Dynamical Models & the fluid nature of the QGP

Huichao Song

Peking University

原子核结构与中高能重离子碰撞交叉学 科理论讲习班,湖州,2021年7月9-24日

July 13 2021

Quark and Gluons: <u>confined</u> in hadrons through strong forces described by QCD

Confinement

Deconfinement

QGP (quark gluon plasma): <u>a deconfinement phase of the QCD matter</u>

Confinement

Deconfinement

QGP (quark gluon plasma): a deconfinement phase of the QCD matter

Phases diagram

determined by electromagnetic interactions

Phases diagram

QCD Phase transition

QCD Phase transition

$$\varepsilon = g \frac{\pi^2}{30} T^4$$
$$= \left\{ 2 \cdot 8_g + \frac{7}{8} \cdot 2_s \cdot 2_a \cdot 2_f \cdot 3_c \right\} \frac{\pi^2}{30} T^4$$

 $= 37 \cdot \frac{\pi^2}{30} T^4$

8 gluons, 2 spins; 2 quark flavors, anti-quarks, 2 spins, 3 colors

d.o.f : 3→ 37 (!)

A brief history of relativistic heavy ion physics

1974: Workshop on "BeV/nucleon collisions of heavy ions"

We should investigate.... phenomena by distributing energy of high nucleon density of a relatively large volume" ---T.D.Lee

1984: SPS starts, (end 2003)

1986: AGS stars, (end 2000)

2000: RHIC starts

2010: LHC starts

Future: FAIR & NICA

Brookhaven National Laboratory

RHIC

3.83 km circumference Beam: p, d, Cu, Au, Pb, U col. energy: several ~ hundreds GeV v_{BEAM} = 0.99995 x speed of light Use heaviest beams possible maximum volume of plasma

- RHIC = Relativistic Heavy Ion Collider
- Located at Brookhaven National Laboratory

v_{BEAM} = 0.99995 x speed of light

little bang: the different stage for a relativistic heavy ion collisions

Initial state

Preequilibrium

hadronisation

Freeze-out

little bang: the different stage for a relativistic heavy ion collisions

Initial state

Hydro expansion of QGP or hadron gas

Preequilibrium

hadronisation

Freeze-out

big bang: the very early history of the universe

little bang: the different stage for a relativistic heavy ion collisions

QGP-the most perfect fluid in the world

Newsroom Home

News Archives

Photo Archive

Streaming Video

@brookhaven TODAY

Fact Sheets

Science Magazine

Management Bios

About Brookhaven

:: Physics News

LHC to Restart in 2009

Disappearing Superconductivity Reappears -- in 2-D

Electron Pairs Precede High-Temperature Superconductivity

World's biggest computing grid launched

First Beam for Large Hadron Collider

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the <u>Relativistic Heavy Ion Collider</u> (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In <u>peer-reviewed papers</u> summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a *liquid*.

"Once again, the physics research sponsored by the Department of Energy is producing historic results," said Secretary of Energy Samuel Bodman, a trained chemical engineer. "The DOE is the principal federal funder of basic research in the physical sciences, including nuclear and high-energy physics. With today's announcement we see that investment paying off."

"The truly stunning finding at RHIC that the new state of matter created in the collisions of gold ions is more like a liquid than a gas gives us a profound insight into the earliest moments of the universe," said Dr. Raymond L. Orbach, Director of the DOE Office of Science.

Also of great interest to many following progress at RHIC is the emerging connection between the collider's results and calculations using the methods of string theory, an approach that attempts to explain

BNL News. 2005

Secretary of Energy Samuel Bodman

What State of Matter?

Does it act like an ideal gas?

Does it flow, like a (compressible) liquid?

What State of Matter?

Gas: particles only know about each other when they bump

> Does it act like an ideal gas?

Liquid: particles exert forces on one another all the time, flows in a coordinated fashion 6

Does it flow, like a (compressible) liquid?

Hydrodynamics & flow at top RHIC & LHC energies

Dynamical Model

Boltzmann approach

microscopic view

Hydrodynamics

macroscopic view

Boltzmann approach

microscopic view

Gas: particles only know about each other when they bump

Hydrodynamics

macroscopic view

Liquid: particles exert forces on one another all the time, flows in a coordinated fashion 6

ideal hydro

 $\partial_{\mu}S^{\mu} = 0$

Local equilibrium system $e(x) p(x) n(x) u^{\mu}(x)$

viscous hydro

$$\partial_{\mu}S^{\mu} \geq 0$$

Near equilibrium system $e(x) p(x) n(x) u^{\mu}(x)$ $\pi^{\mu\nu}(x) \Pi(x)$

Viscous hydrodynamics

Conservation laws:

 $\partial_{\mu}T^{\mu\nu}(x) = 0 \qquad T^{\mu\nu} = (e + p + \Pi)u^{\mu}u^{\nu} - (p + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$ $\tau_{\pi}\Delta^{\alpha\mu}\Delta^{\beta\nu}\dot{\pi}_{\alpha\beta} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - \frac{1}{2}\pi^{\mu\nu}\frac{\eta T}{\tau_{\pi}}\partial_{\lambda}\left(\frac{\tau_{\pi}}{\eta T}u^{\lambda}\right) \qquad \text{- Israel-Stewart eqns.}$ $\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta(\partial \cdot u) - \frac{1}{2}\Pi\frac{\zeta T}{\tau_{\Pi}}\partial_{\lambda}\left(\frac{\tau_{\Pi}}{\zeta T}u^{\lambda}\right) \qquad \partial_{\mu}S^{\mu} \ge 0$

Input: "EOS" $\varepsilon = \varepsilon(p)$ initial and final conditions

Bjorken appro. : $v_z = z / t$ reduces (3+1)-d hydro to (2+1)-d hydro

Collective expansion

Superposition of independent p+p:

final particle emission

momenta pointed at random relative to reaction plane

Evolution as a bulk system

final particle emission

Pressure gradients (larger in-plane) push bulk "out" → "flow"

Superposition of independent p+p:

final particle emission

momenta pointed at random relative to reaction plane

Azimuthal distributions

Evolution as a bulk system

final particle emission

Pressure gradients (larger in-plane) push bulk "out" \rightarrow "flow"

Azimuthal distributions

$$E\frac{dN}{d^3p} = \frac{dN}{dyp_T dp_T d\varphi} = \frac{1}{2\pi} \frac{dN}{dyp_T dp_T} [1 + 2v_2(p_T, b)\cos(2\varphi) + \dots]$$

Instead of two smooth colliding nuclei

Initial stage fluctuations

The position of initial nucleons constantly fluctuate

QGP with fluctuating density

Elliptic Flow & higher order flow harmonics

 \rightarrow measured flow: v_n

The Success of Hydrodynamics in Pb+Pb collisions

-hydrodynamics nice describe of integrated and differential Vn of all charged and identified hadrons
Various Flow Predictions ftom Hydrodynamics

H. Xu, Z. Li and H. S*, Phys. Rev. C93, no. 6, 064905 (2016); W. Zhao, H. Xu and **H. S***, Eur. Phys. J. C 77, no. 9, 645 (2017); X. Zhu, Y. Zhou, H. Xu and **H. S***, Phys. Rev. C95, no. 4, 044902 (2017); W. Zhao, L. Zhu, H. Zheng, C. M. Ko and **H. S*.**, Phys. Rev. C 98, no. 5, 054905 (2018); Li, Zhao, Zhou, **H.S***, in preparation (2020)

Predictions from Hydro & Comparison with EXP data

iEBE-VISHNU calculations: W. Zhao, H. Xu and **H. S*,** EPJC 77, no. 9, 645 (2017) **ALICE measurements**: JHEP 1807 103 (2018); JHEP 1809 006 (2018), etc

The viscosity of the QGP

Shear Viscosity

-classical definition:

$$\frac{F}{A} = \eta \frac{du}{dy}$$

A supper viscous liquid - Pitch

Pitch has viscosity approximately 230 billion times that of water.

Longest running experiment (1927-present) 8 drops so far, none ever seen fall!

http://en.wikipedia.org/wiki/Pitch_drop_experiment

Lowest bound of specific shear viscosity

-classical definition:

$$\frac{F}{A} = \eta \frac{du}{dy}$$

-kinetic theory:

$$\eta \sim mn\overline{v}l_{mfp}$$

$$\frac{\eta}{s} \sim \frac{1}{k_B} \overline{v} m l_{mfp} \sim \frac{1}{k_B} (\frac{1}{2} m \overline{v}^2) (\frac{l_{mfp}}{\overline{v}}) \sim \frac{e\tau}{k_B} \quad (s \sim k_B n)$$

uncertainty principle: $\implies \frac{\eta}{s} \geq \frac{h}{k_B}$

Extracting QGP viscosity with hydrodynamical model

 $1 \times (1/4\pi) \le (\eta/s)_{QGP} \le 2.5 \times (1/4\pi)$

Extract QGP properties from bulk observ.

-massive data evaluation

Exp Observables

- particle yields
- spectra
- elliptic flow
- triangular flow & higher order flow harmonics
- event by event Vn distributions
- higher-order event plane correlations

...

Hydro model & its Inputs:

- -Initial conditions
- -EoS
- shear viscosity
- bulk viscosity
- Heat conductivity
- relaxation times
- freeze-out/switching cond.

....

An quantitatively extract the QGP viscosity

-An quantitatively extraction of the QGP viscosity with iEBE-VISHNU and the massive data evaluation -η/s(T) is very close to the KSS

 $-\eta/s(1)$ is very close to the KSS bound of $1/4\pi$

J. Bernhard, S. Moreland, S.A. Bass, J. Liu, U. Heinz, PRC 2015

Extracting QGP viscosity with massive data evaluation

Extracted QGP viscosity with ever increasing precision

Dynamical models at various collision energy & system sizes

Recent development of hybrid model for RHIC BES

Dynamical initial conditions

 $\partial_{\mu}T^{\mu\nu} = J^{\nu}_{\text{source}}$ $\partial_{\mu}J^{\mu} = \rho_{\text{source}}.$

C. Shen and B. Schenke, Phys. Rev. C97 (2018) 024907

EoS with finite T & μ

A. Monnai, B. Schenke and C. Shen, arXiv:1902.05095 [nucl-th].

$$\Delta^{\mu\nu} Dq_{\nu} = -\frac{1}{\tau_q} \left(q^{\mu} - \kappa_B \nabla^{\mu} \frac{\mu_B}{T} \right) - \frac{\delta_{qq}}{\tau_q} q^{\mu} \theta - \frac{\lambda_{qq}}{\tau_q} q_{\nu} \sigma^{\mu\nu} + \frac{l_{q\pi}}{\tau_q} \Delta^{\mu\nu} \partial_{\lambda} \pi^{\lambda}{}_{\nu} - \frac{\lambda_{q\pi}}{\tau_q} \pi^{\mu\nu} \nabla_{\nu} \frac{\mu_B}{T}, \quad (13)$$
$$\Delta^{\mu\nu}{}_{\alpha\beta} D\pi^{\alpha\beta} = -\frac{1}{\tau_{\pi}} (\pi^{\mu\nu} - 2\eta \sigma^{\mu\nu}) - \frac{\delta_{\pi\pi}}{\tau_{\pi}} \pi^{\mu\nu} \theta - \frac{\tau_{\pi\pi}}{\tau_{\pi}} \pi^{\lambda\langle} \sigma^{\nu\rangle}{}_{\lambda} + \frac{\phi_7}{\tau_{\pi}} \pi^{\langle\mu}{}_{\alpha} \pi^{\nu\rangle\alpha} + \frac{l_{\pi q}}{\tau_{\pi}} \nabla^{\langle\mu} q^{\nu\rangle} + \frac{\lambda_{\pi q}}{\tau_{\pi}} q^{\langle\mu} \nabla^{\nu\rangle} \frac{\mu_B}{T}. \quad (14)$$

G. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke and C. Shen, Phys. Rev. C98, 034916 (2018) ; M. Li and C. Shen, Phys. Rev. C98, 064908 (2018)

Net baryon diffusion

Extracting $\eta/s(\sqrt{s})$ from RHIC BES (I)

<u>Data</u>

- RHIC BES Au+Au 7.7-200 A GeV Model

-3+1d viscous hydro + UrQMD -pre-equilibrim stage UrQMD -EoS (Chiral Model with T, μ)

I. A. Karpenko, P. Huovinen, H. Petersen and M. Bleicher, Phys. Rev. C91, no. 6, 064901 (2015)

Extracting $\eta/s(\sqrt{s})$ from RHIC BES (II)

 $\eta/s(T,\mu) \zeta/s(T,\mu)$

J. Auvinen, J. E. Bernhard, S. A. Bass and I. Karpenko, Phys. Rev. C97, no. 4, 044905 (2018)

Effects of heat conductivity

G. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke and C. Shen, Phys. Rev. C98, 034916 (2018) ; M. Li and C. Shen, Phys. Rev. C98, 064908 (2018) -Net baryon diffusion transports more baryon numbers to the mid-rapidity region
-Need a systematical study of various flow data in the near future
-Extracting heat conductivity in the future

Collectively & QGP signatures in small systems

Correlations & Flow in p-Pb collisions

-Many flow-like signals have been observed in high multiplicity p-Pb collisions

Flow in p-Pb -- Hydrodynamics Simulations

Flow-like signals: initial state effects

- -Qualitative features of v2{2} and v2{4} have been reproduced with the initial state model with localized domains of color charge
- Mass splitting can also explained within CGC + Lund string fragmentation where the string gives the common boost

Flow-like signals: Heavy quarkonia & open heavy flavor

- -The observed v2 of J/Ψ cannot be explained by final-state effects alone,
- -Heavy quarkonia & open heavy flavor can have a significant v2 in pPb due to azimuthal angular correlations from the initial state effects (CGC).

Initial state or Final state effects?

Initial state effects: – Various Models interpolations -K. Dusling and R. Venugopalan, PRL 2012, PRD2013, NPA 2014 -A. Dumitru and A. V. Giannini, NPA 2015, A. Dumitru and V. Skokov PRD2015 -B. Schenke, S. Schlichting, P. Tribedy, and R. Venugopalan, PRL2016 systems? -K. Dusling et al, Phys. Rev. Lett 120 042002 (2018) -C. Zhang, et al Phys. Rev. Lett. 122, no. 17, 172302 (2019). ed in the small **Final state interactions:** -P. Bozek, W. Broniowski, G. Torrieri, PRL²² -K. Werner, et. Al., PRL2014 -G.-Y. Qin, B. Muller. PRC2014 **RC2015** -Y. Zhou, X. Zhu, P. Li, 2 - P. Bozek, A. Bzd²¹ .via, PLB2015 - P. Romatschi J.J. C77 21(2017) -W. Zhao, Y. V. 11. Xu, W. Deng and H. Song, Phys. Lett. B 700, 495 (2018)

Reminder: QGP signals in large systems

QGP signals in p-Pb collisions?

NCQ scaling of v2 in p-Pb collisions

Low PT	ntermediate PT	High PT
0 2 GeV	6 GeV	Рт
Collective Flow:	NCQ Scaling of V2:	Hard Probes:
Hydrodynamics	-Recent Exp measurem	nents- no longer leave
final states interaction	-need systematic theorem	retical obvious hints due
Initial state effects	investigation	to the limited size.
$0.15 \begin{bmatrix} ALICE, p-Pb \sqrt{s_{NN}}=5.02 \text{ TeV} \\ 0.15 \\ A K (0-20\%) \\ A K (0-20\%) \\ P (0-20\%) \\ A TLA \\ 0 \end{bmatrix} $	ALICE $cMs, p-Pb\sqrt{s_{NN}}=8.16 \text{ TeV}$ $K_{S}^{0}(185 < N_{ch} < 250)$ $s, p-Pb\sqrt{s_{NN}}=5.02 \text{ TeV}$ $h^{\pm}(60 < N_{ch})$ 2 2 3 degree	data: PLB,726, 2013). ata: PRL, 121, 082301 (2018). data: PRC, 96, 024908 (2017). re does such approximate scaling of v2 come from an indication of partonic e of freedom?

coalescence model & NCQ scaling of v2

$$\frac{dN_{M}}{d^{3}\mathbf{P}_{M}} = g_{M} \int d^{3}\mathbf{x}_{1} d^{3}\mathbf{p}_{1} d^{3}\mathbf{x}_{2} d^{3}\mathbf{p}_{2} f_{q}(\mathbf{x}_{1}, \mathbf{p}_{1}) f_{\bar{q}}(\mathbf{x}_{2}, \mathbf{p}_{2}) \times W_{M}(\mathbf{y}, \mathbf{k}) \delta^{(3)}(\mathbf{P}_{M} - \mathbf{p}_{1} - \mathbf{p}_{2}) \\
\frac{dN_{B}}{d^{3}\mathbf{P}_{B}} = g_{B} \int d^{3}\mathbf{x}_{1} d^{3}\mathbf{p}_{1} d^{3}\mathbf{x}_{2} d^{3}\mathbf{p}_{2} d^{3}\mathbf{x}_{3} d^{3}\mathbf{p}_{3} f_{q_{1}}(\mathbf{x}_{1}, \mathbf{p}_{1}) \\
\times f_{q_{2}}(\mathbf{x}_{2}, \mathbf{p}_{2}) f_{q_{3}}(\mathbf{x}_{3}, \mathbf{p}_{3}) W_{B}(\mathbf{y}_{1}, \mathbf{k}_{1}; \mathbf{y}_{2}, \mathbf{k}_{2}) \times \delta^{(3)}(\mathbf{P}_{B} - \mathbf{p}_{1} - \mathbf{p}_{2} - \mathbf{p}_{3})$$

Thermal & hard Partons:

- Thermal partons generated by hydro
- *Hard partons* generated by PYTHIA8, then suffered with energy loss by LBT

Coalesence processes:

- thermal thermal parton coalescence
- thermal hard parton coalescence
- hard hard parton coalescence

Hydro-Coal-Frag Hybrid Model

Thermal hadrons (VISH2+1):

 generated by hydro. with Cooper-Frye. Meson: P_T< 2P₁; baryon: P_T< 3P₁.

<u>Coalescence hadrons (Coal Model)</u>:

-generated by coalescences model including thermal-thermal, thermal-hard & hard-hard parton coalescence.

Fragmentation hadrons (LBT):

-the remnant hard quarks feed to fragmentation .

UrQMD afterburner:

-All hadrons are feed into UrQMD for hadronic evolution, scatterings and decays Zhao, Ko, Liu, Qin & Song, PRL 125 7 072301 (2020).

Main Parameters:

3GeV

-*Thermal partons from* hydro with *P*_T > *P*₁.

5GeV

PT

- -Hard partons from LBT with $P_T > P_2$.
- Fixed by the pT spectra pT1 = 1.6GeV and pT2 = 2.6GeV

Spectra of pions, kaons and protons

Our combined model, Hydro-Coal-Frag, gives a nice description of spectra of pion, kaon and proton as well as the P/π over p_T from 0 to 6 GeV.

Zhao, Ko, Liu, Qin & Song, PRL 125 7 072301 (2020).

v2(pT) and NCQ scaling

-Hydro-Coal-Frag model gives a nice description of $v_2(p_T)$ of pion, kaon and proton over p_T from 0 to 6 GeV.

-At intermediate p_T, Hydro-Coal-Frag model can obtain an approximate NCQ scaling as shown by the data.

Zhao, Ko, Liu, Qin & Song, PRL 125 7 072301 (2020).

Zhao, Ko, Liu, Qin & Song, PRL 125 7 072301 (2020).

The importance of quark coalescence in p-Pb collisions

Without coalescence, Hydro-Frag largely underestimates the v2(pT)at intermediate pT, violating the NCQ Scaling of v2

$V_2(P_T)$ from hydro or fragmentation alone

Hydro or Fragmentation alone can not describe v2(PT) in high multiplicy p-Pb colissions

Vorticity and spin polarization

What is vorticity

Non-Relativistic Case:

Fluid vorticity

$$\boldsymbol{\omega} = \frac{1}{2} \nabla \times \boldsymbol{v}$$

(Local angular velocity)

Vorticity & spin polarization

Fluid vorticity

$$\boldsymbol{\omega} = \frac{1}{2} \nabla \times \boldsymbol{v}$$

(Local angular velocity)

$$H = -\boldsymbol{\mu}_{\mathrm{B}} \cdot \boldsymbol{B} - \boldsymbol{S} \cdot \boldsymbol{\omega}$$

Vorticity & spin polarization

Fluid vorticity

$$\boldsymbol{\omega} = \frac{1}{2} \nabla \times \boldsymbol{v}$$

(Local angular velocity)

Non-Relativistic Case:

Rotational Polarization in Condense Matter

Spin hydrodynamic generation

Non-Relativistic Case:

R. Takahashi 🖂, M. Matsuo, M. Ono, K. Harii, H. Chudo, S. Okayasu, J. Ieda, S. Takahashi, S. Maekawa & E. Saitoh 🖂

Nature Physics 12, 52–56(2016) | Cite this article

Vorticity in relativistic heavy ion collisions

$$J_0 \sim \frac{Ab\sqrt{s}}{2} \sim 10^6 \hbar$$

very large global angular momentum

$$eB \sim \gamma \alpha_{\rm EM} \frac{Z}{b^2} \sim 10^{18} {
m G}$$

strong magnetic field
Vorticity in relativistic heavy ion collisions

QGP: smallest but most vortical fluid

Vorticity in relativistic heavy ion collisions

Non-Relativistic illustration:

Global angular momentum & global polarization

The earlier but very pioneering work:

Global polarization of Λ and spin alignment of vector mesons from spin-orbital coupling

Z. T. Liang, X. N. Wang, Phys. Rev. Lett. 94 (2005) 102301, Phys.Lett.B 629 (2005) 20-26

Motivate the spin polarization measurements in experiments!

Spin-orbital coupling Global quark polarization

Final hadron polarization (recombination/fragmentation)

Global polarization measurements in heavy ion collisions

Global polarization measurements in heavy ion collisions

'self-analyzing' of hyperon 🛶

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_{\rm H} \mathbf{P}_{\rm H} \cdot \mathbf{p}_{\mathbf{p}}^*)$$

 \vec{S}^*

 \vec{p}_{π}^{*}

P_H: Λ polarization p_p*: proton momentum in the Λ rest frame α_{H} : Λ decay parameter

$\alpha_{\Lambda} \texttt{=} 0.642 \pm 0.013 \rightarrow \alpha_{\Lambda} \texttt{=} 0.732 \pm 0.014$

P.A. Zyla et al. (PDG), PTEP2020.083C01

 $\Lambda \rightarrow p + \pi^- \label{eq:relation}$ (BR: 63.9%, c τ ~7.9 cm)

S. Voloshin and T. Niida, PRC 94.021904 (2016)

Theoretical frameworks: thermal vorticity & polarization

Relativistic case:F. Becattini, et al. Annal
Phys. 338 32 (2013)Thermal vorticity: $\varpi_{\mu\nu} = -\frac{1}{2} \left(\partial_{\mu} \beta_{\nu} - \partial_{\nu} \beta_{\mu} \right) \quad \beta_{\mu} = u_{\mu}/T$ Spin polarization: $S^{\mu}(x, p)$

$$= -\frac{1}{2m} \frac{S(S+1)}{3} [1 - f(x, p)] \epsilon^{\mu\nu\rho\sigma} p_{\sigma} \varpi_{\nu\rho}$$

global equil. \rightarrow local equil

Spin polarization in hydro:

$$S^{\mu}(p) = \frac{\int d\Sigma_{\lambda} p^{\lambda} f(x, p) \langle S(x, p) \rangle}{\int d\Sigma_{\lambda} p^{\lambda} f(x, p)}$$
Integration on freeze-out

surface

From thermal vorticity to polarization within hydrodynamics

From thermal vorticity to polarization within hydrodynamics

Global Λ Polarization from Hydro

B. Fu, K. Xu, X-G, Huang, H. Song, Phys.Rev.C103 2, 024903 (2021)

-Decrease with the collision energy; increase with centrality; -Roughly describe the data within error bars

Local Λ Polarization from Hydro

B. Fu, K. Xu, X-G, Huang, H. Song, Phys.Rev.C103 2, 024903 (2021)

Different trend/sign in $P_{\nu}(\phi)$ and $P_{z}(\phi)$ results

-Local A Polarization Puzzle!

See also:

Karpenko, Becattini, EPJC 77 (2017) 4, 213

D. Wei, et al., PRC 99 (2019) 014905

X. Xia, et al., PRC 98 (2018) 024905

Becattini, Karpenko, PRL 120 (2018) 012302

Efforts to resolve the 'sign puzzle'

- Feed-down effects (Xia, Li, Huang, Huang, PRC 2019, Becattini, Cao, Speranza, EPJC 2019) [no obvious influence]
- Other spin chemical potential (Wu, Pang, Huang, Wang, PRR 2019) [extra assumption]
- Polarization from projected thermal vorticity (Florkowski, Kumar, Ryblewski, Mazeliauskas, PRC 2019) [extra assumption]
- Side-jump in CKT (Liu, Ko, Sun, PRL 2019) [massless limit]
- Spin as a dynamical d.o.f: [under developing]

. . .

spin hydrodynamics (Florkowski, et al., PRC2017, Hattori, et al., PLB 2019, Shi, et al, PRC 2021, ...)

spin kinetic theory (Gao and Liang, PRD 2019, Weickgenannt, et al PRD 2019, Hattori, et al PRD 2019, Wang, et al, PRD 2019, Liu, et al, CPC 2020, Hattori, et al, PRD 2019, ...)

• Final hadronic interactions (Xie and Csemai, ECT talk 2020, Csemai, Kapusta, Welle, PRC 2019)

Re-evaluate spin cooper fryer formular in hydrodynamics

Shear Induced Polarization

B. Fu, S. Liu, L. -G. Pang, H. Song, Y. Yin, arXiv: 2103.10403

Local polarization at LHC energies

Hottest Matter on Earth

Most Vortical Fluid

Applications of Deep Learning in Relativistic Hydrodynamics

What is deep learning?

AI : the broadest term, applying to any technique that enables computers to mimic human intelligence.

ML: A subset of AI aiming at optimizing a performance criterion using example data or past experience, but without explicit instruction.

DL: A subset of ML aiming at understanding high-level representations of data using a deeper structure of multiple processing layers

An example of Deep Learning

-Identify cats and dogs

Broad Applications of Deep Learning

Computer vision

- -Image identification
- -Image style transition
- -Image generation

Language processing

- -Machine translation
- -Speech recognition
- -Chinese poetry generation

Playing Games

-AlphaGo (by Google DeepMind)

Autonomous Driving

秋夕湖上 By a Lake at Autumn Sunset 荻花风里桂花浮, The wind blows reeds with osmanthus flying, 恨竹生云翠欲流。 And the bamboos under clouds are so green as if to flow down. 谁拂半湖新镜面, The misty rain ripples the smooth surface of lake, 飞来烟雨幕天秋。

Applications of Deep Learning in Physics

- Y. D. Hezaveh, L. Perreault Levasseur and P. J. Marshall, Nature 548, 555 (2017)
- J. Carrasquilla and G. R. Melko, Nature Phys. 13, 431 (2017)
- Carleo et al., Science 355, 602-606 (2017)
- E. P. L. van Nieuwenburg, Y. H. Liu, S. Huber, Nature Phys. 13, 435 (2017)
- Pierre Baldi, Peter Sadowski, and Daniel Whiteson, Nature Commun. 5 (2014) 4308
- Luke de Oliveira, Michela Paganini, and Benjamin Nachman, Comput Softw Big Sci (2017) 1: 4
- Long-Gang Pang et al., Nature Commun. 9 (2018) no.1, 210

• . . . , ,

Θ...

Searching for Exotic Particles in High-Energy Physics

Deep learning can improve the power for the collider search of exotic particles

P.Baldi,P.Sadowski,& D.Whiteson Nature Commun.5, 4308 (2014)

Classifying the Phase of Ising Model

For the case of Ising gauge theory

$$H = -J \sum_{p} \prod_{i \in p} \sigma_i^z$$

J. Carrasquilla and R. G. Melko. Nature Physics 13, 431–434 (2017)

Identify QCD Phase Transition with Deep Learning

DNN efficiently decode the EOS information from the complex final particle info event by event

LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang. Nature Commun.9 (2018) no.1, 210

baryon chemical potential μ_B

Why Deep Learning in Physics?

"Unlike earlier attempts ... Deep Learning systems can see patterns and spot anomalies in data sets far larger and messier than human beings can cope with."

Can **"Black-box**" models learn patterns and models solely from data without relying on scientific knowledge?

More Comments

on several examples of supervised learning

Image identification

Higgs signal or background? P.Baldi, et al, Nature Commun. (2014)

High temperature or low temperature phase?

Carrasquilla & Melko. Nature Physics (2017)

EoS L or EOSQ ? Pang,et al Nature Commun.(2018)

"Unlike earlier attempts ... Deep Learning systems can see patterns and spot anomalies in data sets far larger and messier than human beings can cope with."

Image generation

For hydrodynamics can we use deep learning to learn/predict the pattern transformation between initial and final profiles?

Initial energy density profiles -----> final energy density velocity profiles

For the non-linear hydro system, can the **black-box** network could learn pattern transformations solely from data without relying on scientific knowledge?

(conservation laws)

Applications of deep learning to relativistic hydrodynamics

H.Huang, B.Xiao, H.Xiong, Z.Wu, Y. Mu and H.Song Phys. Rev. Res. 3 2 023256(2021)

Traditional hydrodynamics

 $\partial_{\mu}T^{\mu\nu}(x)=0$

-Such deep learning systems do not need to be programmed with the hydro equation $\partial_{\mu}T^{\mu\nu}(x) = 0$ Instead, they learn on their own

Deep Learning

Step1) Generate the training/testing data sets from hydro

Step2) Design & train the deep neural network

Step3) Test the deep neural network

	The Tes	The Testing Data Sets			
	hydro	MC-Gl	MC-KLN	AMPT	Trento
	VISH 2+1	10000	10000	10000	10000

sUnet prediction vs. hydro simulations

 $\tau - \tau_0 = 6.0 \text{fm}/c$

sUnet prediction vs. hydro simulations $\tau - \tau_0 = 6.0 \text{ fm/c}$

sUnet prediction vs. hydro simulations

Eccentricity distributions:

Simulation time: sUnet vs. hydro

With the well trained network, the final state profiles can be quickly generated from the initial profiles.

Summary & outlook

Traditional hydrodynamics

Deep Learning

Outlook

For hydrodynamics

Initial energy density profiles -----> final energy density velocity profiles

Final particle profiles

-----> Initial energy density profiles

For Nuclear Physics

Many many more to explore Enjoy it! have fun!
Flow from the QGP

V₂(**P**_T)

V₂(**P**_T)