fit procedure, 
are negligible. Accordingly, the measured masses are

m3
ΛH

¼ 2; 990:95 ± 0:13ðstat:Þ ± 0:11ðsyst:Þ MeV c$2

m3
!Λ
H ¼ 2; 990:60 ± 0:28ðstat:Þ ± 0:11ðsyst:Þ MeV c$2

The average mass (weighted by the reciprocal of squared statistical 
uncertainties) for 3ΛH

I
 and 3!ΛH

I
 combined is

m ¼ 2; 990:89 ± 0:12ðstat:Þ± 0:11ðsyst:Þ MeV c$2 ð1Þ

By taking into account the current best limits for the mass dif-
ferences of 3He and d reported by the ALICE Collaboration13, the 
mass differences between 3ΛH

I
 and 3!ΛH

I
 are −2.9 ± 2.5(stat.) ± 2.8(sy

st.) MeV c−2 and 0.13 ± 0.63(stat.) ± 0.31(syst.) MeV c−2 for 2-body 
and 3-body decay channels, respectively. The relative mass differ-
ence Δm/m of 2-body and 3-body decay combined is (see Methods 
for details)

Δm
m

¼
m3

ΛH
"m3

!Λ
H

m
¼ ð 0:1 ± 2:0ðstat:Þ ± 1:0ðsyst:ÞÞ ´ 10"4 ð2Þ

If we assume CPT symmetry is true for the decay daughters, the 
relative mass difference between 3ΛH

I
 and 3!ΛH

I
 would be Δm/m =  

(1.1 ± 1.0(stat.) ± 0.5(syst.)) × 10−4. In addition, by taking the differ-
ence between the masses measured in the 2-body and 3-body decay 
channels of 3ΛH

I
 in conjunction with the deuteron masses reported 

by ALICE13, we can place a new constraint on the relative mass dif-
ference between 3He and 3He

I
, namely Δm3He=m3He

I
 = (−1.5 ± 2.6(s

tat.) ± 1.2(syst.)) × 10−4 (see Methods for details). These results are 
displayed in Fig. 3 along with the relative mass-to-charge ratio dif-
ferences between d and !d

I

 and between 3He and 3He
I

 measured by 
the ALICE Collaboration13. The mass difference between 3ΛH

I
 and 

3
!ΛH
I

 observed in the present data is consistent with zero, and the pre-
cision is an order of magnitude improved over the early data with 
same mass number13. The current measurement extends the valida-
tion of CPT invariance to a nucleus containing a strange quark.

The Λ binding energy, BΛ, for 3ΛH
I

 and 3!ΛH
I

 is calculated using the 
mass measurement shown in equation (1). We obtain

BΛ ¼ 0:41 ± 0:12ðstat:Þ ± 0:11ðsyst:Þ MeV ð3Þ

This binding energy is presented in Fig. 4 (left panel) along with ear-
lier measurements4,28–30 from nuclear emulsion and helium bubble 
chamber experiments. The current STAR result differs from zero 
with a statistical significance of 3.4σ, and the central value of the 
current STAR measurement is larger than the commonly used mea-
surement from 19734. It has been pointed out in ref. 20 that for mea-
surements of BΛ for p-shell hypernuclei, there exists a discrepancy  
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between nuclei and antinuclei. The current measurement of the relative 
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I
 constrained by the existing 

experimental limits for decay daughters13 is shown by the red star marker. 
The green point is the new 3He result after applying the constraint provided 
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error bars represent the sum in quadrature of statistical and systematic 
uncertainties.
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extracted from the peaks of the invariant mass distributions. The 
final results are the average of the masses from 2-body and 3-body 
decays weighted by the reciprocal of the squared statistical uncer-
tainties. The main systematic uncertainty arises from imperfections 
in the energy loss and field distortion corrections applied to the 
tracking of decay daughters, estimated to be 0.11 MeV c−2 (37 ppm). 
Other sources of systematic uncertainty, including those from event 
selection, track quality cuts, decay topology cuts and fit procedure, 
are negligible. Accordingly, the measured masses are
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¼ 2; 990:95 ± 0:13ðstat:Þ ± 0:11ðsyst:Þ MeV c$2
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H ¼ 2; 990:60 ± 0:28ðstat:Þ ± 0:11ðsyst:Þ MeV c$2

The average mass (weighted by the reciprocal of squared statistical 
uncertainties) for 3ΛH
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 and 3!ΛH
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 combined is
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By taking into account the current best limits for the mass dif-
ferences of 3He and d reported by the ALICE Collaboration13, the 
mass differences between 3ΛH
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If we assume CPT symmetry is true for the decay daughters, the 
relative mass difference between 3ΛH

I
 and 3!ΛH

I
 would be Δm/m =  

(1.1 ± 1.0(stat.) ± 0.5(syst.)) × 10−4. In addition, by taking the differ-
ence between the masses measured in the 2-body and 3-body decay 
channels of 3ΛH

I
 in conjunction with the deuteron masses reported 

by ALICE13, we can place a new constraint on the relative mass dif-
ference between 3He and 3He

I
, namely Δm3He=m3He

I
 = (−1.5 ± 2.6(s

tat.) ± 1.2(syst.)) × 10−4 (see Methods for details). These results are 
displayed in Fig. 3 along with the relative mass-to-charge ratio dif-
ferences between d and !d
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 and between 3He and 3He
I

 measured by 
the ALICE Collaboration13. The mass difference between 3ΛH

I
 and 

3
!ΛH
I

 observed in the present data is consistent with zero, and the pre-
cision is an order of magnitude improved over the early data with 
same mass number13. The current measurement extends the valida-
tion of CPT invariance to a nucleus containing a strange quark.

The Λ binding energy, BΛ, for 3ΛH
I

 and 3!ΛH
I

 is calculated using the 
mass measurement shown in equation (1). We obtain

BΛ ¼ 0:41 ± 0:12ðstat:Þ ± 0:11ðsyst:Þ MeV ð3Þ

This binding energy is presented in Fig. 4 (left panel) along with ear-
lier measurements4,28–30 from nuclear emulsion and helium bubble 
chamber experiments. The current STAR result differs from zero 
with a statistical significance of 3.4σ, and the central value of the 
current STAR measurement is larger than the commonly used mea-
surement from 19734. It has been pointed out in ref. 20 that for mea-
surements of BΛ for p-shell hypernuclei, there exists a discrepancy  
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fitted with a Gaussian function plus a straight line, using the 
unbinned maximum likelihood method. Mass parameters are 
extracted from the peaks of the invariant mass distributions. The 
final results are the average of the masses from 2-body and 3-body 
decays weighted by the reciprocal of the squared statistical uncer-
tainties. The main systematic uncertainty arises from imperfections 
in the energy loss and field distortion corrections applied to the 
tracking of decay daughters, estimated to be 0.11 MeV c−2 (37 ppm). 
Other sources of systematic uncertainty, including those from event 
selection, track quality cuts, decay topology cuts and fit procedure, 
are negligible. Accordingly, the measured masses are

m3
ΛH

¼ 2; 990:95 ± 0:13ðstat:Þ ± 0:11ðsyst:Þ MeV c$2

m3
!Λ
H ¼ 2; 990:60 ± 0:28ðstat:Þ ± 0:11ðsyst:Þ MeV c$2

The average mass (weighted by the reciprocal of squared statistical 
uncertainties) for 3ΛH

I
 and 3!ΛH

I
 combined is

m ¼ 2; 990:89 ± 0:12ðstat:Þ± 0:11ðsyst:Þ MeV c$2 ð1Þ

By taking into account the current best limits for the mass dif-
ferences of 3He and d reported by the ALICE Collaboration13, the 
mass differences between 3ΛH
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 and 3!ΛH
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 are −2.9 ± 2.5(stat.) ± 2.8(sy

st.) MeV c−2 and 0.13 ± 0.63(stat.) ± 0.31(syst.) MeV c−2 for 2-body 
and 3-body decay channels, respectively. The relative mass differ-
ence Δm/m of 2-body and 3-body decay combined is (see Methods 
for details)
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If we assume CPT symmetry is true for the decay daughters, the 
relative mass difference between 3ΛH

I
 and 3!ΛH

I
 would be Δm/m =  

(1.1 ± 1.0(stat.) ± 0.5(syst.)) × 10−4. In addition, by taking the differ-
ence between the masses measured in the 2-body and 3-body decay 
channels of 3ΛH

I
 in conjunction with the deuteron masses reported 

by ALICE13, we can place a new constraint on the relative mass dif-
ference between 3He and 3He

I
, namely Δm3He=m3He

I
 = (−1.5 ± 2.6(s

tat.) ± 1.2(syst.)) × 10−4 (see Methods for details). These results are 
displayed in Fig. 3 along with the relative mass-to-charge ratio dif-
ferences between d and !d
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 and between 3He and 3He
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 measured by 
the ALICE Collaboration13. The mass difference between 3ΛH
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 and 
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 observed in the present data is consistent with zero, and the pre-
cision is an order of magnitude improved over the early data with 
same mass number13. The current measurement extends the valida-
tion of CPT invariance to a nucleus containing a strange quark.

The Λ binding energy, BΛ, for 3ΛH
I

 and 3!ΛH
I

 is calculated using the 
mass measurement shown in equation (1). We obtain

BΛ ¼ 0:41 ± 0:12ðstat:Þ ± 0:11ðsyst:Þ MeV ð3Þ

This binding energy is presented in Fig. 4 (left panel) along with ear-
lier measurements4,28–30 from nuclear emulsion and helium bubble 
chamber experiments. The current STAR result differs from zero 
with a statistical significance of 3.4σ, and the central value of the 
current STAR measurement is larger than the commonly used mea-
surement from 19734. It has been pointed out in ref. 20 that for mea-
surements of BΛ for p-shell hypernuclei, there exists a discrepancy  
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Fig. 5. Collection of the 3
!H lifetime measurements obtained with different experimental techniques. The vertical lines and boxes are the statistical and systematic uncertain-

ties respectively. The orange band represents the average of the lifetime values and the lines at the edge correspond to 1σ uncertainty. The dashed-dotted lines are four 
theoretical predictions.

which at present is 9.5%. Furthermore, it would be beneficial in 
view of a more solid comparison with the theoretical predictions, 
to have new measurements performed at lower energies at RHIC 
and SIS and by using different experimental techniques at the 
J-PARC and MAMI facilities. A measurement of the lifetime to a 
precision of a few percent will guide and constrain the theoretical 
input leading to a more precise determination of the Y-N interac-
tion, eventually contributing to solving the hyperon puzzle.
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Fig. 1. The rescaled R-correlator of the N!(5S2) in the range t/a = 10 − 15.

are about 2% heavier than physical values due to a slight difference 
of the present quark masses from the physical point.

4. Spin-2 N! potential

Shown in Fig. 1 is the R-correlator defined by Eq. (3) in the 
range t/a = 10 − 15, which are rescaled by the value of r = 3 fm. 
At large r, the R-correlator approaches a constant. This implies that 
V C(r) in Eq. (5) becomes a constant at long distance. At small r, the 
R-correlator increases with the second-order derivative in r being 
always positive, which implies that there is an attractive poten-
tial at short distances. The weak t-dependence at small r indicates 
contributions from the elastic scattering states. As mentioned be-
fore, this t-dependence provides signal instead of noise.

To extract V C(r) from the R-correlator, we choose t/a = 11 −
14 in order to reduce the systematic uncertainties6: For smaller 
values of t , the inelastic contribution starts to appear so that V C(r)
remains non-vanishing even for large r. For larger values of t , it 
is difficult to control the systematic uncertainties of the fitting of 
the potential due to the large statistical errors. Note that we take 
relatively larger values of t/a to make accurate determination of 
mN and m! , whose values agree with the effective masses at t/a =
12 in 1%.

In Fig. 2, V C(r) as well as its breakdown into different com-
ponents are shown for t/a = 12 as an example. First of all, V C(r)
(red squares) is attractive everywhere. This is qualitatively consis-
tent with the result in our pilot study with heavy pion mass (mπ "
875 MeV) [10]. Also, we found that the H0-term (blue circles) is 
dominant, yet the ∂/∂t-term (green triangles) gives non-negligible 
r-dependent contribution. On the other hand, the ∂2/∂t2-term (or-
ange diamonds) is consistent with zero.

We summarize the central potential V C(r) in Fig. 3(a) for t/a =
11 −14. These potentials are consistent with each other within sta-
tistical errors, which is a necessary (but not sufficient) condition 
for the small coupling with the D-wave octet-octet states below 
the N! threshold in the spin-2 channel. (Such a stability of the 
potential in the same range of t in the spin-1 N! system is not 
found, which indicates the strong coupling of the N!(3S1) state to 
the S-wave octet-octet states below threshold.) In the followings, 
we estimate the corresponding systematic errors as well as errors 
from the truncation of the derivative expansion and from the con-
tamination of the inelastic states by utilizing the time dependence 
of the results.

6 Due to the presence of time derivatives up to O(∂2
t ), the actual lattice data 

used in our analysis are in the interval 10 ≤ t/a ≤ 15.

Fig. 2. The central potential (red squares) at t/a = 12 and its breakdown into the 
H0-term (blue circles), the ∂/∂t-term (green triangles) and the ∂2/∂t2-term (orange 
diamonds).

Table 1
The fitting parameters in Eq. (6) in physical unit with the statistical errors.

t/a 11 12 13 14

b1 [MeV] −306.5(5.5) −313.0(5.3) −316.7(9.4) −296(18)

b2 [fm−2] 73.9(4.4) 81.7(5.4) 81.9(8.4) 64(16)

b3 [MeV · fm2] −266(32) −252(27) −237(43) −272(109)

b4 [fm−2] 0.78(11) 0.85(10) 0.91(18) 0.76(34)

To obtain observables such as the scattering phase shifts and 
binding energy, we fit the lattice QCD potential by Gaussian + 
(Yukawa)2 with a form factor [10]:

V fit(r) = b1e−b2r2 + b3

(
1 − e−b4r2

)n
(

e−mπ r

r

)2

. (6)

The (Yukawa)2 form at long distance is motivated by the picture 
of two-pion exchange between N and ! with an OZI violating ver-
tex [14]. The pion mass in Eq. (6) is taken from our simulation, 
mπ = 146 MeV, and we fit the data at r < 3 fm. After trying both 
n = 1 and 2 in the form factor, we found that only n = 1 can re-
produce the short distance behavior of the lattice potential, so that 
we will focus on the n = 1 case below. The results of the fit and 
the corresponding parameters are summarized in Fig. 3(b, c, d, e) 
and Table 1, respectively.7

Shown in Fig. 4 (left) is the S-wave scattering phase shift δ0
as a function of the kinetic energy. The values of k cot δ0 are also 
shown in Fig. 4 (right). These results for t/a = 11, 12, 13 and 14 
are consistent with each other within the statistical errors. In the 
k → 0 limit, the phase shift approaches to 180◦ , and the scattering 
length,8 a0 ≡ − limk→0 tan δ0/k, becomes positive. This implies the 
existence of a quasi-bound state of N! in the 5S2 channel.

The effective range expansion (ERE) of the phase shifts up to 
the next-leading-order (NLO) reads

k cot δ0 = − 1
a0

+ 1
2

reffk
2 + O (k4) (7)

with reff being the effective range. The ERE parameters (a0, reff)

obtained from our phase shifts are found to be

7 In order to examine the fit range dependence, we compare the fit with the data 
in r < 2.5 fm and that in r < 3 fm by using the functional form of Eq. (6). The 
resultant scattering parameters are found to be consistent with each other within 
statistical errors. In addition, results for another functional form with three Gaussian 
are found to be consistent with those obtained from Eq. (6) within the statistical 
errors.

8 Here, the sign of the scattering length is defined to be opposite to that in [10].
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PðA1ÞRðr; tÞ ¼ 1

24

X24

i¼1

RðRi½r%; tÞ; ð6Þ

where Ri is an element of the cubic group acting on the
relative distance r.
Note here that Rðr; tÞ and Uðr; r0Þ depend on the choice

of interpolating operators, while observables calculated
from these quantities are independent of the choice thanks
to the Nishijima-Zimmermann-Haag theorem [24].
Lattice setup.—By using the 11 PF supercomputer K at

RIKEN Center for Computational Science, (2þ 1)-flavor
gauge configurations on the 964 lattice are generated with
the Iwasaki gauge action at β ¼ 1.82 and nonperturbatively
OðaÞ-improved Wilson quark action with stout smearing.
The lattice spacing is a≃0.0846 fm (a−1 ≃ 2.333 GeV) [7],
and the pion mass, the kaon mass, and the nucleon masses
are mπ≃146MeV, mK≃525MeV, and mN ≃ 964 MeV,
respectively. (These masses are higher than the physical
values by about 8%, 6%, and 3%, respectively, due to
slightly larger quark masses at the simulation point.) The
lattice size La ≃ 8.1 fm is sufficiently large to accommo-
date two baryons in a box.
We employ the wall quark source with the Coulomb

gauge fixing, and the periodic (Dirichlet) boundary con-
dition is used for spatial (temporal) directions. Forward and
backward propagations are averaged to reduce the statis-
tical fluctuations. We pick one configuration per each five
trajectories and make use of the rotation symmetry and the
translational invariance for the source position to increase
the statistics. The total statistics in this Letter amounts to
400 configurations ×2 (forward and backward) ×4 rota-
tions ×48 source positions. The quark propagators are
obtained by the domain-decomposed solver [33–36], and
the correlation functions are calculated using the unified
contraction algorithm [37].
The Ω-baryon mass extracted from the effective mass

meffðtÞ≡ lnGðtÞ=Gðtþ aÞ with GðtÞ being the baryonic
two-point function is mΩ ¼ 1712' 1 MeV (from the
plateau in t=a ¼ 17–22) and mΩ ¼ 1713' 1 MeV (from
t=a ¼ 18–25) with the statistical errors. These numbers are
about 2% higher than the physical value of 1672 MeV. We
take the former number in the following analysis.
Numerical results.—The 1S0 potential VðrÞ obtained

from Eq. (4) with the lattice measurement of Rðr; tÞ
is shown in Fig. 1 for t=a ¼ 16, 17, and 18. Here the
Laplacian and the time derivative in Eq. (4) are approxi-
mated by the central (symmetric) difference. The statistical
errors for VðrÞ at each r are estimated by the jackknife
method with a bin size of 40 configurations. A comparison
with the bin size of 20 configurations shows that the
bin size dependence is small. The particular region t=a ¼
17' 1 in Fig. 1 is chosen to suppress contamination from
excited states in the single Ω propagator at smaller t and
simultaneously to avoid large statistical errors at larger t.
We observe that the potentials at t=a ¼ 16, 17, and 18 are

nearly identical within statistical errors as expected from
the time-dependent HAL QCD method [25].
The ΩΩ potential VðrÞ has qualitative features similar to

the central potential of the nucleon-nucleon (NN) inter-
action, i.e., the short-range repulsion and the intermediate-
range attraction [6]. There are, however, two quantitative
differences: (i) The short-range repulsion is much weaker in
the ΩΩ case, possibly due to the absence of quark Pauli
exclusion effect, and (ii) the attractive part is very short-
ranged due to the absence of pion exchanges.
For the purpose of converting the potential to physical

observables such as the scattering phase shifts and the
binding energy, we fit VðrÞ in Fig. 1 in the range r¼0–6 fm
by three Gaussians: VfitðrÞ ¼

P
j¼1;2;3cj exp½−ðr=djÞ2%.

For example, the uncorrelated fit in the case of t=a ¼ 17
gives the following parameters: ðc1; c2; c3Þ ¼ (914ð52Þ;
305ð44Þ;−112ð13Þ) in MeV and ðd1; d2; d3Þ ¼ (0.143ð5Þ;
0.305ð29Þ; 0.949ð58Þ) in fm with χ2=d:o:f: ∼ 1.3.
Another functional form such as two Gaussiansþ
ðYukawa functionÞ2 provides an equally good fit, and
the results are not affected within errors. The finite volume
effect on the potential is expected to be small due to the
large lattice size. The naive order estimate of the finite a
effect for the physical observables is also small
[ðΛaÞ2 ≤ 1%] thanks to the nonperturbativeOðaÞ improve-
ment, but an explicit confirmation would be desirable in
the future.
The ΩΩ scattering phase shifts δðkÞ in the 1S0 channel

obtained from VfitðrÞ are shown in Fig. 2 for t=a ¼ 16, 17,
and 18 as a function of the kinetic energy in the center of
mass frame, ECM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Ω
p

− 2mΩ. The error bands
reflect the statistical uncertainty of the potential in Fig. 1.
All three cases show that δð0Þ starts from 180°, which
indicates the existence of a bound ΩΩ system.
The scattering length a0 and the effective range reff in the

1S0 channel are extracted from δðkÞ through the effective
range expansion, k cot δðkÞ ¼ −ð1=a0Þ þ 1

2 reffk
2 þ ( ( (,

with the sign convention of nuclear and atomic physics:

FIG. 1. The ΩΩ potential VðrÞ in the 1S0 channel at Euclidean
time t=a ¼ 16, 17, and 18.
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Table 1
Parameters for the potentials of Vnp(r) [55], VN!(r) [8] and V!!(r) [16]. 
Note that the mass of pion is set to mπ = 146 MeV.

Vnp(r) C1 (MeV) C2 (MeV) µ1 ( f m−1) µ2 ( f m−1)

-626.885 1438.72 1.55 3.11

VN!(r) b1 (MeV) b2 ( f m−2) b3 (MeV · f m2) b4 ( f m−2)

-313 81.7 -252 0.85

V!!(r) C1 (MeV) C2 (MeV) C3 (MeV)
914 305 -112
d1 ( f m) d2 ( f m) d3 ( f m)

0.143 0.305 0.949

Fig. 1. The calculated relative wave functions of d (n-p), N! and !!. The Hulthén 
wave function [26,56] for d is also plotted. For p! and !!, the Coulomb interaction 
was taken into account.

equation with the potentials for n − p [55], N − ! [8], ! − ! [16], 
respectively,

Vnp(r) =
2∑

i=1

Ci
e−µi r

r
,

VN!(r) = b1e−b2r2 + b3
(
1− e−b4r2

)(e−mπ r

r

)2

,

V!!(r) =
3∑

i=1

Cie
−(r/di)2 .

(6)

Here the parameters for the potentials are listed in Table 1.
In our calculation the Coulomb interaction was also taken into 

account for the charged pairs by adding ±α/r (+ for !! and −
for p!) with α = e2/4π to the potential in Eq. (6). Fig. 1 shows the 
numerical results of the wave function φ(r) for d (3S1), N! (5S2) 
and !! (1S0). The Hulthén wave function [26,56] for d which is 
also presented in Fig. 1 is higher than the calculated wave func-
tion by using the potential Vnp(r) in the short relative distance 
region because of the repulsion core of the potential for n − p in-
teraction, and this pattern was also found in !! wave function. 
The N − ! attractive potential results that the wave function was 
similar to the d’s Hulthén wave function. Table 2 shows the cal-
culated binding energies which are consistent with the collected 
published results [8,16,55]. As discussed in Ref. [8], the pion mass 
could result in a little discrepancy of the binding energy. In this 
calculation, the masses of pion, nucleon and ! were set as mπ = 
146 MeV, mN = 938 MeV and m! = 1672 MeV, respectively.

The Wigner density function can be obtained through the 
Winger transformation by Eq. (5) from the resolved relative wave 
functions. In practice, it is found that the Wigner density function 
only depends on the values of relative coordinate r, relative mo-
mentum q and the angle θrq between "r and "q after integration 
of azimuthal angle is performed analytically for the asymmetry 
of the relative wave function. The relative coordinate and mo-
mentum "r(r, φr, θr) and "q(q, φq, θq) can be rotated to, in a new 

Table 2
The calculated binding energy together with the 
collected values from other published results [8,
16,55]. Note that the masses of nucleon and !
are set to mN = 938 MeV and m! = 1672 MeV, 
respectively.
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Ed (MeV) 2.23 2.2307 [55]
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here, J0(x) is the Bessel function of the first kind for order 0.

3. Results and discussion

3.1. Blast-wave model + coalescence model (BLWC)

In Blast-wave model calculations [28,29,35,36], the parameters 
of Tkin , ρ0, τ0, (τ and R0 can be obtained by fitting experimental 
transverse momentum pT spectra of p and ! by using Eq. (3), 
and the parameters of τ0, (τ and R0 can be further adjusted by 
fitting deuteron’s pT spectra from experiments by using Eq. (1). In 
Au + Au collisions at √sNN = 200 GeV, the data were collected for 
p from the PHENIX experiment [57], for ! and d from the STAR 
experiments [58,59] (centrality: 5% for p, 0-10% for ! and d). In 
Pb+Pb collisions at √sNN = 2.76 TeV, the data of p, ! and d were 
taken from the ALICE experiments [60–62] (centrality: 5% for p, 0-
10% for ! and d). From the fits to the experimental data of p, !
and d which are shown in Fig. 2, the extracted parameters were 
R0 = 12 f m, τ0 = 9 f m/c, (τ = 3.5 f m/c, Tkin = 111.6 MeV, and 
ρ0 = 0.98 (0.9) for proton (!) in Au+Au collisions at √sNN = 200 
GeV, and R0 = 19.7 f m, τ0 = 15.5 f m/c, (τ = 1 f m/c, Tkin = 122 
MeV, ρ0 = 1.2 (1.07) for proton (!) in Pb+Pb collisions at √sNN = 
2.76 TeV.

By using the above configured Blast-wave model and coales-
cence model (BLWC) as in Eq. (1), the transverse momentum pT
spectra of n!, p! and !! dibaryons were calculated and shown 
in Fig. 2(a) for Au+Au collisions at √sNN = 200 GeV and Fig. 2(b) 
for Pb+Pb collisions at √sNN = 2.76 TeV. The pT integrated yields 
dN/dy of objects at midrapidity were given in Table 3 and the cal-
culated dN/dy of p, ! and d were comparable with those from ex-
perimental results from the RHIC data [57–59] as well as from the 
ALICE data [60–62]. The predicted dN/dy of p!, n! and !! were 
7.51 × 10−4, 7.39 × 10−4 and 0.31 × 10−6, respectively, for Au + 
Au collisions at the RHIC top energy, and 1.31 × 10−3, 1.27 × 10−3

and 0.79 × 10−6 for Pb + Pb collisions at the ALICE energy of 2.76 
TeV, respectively. It is seen that the productions of N! and !! at 
the ALICE energy were about 2 times of those at the RHIC top en-
ergy. These calculated results were similar to the previous work by 
using the naive coalescence model [63] or analytical coalescence 
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Table 1
Parameters for the potentials of Vnp(r) [55], VN!(r) [8] and V!!(r) [16]. 
Note that the mass of pion is set to mπ = 146 MeV.

Vnp(r) C1 (MeV) C2 (MeV) µ1 ( f m−1) µ2 ( f m−1)

-626.885 1438.72 1.55 3.11

VN!(r) b1 (MeV) b2 ( f m−2) b3 (MeV · f m2) b4 ( f m−2)

-313 81.7 -252 0.85

V!!(r) C1 (MeV) C2 (MeV) C3 (MeV)
914 305 -112
d1 ( f m) d2 ( f m) d3 ( f m)

0.143 0.305 0.949

Fig. 1. The calculated relative wave functions of d (n-p), N! and !!. The Hulthén 
wave function [26,56] for d is also plotted. For p! and !!, the Coulomb interaction 
was taken into account.
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TABLE II: The calculated binding energy together with the
collected values from other published results [8, 16, 55].Note
that the masses of nucleon and ⌦ are set to mN = 938 MeV
and m⌦ = 1672 MeV, respectively.

this work value/Reference
Ed (MeV) 2.23 2.2307 [55]
Ep⌦ (MeV) 2.26 2.46 [8]
En⌦ (MeV) 1.38 1.54 [8]
E⌦⌦ (MeV) 0.6 0.7 [16]

here, J0(x) is Bessel function of the first kind for order
0.

III. RESULTS AND DISCUSSION

A. Blast wave model + coalescence model (BLWC)

In blast-wave model calculations [28, 29, 35, 36], the
parameters of Tkin, ⇢0, ⌧0, �⌧ and R0 can be obtained by
fitting experimental transverse momentum pT spectra of
p and ⌦ by using equation (3), and the parameters of ⌧0,
�⌧ and R0 can be further adjusted by fitting deuteron’s
pT spectra from experiments by using equation (1). In
Au + Au collisions at

p
sNN = 200 GeV, the data were

collected for p from the PHENIX experiment [57], for ⌦
and d from the STAR experiments [58, 59] (centrality:
5% for p, 0-10% for ⌦ and d). In Pb+Pb collisions atp
sNN = 2.76 TeV, the data of p, ⌦ and d were taken from

the ALICE experiments [60–62] (centrality: 5% for p, 0-
10% for ⌦ and d). From the fits to the experimental data
of p, ⌦ and d which are shown in Fig. 2 , the extracted
parameters were R0 = 12 fm, ⌧0 = 9 fm/c, �⌧ = 3.5
fm/c, Tkin = 111.6 MeV, and ⇢0 = 0.98 (0.9) for proton
(⌦) in Au+Au collisions at

p
sNN = 200 GeV, and R0

= 19.7 fm, ⌧0 = 15.5 fm/c, �⌧ = 1 fm/c, Tkin = 122
MeV, ⇢0 = 1.2 (1.07) for proton (⌦) in Pb+Pb collisions
at

p
sNN = 2.76 TeV.

By using the above configured blast-wave model and
coalescence model (BLWC) as in equation ( 1), the trans-
verse momentum pT spectra of n⌦, p⌦ and ⌦⌦ dibaryons
were calculated and shown in Fig. 2(a) for Au+Au col-
lisions at

p
sNN = 200 GeV and Fig. 2(b) for Pb+Pb

collisions at
p
sNN = 2.76 TeV. The pT integrated yields

dN/dy of objects at midrapidity were given in Table III
and the calculated dN/dy of p, ⌦ and d were compara-
ble with those from experimental results from the RHIC
data [57–59] as well as from the ALICE data [60–62].

TABLE III: dN/dy of p⌦, n⌦, ⌦⌦ at mid-rapidity.

p⌦ n⌦ ⌦⌦
200 GeV
BLWC 7.51⇥10�4 7.39⇥10�4 0.31⇥10�6

AMPTC 9.5⇥10�4 9.5⇥10�4 0.81⇥10�6

±7.9⇥ 10�5 ±7.9⇥ 10�5 ±1.1⇥ 10�6

2.76 TeV
BLWC 1.31⇥10�3 1.27⇥10�3 0.79⇥10�6

AMPTC 1.11⇥10�3 1.10⇥10�3 1.1⇥10�6

±8.57⇥ 10�5 ±8.57⇥ 10�5 ±1.3⇥ 10�6

The predicted dN/dy of p⌦, n⌦ and ⌦⌦ were 7.51⇥10�4,
7.39 ⇥ 10�4, 0.31 ⇥ 10�6 for Au + Au collisions at the
RHIC top energy, and 1.31⇥10�3, 1.27⇥10�3, 0.79⇥10�6

for Pb + Pb collisions at the ALICE energy of 2.76 TeV,
respectively. It is seen that the production of N⌦ and
⌦⌦ at the ALICE energy was about 2 times of those
at the RHIC top energy. These calculated results were
similar to the previous work by using naive coalescence
model [63] or analytical coalescence model [29] as well as
using the AMPT model with ⌦⌦ production channel [15].

B. AMPT model + coalescence model (AMPTC)

The productions of p⌦, n⌦ and ⌦⌦ bound states
were also calculated by using phase-space data from the
AMPT model [38] via dynamical coalescence mechanism
equation (4) (AMPTC). AMPT model gave the kinetic
freeze-out position and momentum of each particles (p,
n and ⌦ used here) at their freeze-out time and by us-
ing equation (4) to coalesce a dibaryon the relative coor-
dinate and momentum were obtained after free stream-
ing the first freeze-out constituent to the later one as
did in reference [34], which was important for N⌦ for
⌦ was always freezed earlier than nucleons.To fit proton
spectra, some parameters defined in the original AMPT
model [38, 43] were adjusted as (a, b) = (0.55, 0.1) for the
RHIC energy and (0.21, 0.075) for the LHC energy (here
a and b are the Lund string fragmentation parameters
defined in Ref. [38]). And the coalescence mechanism for
⌦ was also developed as in Ref. [64] to fit ⌦ spectra. Fig-
ure 3 presented the fitted pT spectra for proton and ⌦ as
well as the coalesced pT spectra of p⌦, n⌦ and ⌦⌦ bound
states in Au+Au central collisions at

p
sNN = 200 GeV

(a) and in Pb+Pb central collisions at
p
sNN = 2.76 TeV

(b), respectively. Based on the adjusted AMPT parame-
ters and the developed coalescence mechanism for ⌦, the
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The productions of p⌦, n⌦ and ⌦⌦ bound states
were also calculated by using phase-space data from the
AMPT model [38] via dynamical coalescence mechanism
equation (4) (AMPTC). AMPT model gave the kinetic
freeze-out position and momentum of each particles (p,
n and ⌦ used here) at their freeze-out time and by us-
ing equation (4) to coalesce a dibaryon the relative coor-
dinate and momentum were obtained after free stream-
ing the first freeze-out constituent to the later one as
did in reference [34], which was important for N⌦ for
⌦ was always freezed earlier than nucleons.To fit proton
spectra, some parameters defined in the original AMPT
model [38, 43] were adjusted as (a, b) = (0.55, 0.1) for the
RHIC energy and (0.21, 0.075) for the LHC energy (here
a and b are the Lund string fragmentation parameters
defined in Ref. [38]). And the coalescence mechanism for
⌦ was also developed as in Ref. [64] to fit ⌦ spectra. Fig-
ure 3 presented the fitted pT spectra for proton and ⌦ as
well as the coalesced pT spectra of p⌦, n⌦ and ⌦⌦ bound
states in Au+Au central collisions at

p
sNN = 200 GeV

(a) and in Pb+Pb central collisions at
p
sNN = 2.76 TeV

(b), respectively. Based on the adjusted AMPT parame-
ters and the developed coalescence mechanism for ⌦, the

✓ 在组合模型中引⼊LQCD超⼦-核⼦相互作⽤势 
✓ 对NΩ和ΩΩ双重⼦态在RHIC和LHC能区的相对论重
离⼦碰撞中的产额和动量谱给出了预⾔

S. Zhang, Y.G. Ma, Physics Letters B, 811 (2020) 135867



F

S. Zhang (张松), IMP, Fudan, 

总结与展望

• 强⼦相互作⽤观测量：动量关联，束缚态本征参数测量


• 相对论重离⼦碰撞：⽬前超⼦-核⼦相互作⽤的最佳平台


• 基本对称性的检验


• 测量分析中充分考虑可靠模型提出的相互作⽤


• 双重⼦态或多奇异性超核的寻找
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复旦⼤学博⼠后计划：国家博新计划，国家引进计划、上海市超级博⼠后，学校超级博⼠后，学校资助全

职博⼠后； 
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